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Abbreviations

• MS/MS: Tandem mass spectrometry

• M-SPLIT: Mixture-Spectrum Partitioning using Libraries of Identified Tandem mass spectra

• PSM: Peptide Spectrum Match

• PPSM: Peptide/Peptide Spectrum Match

• FDR: False Discovery Rate

• PRM: Prefix Residue Mass

• mPSM: multi-Peptide Spectrum Match

• DDA: Data Dependent Acquisition

• DIA: Data Independent Acquisition

• TDA: Target Decoy Approach
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Supplementary Materials

Estimation of False Discovery Rates

False Discovery Rate (FDR) can be estimated by extending the Target-Decoy Approach (TDA) for database

search [1]. Each top scoring peptide-peptide-spectrum match (PPSM) can be of one of the following types:

TT – both peptide matches are from the target database,TD or DT – one peptide is from the target while the

other peptide is from the decoy database andDD – both peptides are from the decoy database. A peptide

from the target database can be either a correct (C) or incorrect match(I) and a peptide from the decoy

database is by definition an incorrect match. Therefore matches of each type can be further divided into

subtypes: for example,TT can be divided intoTTCC , TTCI , TT IC , andTT II where the superscript

indicates whether the peptide match is correct or not. We can then write the number of PPSMs belonging to

each type as a sum of PPSMs belonging to its subtypes:

TT = TTCC + TTCI + TT IC + TT II (1)

TD = TDCI + TDII (2)

DT = DT IC +DT II (3)

DD = DDII (4)

TDA assumes that an incorrect peptide match has equal chance of coming from the target or the decoy

database. Therefore matches of typeII has equal chance of beingTT , TD, DT andDD, making the

number ofII matches in equation 1-4 approximately the same:DDII = DT II = TDII = TT II . By a

similar argument, the number of matches of typeCI in equation 2 and the number of matches of typeIC in

equation 3 should be comparable to those in equation 1. Hence the extension of TDA to mixture spectra is

made using the following equivalences derived from the standard TDA assumptions that matches to decoy
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are appropriate models for the false matches to target:

DD = DDII = DT II = TDII = TT II (5)

TTCI = TDCI (6)

TT IC = DT IC (7)

To test whether these hold true, we constructed a set of simulated mixture spectra (see next section) and

extracted the top-scoring matches of typeII, CI andCI returned by MixDB and compute the relative

frequency of each peptide match being from the target or decoy database. As shown in Figure S1a, matches

of type II had∼ 25% chance of beingTT , TD, DT , andDD. Figure S1b shows that within range of

random variation, matches of typeCI has equal probability of beingTT andTD while Figure S1c shows

that matches of typesIC, has equal chance of beingTT andDT . Taken together, these results show that

the TDA assumption can be generalized to mixture spectra.

By substitution and rearranging terms, we can thus redefine the CI and IC terms in equation 1 to:

TTCI = TD −DD (8)

TT IC = DT −DD (9)

As described in the Methods section, two different FDRs need to be computed for MixGF: one is used to

determine the probability threshold for the joint probability and the other for determining the threshold for

conditional probability. Joint probability aims to accept PPSMs that are of typeTTCC , TTCI , TT IC and

reject matches of the typeTT II . Thus we are interested in controlling the following FDR:FDRJoint =

TT II

TTCC+TTCI+TT IC+TT II . Conditional probability aims to accept matches of typeTTCC and reject matches

of the other types. As such, the FDR of the conditional probability can then be defined as:FDRCond =

1/2(TT IC+TTCI)+TT II

TT where the1/2 in the equation accounts for the fact that matches of IC and CI type
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contribute one correct match and one incorrect match. Substituting the terms defined above, we get:

FDRJoint =
DD

TT
(10)

FDRConditional =
1/2((TD −DD) + (DT −DD)) +DD

TT
(11)

=
1/2(TD +DT )

TT
(12)

Testing the TDA assumption for mixture spectra

In order to test whether the TDA assumptions can be extended to mixture spectra, we generated a set of

simulated mixture spectra of typeCI, IC andII using the NIST spectral libraries [2] for Yeast and E. coli

where the E. Coli spectral library was pruned to remove any entries assigned to peptide sequences matching

Yeast protein sequences. Mixture spectra of typeII were simulated by linearly combining two spectra

from the E.Coli library while mixture spectra of typeCI andIC were simulated by linearly combining one

spectrum from the Yeast library and one spectrum from the E. Coli library. All the simulated mixture spectra

were searched against a Yeast protein sequence database using MixDB [3]. The top-scoring match of type

II. CI andIC were extracted and used to compute the frequency that each match was from TT , TD, DT

andDD respectively. Each experiment was performed on a set of three thousand simulated mixture spectra

