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Abbreviations

e MS/MS: Tandem mass spectrometry

e M-SPLIT: Mixture-Spectrum Partitioning using Libraries of Identified @dam mass spectra

e PSM: Peptide Spectrum Match

e PPSM: Peptide/Peptide Spectrum Match

e FDR: False Discovery Rate

e PRM: Prefix Residue Mass

e MPSM: multi-Peptide Spectrum Match

e DDA: Data Dependent Acquisition

e DIA: Data Independent Acquisition

e TDA: Target Decoy Approach



Supplementary Materials

Estimation of False Discovery Rates

False Discovery Rate (FDR) can be estimated by extending the Targey-Bppooach (TDA) for database
search [1]. Each top scoring peptide-peptide-spectrum match (PR8Mbecof one of the following types:
TT — both peptide matches are from the target datali@er DT — one peptide is from the target while the
other peptide is from the decoy database Bfl— both peptides are from the decoy database. A peptide
from the target database can be either a correct (C) or incorrect riiatahd a peptide from the decoy
database is by definition an incorrect match. Therefore matches of gaeltay be further divided into
subtypes: for examplel'T can be divided intd'7¢¢, TT¢!, TTC, andTT!! where the superscript
indicates whether the peptide match is correct or not. We can then write theenoff®PSMs belonging to

each type as a sum of PPSMs belonging to its subtypes:

TT = TT°C + 7177 +T7T7C + T (1)
TD = TD +T1TD! (2)
DT = DT+ DT (3)
DD = DD (4)

TDA assumes that an incorrect peptide match has equal chance of caminghfe target or the decoy
database. Therefore matches of tygehas equal chance of beiridl’, 7D, DT and DD, making the
number of/ I matches in equation 1-4 approximately the sabd?’! = DT/ = TD!! = TT!!, By a
similar argument, the number of matches of typein equation 2 and the number of matches of typein
equation 3 should be comparable to those in equation 1. Hence the exteh§DA to mixture spectra is

made using the following equivalences derived from the standard TBédngstions that matches to decoy



are appropriate models for the false matches to target:

DD = DD" = pr!! = D! = T (5)
77" = TD! (6)
T7'¢ = DT'¢ 7)

To test whether these hold true, we constructed a set of simulated mixtuteasfs=e next section) and
extracted the top-scoring matches of type C'I andCT returned by MixDB and compute the relative
frequency of each peptide match being from the target or decoy databashown in Figure S1a, matches
of type IT had~ 25% chance of beingd'T, TD, DT, andDD. Figure S1b shows that within range of
random variation, matches of tygel has equal probability of beingT" andT'D while Figure S1c shows
that matches of typeBC, has equal chance of beifigl” and DT'. Taken together, these results show that

the TDA assumption can be generalized to mixture spectra.

By substitution and rearranging terms, we can thus redefine the Cl and#€ iteequation 1 to:

77" =TD - DD (8)

1T = DT — DD (9)

As described in the Methods section, two different FDRs need to be cothfart®lixGF: one is used to
determine the probability threshold for the joint probability and the other ftardening the threshold for
conditional probability. Joint probability aims to accept PPSMs that are @B, T7¢!, TTC and
reject matches of the tygET!!. Thus we are interested in controlling the following FDRD R join: =

TTCC+TTgITJ:;Tzc I Conditional probability aims to accept matches of tf{¥e““ and reject matches

of the other types. As such, the FDR of the conditional probability can teetelined asF D R¢ong =

YATTIEHTTDHTTT where thel /2 in the equation accounts for the fact that matches of IC and Cl type




contribute one correct match and one incorrect match. Substituting the tefimsddabove, we get:

DD
FDRjoint = —— 10
ot = 2D (10
1/2((I'D — DD)+ (DT — DD))+ DD
FDRConditional = / (( ) T(j—, )) (11)
1/2(TD + DT) w2

T

Testing the TDA assumption for mixture spectra

In order to test whether the TDA assumptions can be extended to mixturgsspee generated a set of
simulated mixture spectra of tygel, /C' and /[ using the NIST spectral libraries [2] for Yeast and E. coli
where the E. Coli spectral library was pruned to remove any entrieswaskig peptide sequences matching
Yeast protein sequences. Mixture spectra of typewere simulated by linearly combining two spectra
from the E.Coli library while mixture spectra of tyjge/ and/C were simulated by linearly combining one
spectrum from the Yeast library and one spectrum from the E. Colilibfdlthe simulated mixture spectra
were searched against a Yeast protein sequence database usirg [jxDhe top-scoring match of type

