Symbols	meaning
V	membrane potential
$V_{0.5}$	half (in)activation constant
V_h	holding potential
V_s	voltage steps
A_c	cell surface area
V_c	cell volume
C_{m}	specific membrane capacitance
R	the universal gas constant
F	the Faraday constant
Т	absolute temperature
Ca^{2+}	calcium ion
Na^+	sodium ion
K^+	potassium ion
Cl^{-}	chloride ion
Mg^{2+}	magnesium ion
z_{Na}	Na^{+} valency
ZCa	Ca^{2+} valency
z_K	K^+ valency
β	Proportion of free Ca^{2+} ions
[X]i	intracellular concentration of ion X
[X]0	extracellular concentration of ion X
$[Ca^{2+}]$:	intracellular calcium
$[Ca^{2+}]$	extracellular calcium
$[\bigcirc a]_0$ $[Na^+].$	intracellular sodium
$[N_{2}^{+}]$	extracellular sodium
$[K^{+}]_{0}$	intracellular notassium
$[\mathbf{K}^+]$	extracellular potassium
$[C1^{-}]_{0}$	intracellular chlorido
$\begin{bmatrix} C \\ I \end{bmatrix}_{1}$	avtracellular chloride
$[01]_0$ $[Ma^{2+1}]$	extracellular magnegium
E	extracentual magnesium
$E_{\rm rev}$	reversal potential of L_{α} .
E_{CaL}	reversal potential of $I_{\rm Cal}$
$ $	reversal potential of $L_{\rm caT}$
и _{Na} F.	reversal potential of $I_{\rm Na}$
ம _h சு	reversal potential of $T_{\rm h}$
ь Г	reversal potential of L
ĽCl F	reversal potential of $I_{\rm Cl}({\rm Ca})$
D _n	Permaphility of a lain ratio of flux concentration with respect to accium
г _{Са} D/	Democrability of calcium, ratio of flux concentration with respect to cesium
r _{Ca}	Permeability of calcium, corrected with the effect of the electric field
r _{Na}	Permeability of sodium
P _K	Permeability of potassium
1 T	current
I _{ion}	total membrane ionic currents C_{2+}^{2+}
$I_{\rm CaL}$	L-type Ua ⁻ ' current

Table S1. Definitions of the equation symbols

Continued on next page

$\mathbf{Symbols}$	meaning
$I_{\rm CaT}$	T-type Ca ²⁺ current
I _{Na}	fast inward Na ⁺ current
Ih	hyperpolarization-activated current
IKCNO1	KCNQ1 K ⁺ current
IKCNQ1	KCNQ4 K ⁺ current
IKCNQ4	KCNO5 K ⁺ current
I DDG	hEBC K ⁺ current
Inerg	voltage gated K^+ current inactivate with $V_{\rm c} > -40 \mathrm{mV}$
	voltage-gated K ⁺ current, inactivate with $V_h \ge 0 \text{ mV}$
IK2 I	Voltage-gated K current, mactivate with $v_h \ge 0$ mV
I _{Ka}	A-type transient K current
$I_{\rm K(Ca)}$	total Ca ⁺ -activated K ⁺ current
I_{α}	$I_{\rm K(Ca)}$ subtype, consists of only α subunits
$I_{\alpha\beta1}$	$I_{\rm K(Ca)}$ subtype, consists of α and β subunits
$I_{\rm Cl(Ca)}$	Ca ⁻ - activated Cl currents
$I_{\rm NSCC}$	non-specific cation current
$I_{ m NSCC,Ca}$	calcium component of $I_{\rm NSCC}$
$I_{ m NaK}$	Na ⁺ -K ⁺ pump current
$I_{ m NaCa}$	Na ⁺ -Ca ²⁺ exchanger current
J	Ca^{2+} flux
$J_{\rm Ca,mem}$	Ca^{2+} flux <i>via</i> membrane Ca^{2+} currents
$J_{\rm PMCA}$	Ca ²⁺ flux <i>via</i> plasma membrane Ca ²⁺ -ATPase
$J_{ m NaCa}$	Ca^{2+} flux via Na^+ - Ca^{2+} exchanger
$\bar{J}_{\rm PMCA}$	maximal $J_{\rm PMCA}$
\bar{q}	maximum conductance
\bar{q}_{CaL}	maximum conductance of I_{CaL}
\bar{q}_{CaT}	maximum conductance of I_{CaT}
\bar{q}_{Na}	maximum conductance of I_{Na}
$\overline{q}_{\rm h}$	maximum conductance of $I_{\rm h}$
$\bar{q}_{\rm KCNO1}$	maximum conductance of $I_{\rm KCNO1}$
<u>a</u> kcno4	maximum conductance of $I_{\rm KCNO4}$
<u>a</u> kcno5	maximum conductance of $I_{\rm KCNO5}$
Querca a	maximum conductance of $I_{\rm bEBC}$
\bar{a}_{K1}	maximum conductance of I_{K1}
<u>a</u> ka	maximum conductance of I_{K2}
\bar{a}_{K_2}	maximum conductance of $I_{K_{\alpha}}$
$\overline{Q}_{K(C_{n})}$	maximum conductance of $I_{K(C_{n})}$
$\bar{g}_{Cl}(C_{a})$	maximum conductance of $I_{Cl(C_{n})}$
<u>a</u> NG	maximum conductance of Insec
9NS ØNG	conductance of <i>I</i> _{NSCC}
9N5 0.	numerical constant, used for normalizing dependency of extracellular ions on
$\mathcal{G}s$	the conductance of Lygge
Ī. a	maximal Ly a
I_{NaCa}	maximal I _{NaCa}
$\frac{I_{\rm NaK}}{\bar{F}}$	maximal force
1' N=-	Hill coefficient of $[K^+]$ dependency of I
nK	Hill coefficient of $[N_{a}^{+}]$ dependency of I_{NaK}
II _{Na}	$\frac{1}{1}$
	Continued on next page