(one thousand for each type:II, CI, CI) and the experiment was repeated twenty times to estimate the

random fluctuations in the data (shown as error bars in Figure S1).
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Figure S1: Target/Decoy Approach (TDA) for mixture spectra: TDA assumes that for an incorrect peptide-

spectrum-match (PSM), the peptide has equal chance of coming from the target (T) or the decoy (D)

database. For a peptide-peptide-spectrum match (PPSM) there are threekinds of incorrect matches:II–

where both peptides are incorrect andCI/IC – where one peptide is a correct match and the other peptide is

an incorrect match. Extending the TDA assumption to mixture spectra implies that amatch of typeII will

have equal chance of beingTT , TD, DT or DD. Similarly a match of typeCI will have equal chance of

beingTT andTD while a match of typeIC will have equal chance of beingDT andTT . In order to test

these assumptions, we constructed a set of simulated mixture spectra and extracted the top-scoring matches

of typeII, CI, andIC returned by MixDB and computed the relative frequency of each peptide being from

the target (T) or the decoy (D) database. As shown in a)-c), within the range of random variations, each

incorrect peptide match (I) has approximately 50% chance of being from the target or the decoy database,

confirming that the TDA assumption can be generalized to mixture spectra as proposed.
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Testing MixGF on higher-complexity mixture spectra

In order to test how the complexity of mixture spectra affects MixGF’s performance we constructed sets of

simulated mixture spectra from two to five peptides and searched them with MixGF. Simulated spectra were

created in a similar fashion as for the two-peptide case (see Method). Briefly, to create a mixture spectra

with K peptides,K single-peptide spectra:S1, S2, ...Sk with precursor mass difference less than3 Da were

selected randomly from the spectral library. The sum of peak intensity of each selected spectra were first

normalized to one. A simulated mixture spectrum,M , was then created by linearly combining the single-

peptide spectra:M = S1 + α2S2...αkSk. The mixture coefficientαi which reflects relative abundance

of the peptide in the mixture spectrum was randomly chosen between 0.3 to 1.0. MixGF’s sensitivity at

identifying the first two peptides at 1% FDR were shown in Table ST1. It is observed that MixGF is robust

at identifying higher-complexity mixture spectra as the sensitivity of identifyingthe top two peptides showed

no significant changes as more peptides were added in the mixture spectra.

Number of peptides in mixture spectra 2 3 4 5

MixGF sensitivity at identifying top two peptides80.0 83.7 80.3 77.5

Table ST1: MixGF sensitivity for mixture spectra with higher complexity: Simulatedmixture spectra that

are from two to five peptides were generated and analyzed by MixGF. Thesensitivity at identifying the top

two peptides by MixGF were shown.

MixGF for high mass accuracy data

The dynamic programming approaches proposed in the main text to compute spectral probabilities for mix-

ture spectra assumes that amino acids have integer masses, thus resulting in significant rounding errors for

high mass accuracy MS/MS data. The following text described the extensions introduced in the implemen-

tation of MixGF to take advantage of high mass accuracy.
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Spectrum processing

All MS/MS peaks were first deconvoluted and moved to their monoisotopic massposition as previously

described in [4]. The spectra were then filtered to retain only the 12 most intense peaks in each window of

50 Da.

Mass error model for PRM spectrum

As mentioned in the paper, a PRM spectrum is an transformation of an observed spectrum to a scored version

of the spectrum that can be used to compute a score for a PSM or PPSM. However, since mass values for

each PRM spectrum are discretized to 1 Da bins, theoretical fragment ionsfrom peptides do not match peaks

in the spectrum with the small mass errors characteristics of high accuracy instruments. To utilize the high

mass accuracy information in MS/MS data, we used a similar approach to that introduced in MSGF+ [5]

where the main idea is that if MS/MS peak masses are accurate then massdifferences between pairs of

MS/MS peaks should also be proportionally accurate when the paired peaks come from consecutive ions of

the same ion type. This can be illustrated using an example: when matching the peptide LARGER to a

spectrumS, peaksm4 andm5 are matched to theb4 andb5 fragment ions respectively (i.e,. right before and

right afterE). If LARGER is the correct peptide match, the mass difference,δ = mass(m5)−mass(m4)

should be close to the mass of the amino acidE with any mass error expected to be within twice the mass

error tolerance of the instrument. Conversely ifLARGER is an incorrect peptide match toS, thenm4 and

m5 are random matches and thus it is unlikely their mass difference will be close tomass(E).

To extend the model using this idea, we define a fragment ion type as a pairI = (o, d), whereo is the

mass offset of the ion type andd denotes whether the ion is a prefix ion or suffix ion (note that the charge of

an ion type is not considered here because peaks were first converted to charge 1 by the preprocessing step).