II. CI andIC were extracted and used to compute the frequency that each match masT,dl'D, DT

and DD respectively. Each experiment was performed on a set of three tiebasaulated mixture spectra
(one thousand for each typél, C'I, C'I) and the experiment was repeated twenty times to estimate the

random fluctuations in the data (shown as error bars in Figure S1).
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Figure S1: Target/Decoy Approach (TDA) for mixture spectra: TDAuasss that for an incorrect peptide-
spectrum-match (PSM), the peptide has equal chance of coming from get (&) or the decoy (D)
database. For a peptide-peptide-spectrum match (PPSM) there ar&itite®f incorrect matchestI—
where both peptides are incorrect aiidl /C' — where one peptide is a correct match and the other peptide is
an incorrect match. Extending the TDA assumption to mixture spectra implies mwhaticé of typel I will
have equal chance of beifigl’, T'D, DT or DD. Similarly a match of type’I will have equal chance of
beingTT andT D while a match of typd C' will have equal chance of beinG7 andT'T'. In order to test
these assumptions, we constructed a set of simulated mixture spectra acteexine top-scoring matches
oftypell, CI, andIC returned by MixDB and computed the relative frequency of each peptidg em
the target (T) or the decoy (D) database. As shown in a)-c), within thgeraf random variations, each
incorrect peptide match'{ has approximately 50% chance of being from the target or the decoyadata

confirming that the TDA assumption can be generalized to mixture spectrassed.



Testing MixGF on higher-complexity mixture spectra

In order to test how the complexity of mixture spectra affects MixGF's perémce we constructed sets of
simulated mixture spectra from two to five peptides and searched them with Mbi@Elated spectra were
created in a similar fashion as for the two-peptide case (see Method).yBteefireate a mixture spectra
with K peptides K single-peptide spectr&, So, ...S) with precursor mass difference less tt3alDa were
selected randomly from the spectral library. The sum of peak intensitaaf selected spectra were first
normalized to one. A simulated mixture spectrubf, was then created by linearly combining the single-
peptide spectraM = S; + asSs>...aS;. The mixture coefficienty; which reflects relative abundance
of the peptide in the mixture spectrum was randomly chosen between 0.3 to ixGF®lsensitivity at
identifying the first two peptides at 1% FDR were shown in Table ST1. It$epoked that MixGF is robust
at identifying higher-complexity mixture spectra as the sensitivity of identififiegop two peptides showed

no significant changes as more peptides were added in the mixture spectra.

Number of peptides in mixture spectra 2 3 4 5

MixGF sensitivity at identifying top two peptid%sS0.0 83.7 80.3 77.5
Table ST1: MixGF sensitivity for mixture spectra with higher complexity: Simulabédure spectra that
are from two to five peptides were generated and analyzed by MixGFsérsativity at identifying the top

two peptides by MixGF were shown.

MixGF for high mass accuracy data

The dynamic programming approaches proposed in the main text to compateabpbabilities for mix-
ture spectra assumes that amino acids have integer masses, thus resuigniidaust rounding errors for
high mass accuracy MS/MS data. The following text described the extensitmoduced in the implemen-

tation of MixGF to take advantage of high mass accuracy.



Spectrum processing

All MS/MS peaks were first deconvoluted and moved to their monoisotopic p@ston as previously
described in [4]. The spectra were then filtered to retain only the 12 moasmfgeaks in each window of

50 Da.

Mass error model for PRM spectrum

As mentioned in the paper, a PRM spectrum is an transformation of an edsgectrum to a scored version
of the spectrum that can be used to compute a score for a PSM or PPSMvétpsince mass values for
each PRM spectrum are discretized to 1 Da bins, theoretical fragmeritoompeptides do not match peaks
in the spectrum with the small mass errors characteristics of high accustnynirents. To utilize the high
mass accuracy information in MS/MS data, we used a similar approach to thoatuogd in MSGF+ [5]
where the main idea is that if MS/MS peak masses are accurate therdifia®nces between pairs of
MS/MS peaks should also be proportionally accurate when the paired peaie from consecutive ions of
the same ion type. This can be illustrated using an example: when matching tidedepRGER to a
spectrumS, peaksn, andms are matched to thiel andb5 fragment ions respectively (i.e,. right before and
right afterE). If LARGER is the correct peptide match, the mass difference,mass(ms) —mass(ma)
should be close to the mass of the amino acidiith any mass error expected to be within twice the mass
error tolerance of the instrument. Conversely A RGER is an incorrect peptide match & thenm, and
ms are random matches and thus it is unlikely their mass difference will be closeds(E).