Table S1 – continued from previous page

$\mathbf{Symbols}$	meaning
n _{PMCA}	Hill coefficient of plasma membrane Ca ²⁺ -ATPase
n _{Allo}	Hill coefficient of allosteric regulation of Na ⁺ -Ca ²⁺ exchanger
$n_{\rm F}$	Hill coefficient of the steady-state of calcium-dependent active force
f_{Ca}	Calcium inhibition of $I_{\rm CaL}$
f_{Mq}	Magnesium inhibition of $I_{\rm NSCC}$
f_{NaK}	Voltage-dependency of $I_{\rm NaK}$
n_{NaK}	$[Na^+]_i$ dependency of I_{NaK}
k_{NaK}	$[K^+]_o$ dependency of I_{NaK}
k_{sat}	Saturation factor for Na ⁺ -Ca ²⁺ exchanger at very negative potential
$f_{1,NaCa}$	Potential dependency of $I_{\rm NaCa}$
$f_{2,NaCa}$	Potential dependency of $I_{\rm NaCa}$
f_{allo}	Allosteric regulation by $[Ca^{2+}]_i$ of Na^+ - Ca^{2+} exchanger
γ	Partition parameter of $I_{\rm NaCa}$
p_a	proportion of I_{α} in $I_{\rm K(Ca)}$
p_b	proportion of $I_{\alpha\beta1}$ in $I_{\rm K(Ca)}$
$K_{1,\mathrm{Cl}}$	Equilibrium constant for the calcium-binding property of c_{∞} of $I_{\rm Cl(Ca)}$
$K_{2,Cl}$	Equilibrium constant for the voltage-dependency of c_{∞} of $I_{\rm Cl(Ca)}$
$K_{d,\mathrm{CaL}}$	Half-saturation concentration for $[Ca^{2+}]_i$ inhibition of I_{CaL}
$K_{d,\mathrm{Mg}}$	Half-saturation concentration for $[Mg^{2+}]_0$ inhibition of I_{NSCC}
$K_{m,\mathrm{K}}$	Half-saturation concentration for $[K^+]_o$ dependency of I_{NaK}
$K_{m,\mathrm{Na}}$	Half-saturation concentration for $[Na^+]_i$ dependency of I_{NaK}
$K_{m, \text{PMCA}}$	Half-saturation concentration for $[Ca^{2+}]_i$ association of plasma membrane Ca^{2+} -ATPase
$K_{m,Allo}$	Half-saturation concentration for $[Ca^{2+}]_i$ allosteric factor of Na^+ - Ca^{2+} exchanges
K	Changer Dissociation constant for $[Ce^{2+}]$ of Ne^+ Ce^{2+} such anger
$K_{m,Cai}$	Dissociation constant for $[Ca^{2+}]$ of $Na^+ Ca^{2+}$ exchanger
$K_{m,Cao}$	Dissociation constant for $[\text{Na}^+]$ of $\text{Na}^+ \text{Ca}^{2+}$ exchanger
$K_{m,\text{Nai}}$	Dissociation constant for $[Na^+]_i$ of $Na^+ Ca^{2+}$ exchanger
$K_{m,\text{Nao}}$	Apparent efficity constant for $[Ca^{2+}]$ of contraction
$\Lambda_{m,\mathrm{F}}$	Activation gate of L_{α} =
0	Activation gate of Level
c d	Activation gate of $I_{Cl}(Ca)$
f_1	Fast inactivation gate of I_{CL}
f_2	Slow inactivation gate of I_{Cal}
92 0	Inactivation gate of I_{Car}
h	Inactivation gate of I_{N_2}
m	Activation gate of I_{N_2}
p	Activation gate of I_{K2}
k_1	Fast inactivation gate of I_{K2}
k_2	Slow inactivation gate of $I_{\rm K2}$
q^{-}	Activation gate of I_{K1}
$\overline{r_1}$	Fast inactivation gate of $I_{\rm K1}$
r_2	Slow inactivation gate of $I_{\rm K1}$
n_{Q1f}	Fast activation gate of $I_{\rm KCNQ1}$
n _{Q1s}	Slow activation gate of $I_{\rm KCNQ1}$