A prefix ion is a fragment ion that contain the N-termus of the peptide while a suffix fragment ion is an ion

that contains the C-terminus of the peptide. For simplicity of notation, we also define a peak by its mass
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m since peak intensity is not considered in the following discussion. Given anion typeIj = (oj , dj), for a

particular peakm we can define its PRM position to be:

PRM(m, Ij) =















Round(m− o) if d = Prefix

Round(Parentmass− (m− o)) if d = Suffix

(13)

whereRound returns the nearest integer for a real number. Therefore, given anion typeI, each peak in the

spectrum is assigned to a unique PRM position. Letx andy be a pair of PRM positions such that they differ

by approximately the mass of an amino acid (without loss of generality we assumex > y):

(x, y)|x− y = a ∈ Round(Amino Acid Mass) (14)

Given an ion typeI, two peaksmI
x andmI

y form a pair ifmI
x is assigned to a PRMx andmI

y is assigned

to a PRMy such thatx andy satisfy the condition above. We define a differential mass error for a peak

pair as:δ(mI
x,m

I
y, a) = mI

x − mI
y − a. Let D be a random variable that represents the differential mass

errors of all peak pairs in a set of PSMs. The probability distribution ofD for peak pairs in correct PSMs,

Prob(D|true match), can be learned from a set of annotated spectra and similarly a background distribu-

tion Prob(D|decoy match) for peak pairs from incorrect matches can also be learned from a set of decoy

PSMs obtained by searching a set of spectra against a decoy database. A likelihood score can then be defined

as:

ErrorScore(x, y, I) = log(
Prob(D = δ(mI

x,m
I
y, a)|true match)

Prob(D = δ(mI
x,m

I
y, a)|decoy match

)) (15)

which reflects the mass error for a peak pair. Note that ifx or y have no assigned peak,δ is assigned a

special value of∞. The probability of the converse of this event:Prob(D 6= ∞) reflects the chance of

matching two consecutive ions of the same ion type in the spectrum and it is expected to be higher for

correct matches than incorrect matches. ThusD = ∞ will result in a negative likelihood score whose actual

value is learned from the data. Given a set of ion types{I1, I2...It}, a score can be calculated for every pair
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of PRM positions satisfying Equation 14 by summing up the error scores for each ion type:

ErrorScore(x, y) =
∑

i=1..t

ErrorScore(x, y, Ii) (16)

Thus for an MS/MS spectrum with parent massM we can construct a PRM spectrumS of sizeM and an

M × M matrix,E, whereEi,j contains theErrorScore described above (note only entriesEi,j |i − j ∈

AminoAcidMass in this matrix are valid). To score a peptideP with PRMsP = p1, p2, ...pn against

the spectrumM , we add the score from bothS andE: Score(P, S) =
∑

i=1..n Spi +
∑

i=1..n−1Epi,pi+1
.

Using this scoring function the spectral probability can be computed using dynamic programming method

similar to the one described in the main text.

Refining PRM spectrum for conditional probability

It is often found that in mixture spectra, MS/MS peaks used as ions for PRMs matched to the first peptide in

a PPSM often interfere as high-intensity ‘noise’ from the perspective ofthe second peptide, thus effectively

decreasing the statistical significance of the second peptide. To avoid this effect, we aim to remove these

peaks from the spectrum before calculating the conditional probability. Given a peakm and a fragment ion

annotationI, a PRM position can be computed as described above and the corresponding PRM score is used

as a confidence score that the ion annotationI is correct form. For example, if a peakm is assigned to a

b − H2O ion in the first peptide, we use the score atMH
m+18 to assess how likely this annotation is to be

correct. Similarly one can iterate through all possible ion types and use the PRM spectrum to determine

what is the most likely ion annotation for every peak in the spectrum matched to the first peptide in the

PPSM. The main idea is thatm will most likely be from the first peptide if no better annotation from the

second peptide can be found considering all possible ion types. More concretely, given a PRM spectrumM ,

the score for a peakm given an ion typeI is: Score(m|Ij ,M) = MPRM(m,Ij). For a mixture spectrum let

mi be a peak that is matched to the first peptide andIi be the ion annotation for that peak. Also letI be

the set of all possible fragment ion types that are being considered:I = {I1, I2...In}. A peakmi will be
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assigned to the first peptide if:

Score(mi|I
i,MH) ≥ Score(mi|Ij ,M

L) for allj = 1..n (17)

All peaks from the first peptide matching equation 17 were removed from thespectrum. Then peak intensity

ranks and the PRM spectrumML for the low-abundance peptide were recomputed and the conditional

probability was determined as described in the main text.
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