To extend the model using this idea, we define a fragment ion type as & gaib, d), whereo is the
mass offset of the ion type amtdenotes whether the ion is a prefix ion or suffix ion (note that the charge of
an ion type is not considered here because peaks were first cahieecdarge 1 by the preprocessing step).
A prefix ion is a fragment ion that contain the N-termus of the peptide whilef $tgfgment ion is an ion

that contains the C-terminus of the peptide. For simplicity of notation, we alsoedafpeak by its mass



m since peak intensity is not considered in the following discussion. Giveéoratypel; = (o;,d;), for a

particular peakn we can define its PRM position to be:

Round(m — o) if d = Prefix
PRM (m,I;) = (13)
Round(Parentmass — (m — o)) if d = Suffizx
where Round returns the nearest integer for a real number. Therefore, givemaype, each peak in the

spectrum is assigned to a unique PRM position.sLahdy be a pair of PRM positions such that they differ

by approximately the mass of an amino acid (without loss of generality we assumg:
(z,y)|r —y = a € Round(Amino Acid Mass) (14)

Given an ion typel, two peaksn’, andm)/ form a pair ifm., is assigned to a PRM andm;, is assigned

to a PRMy such thatr andy satisfy the condition above. We define a differential mass error for k pea
pair as:6(m, mj,a) = m, — m] — a. Let D be a random variable that represents the differential mass
errors of all peak pairs in a set of PSMs. The probability distributiofdbr peak pairs in correct PSMs,
Prob(D|true_match), can be learned from a set of annotated spectra and similarly a baokigil@iribu-

tion Prob(D|decoy-match) for peak pairs from incorrect matches can also be learned from & detoy

PSMs obtained by searching a set of spectra against a decoy dataltikebhood score can then be defined

as:

Prob(D = §(ml, m ,a)|true_match)
Prob(D = 6(ml, m[ a)|decoy_match

ErrorScore(z,y,I) = log( ) (15)

which reflects the mass error for a peak pair. Note that @ y have no assigned peak,s assigned a
special value ofx. The probability of the converse of this everfitrob(D # o) reflects the chance of
matching two consecutive ions of the same ion type in the spectrum and it istedge be higher for
correct matches than incorrect matches. Thus oo will result in a negative likelihood score whose actual

value is learned from the data. Given a set of ion tyflgsI,...1; }, a score can be calculated for every pair



of PRM positions satisfying Equation 14 by summing up the error scoresbtrien type:

ErrorScore(z,y) = Z ErrorScore(zx,y, I;) (16)
i=1.t

Thus for an MS/MS spectrum with parent magswe can construct a PRM spectrusiof size M and an
M x M matrix, E, whereE; ; contains thelsrrorScore described above (note only entriés;|i — j

AminoAcidMass in this matrix are valid). To score a peptidewith PRMs P = pq, po, ...p,, against
the spectrum\/, we add the score from boiand E: Score(P,S) = 3.1 Spi + 2 ict 1 Epipisi-

Using this scoring function the spectral probability can be computed usimgneig programming method

similar to the one described in the main text.

Refining PRM spectrum for conditional probability

It is often found that in mixture spectra, MS/MS peaks used as ions fordRadched to the first peptide in
a PPSM often interfere as high-intensity ‘noise’ from the perspectitieeo$econd peptide, thus effectively
decreasing the statistical significance of the second peptide. To avoidféus &e aim to remove these
peaks from the spectrum before calculating the conditional probabiliterGi peakn and a fragment ion
annotation/, a PRM position can be computed as described above and the corriegpBRd score is used
as a confidence score that the ion annotafigs correct form. For example, if a peak: is assigned to a

b — H,O ion in the first peptide, we use the scoreldf!, | to assess how likely this annotation is to be
correct. Similarly one can iterate through all possible ion types and use thiesp&ctrum to determine
what is the most likely ion annotation for every peak in the spectrum matchee trsh peptide in the
PPSM. The main idea is that will most likely be from the first peptide if no better annotation from the
second peptide can be found considering all possible ion types. Mocestely, given a PRM spectrund,
the score for a peak: given an ion typd is: Score(m|l;, M) = Mpgyi(m,1;)- FOr @ mixture spectrum let
m; be a peak that is matched to the first peptide &nie the ion annotation for that peak. Also be

the set of all possible fragment ion types that are being consid&red:{[;, I>...I,,}. A peakm; will be



assigned to the first peptide if:
Score(m;|I', M™) > Score(m;|I;, M*) forallj = 1..n a7

All peaks from the first peptide matching equation 17 were removed frospietrum. Then peak intensity
ranks and the PRM spectruf/” for the low-abundance peptide were recomputed and the conditional

probability was determined as described in the main text.
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