Table S1 – continued from previous page

Continued on next page

<u> </u>	Table 51 – continued from previous page
Symbols	meaning
W_{Q1}	Fast inactivation gate of $I_{\rm KCNQ1}$
s_{Q1}	Slow inactivation gate of $I_{\rm KCNQ1}$
n_{Q4}	Activation gate of $I_{\rm KCNQ4}$
s_{Q4}	Inactivation gate of $I_{\rm KCNQ4}$
n_{Q5f}	Fast activation gate of $I_{\rm KCNQ5}$
n_{Q5s}	Slow activation gate of $I_{\rm KCNQ5}$
WQ5	Fast inactivation gate of $I_{\rm KCNQ5}$
s_{Q5}	Slow inactivation gate of $I_{\rm KCNQ5}$
h_{n1}	Fast activation gate of $I_{\rm hERG}$
h_{n2}	Slow activation gate of $I_{\rm hERG}$
hs	Inactivation gate of $I_{\rm hERG}$
s	Activation gate of $I_{\rm Ka}$
x	Inactivation gate of $I_{\rm Ka}$
$x_{\alpha\beta1}$	Activation gate of $I_{\alpha\beta1}$
x_{lpha}	Activation gate of I_{α}
y	Activation gate of $I_{\rm h}$
ω	Activation gate of Force
b_{∞}	Steady-state of b
c_{∞}	Steady-state of c
d_{∞}	Steady-state of d
f_{∞}	Steady-state of f_1 and f_2
g_{∞}	Steady-state of g
h_{∞}	Steady-state of h
k_{∞}	Steady-state of k_1 and k_2
m_{∞}	Steady-state of m
p_{∞}	Steady-state of p
q_{∞}	Steady-state of q
r_{∞}	Steady-state of r_1 and r_2
$n_{Q1_{\infty}}$	Steady-state of n_{Q1f} and n_{Q1s}
w_{Q1}	Steady-state of w_{Q1}
$s_{Q1_{\infty}}$	Steady-state of s_{Q1}
n_{Q4}	Steady-state of n_{Q4}
$s_{Q4_{\infty}}$	Steady-state of s_{Q4}
n_{Q5}	Steady-state of n_{Q5f} and n_{Q5s}
W_{Q5}	Steady-state of w_{Q5}
s_{Q5}	Steady-state of s_{Q5}
$h_{n\infty}$	Steady-state of h_{n1} and h_{n2}
$h_{s\infty}$	Steady-state of h_s
s_{∞}	Steady-state of s
x_{∞}	Steady-state of x
y_{∞}	Steady-state of y
ω_{∞}	Steady-state of ω
$\alpha\beta 1_{\infty}$	Steady-state of $x_{\alpha\beta1}$
α_{∞}	Steady-state of x_{α}
$V_{0.5,\alpha\beta1}$	Half activation of $x_{\alpha\beta1}$
)/-	

Table S1 – continued from previous page

Continued on next page

$\mathbf{Symbols}$	meaning
$z_{\alpha\beta1}$	Gating charge of $x_{\alpha\beta1}$
z_{lpha}	Gating charge of x_{α}
$ au_{lphaeta 1}$	Time constant of $x_{\alpha\beta1}$
$ au_{lpha}$	Time constant of x_{α}
$ au_b$	Time constant of b
$ au_c$	Time constant of c
$ au_d$	Time constant of d
$ au_{f1}$	Time constant of f_1
$ au_{f2}$	Time constant of f_2
$ au_g$	Time constant of g
$ au_h$	Time constant of h
$ au_{k1}$	Time constant of k_1
$ au_{k2}$	Time constant of k_2
$ au_m$	Time constant of m
$ au_p$	Time constant of p
$ au_q$	Time constant of q
τ_{r1}	Time constant of r_1
$ au_{r2}$	Time constant of r_2
$ au_{\mathrm{nQ1f}}$	Time constant of n_{Q1f}
$ au_{\mathrm{nQ1s}}$	Time constant of n_{Q1s}
$ au_{ m wQ1}$	Time constant of w_{Q1}
$ au_{\mathrm{sQ1}}$	Time constant of s_{Q1}
$ au_{\mathrm{nQ4}}$	Time constant of n_{Q4}
$ au_{\mathrm{sQ4}}$	Time constant of s_{Q4}
$ au_{\mathrm{nQ5f}}$	Time constant of n_{Q5f}
$ au_{\mathrm{nQ5s}}$	Time constant of n_{Q5s}
$ au_{ m wQ5}$	Time constant of w_{Q5f}
$ au_{ m sQ5}$	Time constant of s_{Q5}
$ au_{ m hn1}$	Time constant of h_{n1}
$ au_{ m hn2}$	Time constant of h_{n2}
$ au_{ m hs}$	Time constant of h_s
$ au_s$	Time constant of s
$ au_x$	Time constant of x
$ au_y$	Time constant of y
$ au_{\omega}$	Time constant of ω
α_y	Rate constant of activation of y
β_y	Rate constant of deactivation of y

Table S1 – continued from previous page