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1. Estimation of parameters

While the Geometric-Poisson distribution appears to approximate the distance distribution under simulation well, this
is under the assumption that several key parameters of interest are known — namely, the mutation rate, the
equilibrium effective population size within-host, and the bottleneck size. With a known transmission structure (for
instance, within a household (CowLING et al. 2010)), it is possible to estimate some of these quantities. We simulated
an outbreak and assumed that a set of 25 transmission pairs was observed. Figure S8 shows the likelihood of these
data under a range of values for mutation rate and effective population size. The estimate of the effective population
size is uncertain, since the data are less informative of this parameter; in the most extreme case, where coalescence
occurs immediately prior to the time of lineage divergence, the likelihood function depends only on the mutation

rate.

The bottleneck size can additionally be estimated. Observation of multiple genotypes shortly after a bottleneck event
suggests that the bottleneck must be large enough to allow diversity through; Figure S9 shows the likelihood of
observing different numbers of SNPs within host shortly after transmission, for a range of potential bottleneck sizes.
Again, such estimates are associated with very high levels of uncertainty, particularly for large bottleneck sizes.
However, it may be possible to test the hypothesis that the bottleneck size is strict, an assumption frequently made in

transmission network reconstruction methods.

2. Simulated outbreak

Figure S2 shows a simulated SIR outbreak with 25 infected individuals, 18 of which have a sampled genotype. We
considered the relative likelihood of observing a genetic distance between two hosts, given direct transmission has
occurred (Figure S2, bottom left). The maximum likelihood estimate of transmission source was correct in eight out of
17 transmission events. In comparison, selecting the genetically closest isolate as the source was correct in seven
cases, although for some of these, multiple hosts were equally close.

For any given infected host, a genetic distance threshold may be specified, which may be used to rule out direct
transmission to a given probability level. Consider the individual labelled ‘N’ in figure S2, with a sample at time 1000.
Under the geometric-Poisson approximation with strict bottleneck, the probability of drawing a sample differing by 4
SNPs or greater at time 1000 from the true host is less than 5%. As such, six of the eleven previously infected
individuals can be ruled out as transmission sources at this level. As the time between samples and/or the bottleneck

size increase, this threshold also increases.

3. Comparison with transmission network estimation software packages.

‘Outbreaker’ is an R package for the investigation of individual-level transmission dynamics using genomic data
(JomBART et al. 2014), while ‘seqTrack’ is an earlier and simpler method, implemented in the ‘adegenet’ package
(JomeaARrT et al. 2011). These software packages are arguably the most accessible tools for estimating a transmission
network available at present, and as such, we wanted to compare their performance against our method. Given a

user-specified infectivity distribution and one genomic sample per infected host, outbreaker implements an MCMC
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algorithm which estimates the posterior edge probabilities of the network, along with several parameters of interest,
including the mutation rate. Unlike our model, this approach therefore does not require infection times and mutation
rate to be known (and can also be used to detect importations into a population), however, it operates on a less
sophisticated model of within-host dynamics — mutations are assumed to be a feature of transmission, and an
infected host is adequately represented by a single sequenced pathogen isolate. seqTrack identifies the genetically
closest pathogen sample as the source, using the specified mutation rate to break ties. This approach also assumes
that each host is represented by one genomic sample.

We simulated outbreaks under various assumptions, and attempted to identify the transmission network using our
likelihood approach, as well as the outbreaker and seqTrack functions. While the outbreaker package can also be used
to simulate outbreaks, this is performed under the assumptions mentioned previously, so we instead simulated the
within-host pathogen dynamics explicitly, as described in Methods. We used the number of transmission routes to
compare the two methods. We ran outbreaker with no spatial model, and detection of importations suppressed.
Furthermore, we assumed a flat infectivity distribution. We emphasize that these approaches are not directly
comparable, since outbreaker and seqTrack accommodate unknown infection times, and outbreaker furthermore

estimates the mutation rate, giving our approach an advantage in this comparison. Results are presented in Table S2.

4. MRSA outbreak analysis

While the analysis provided in the main text provides estimates of transmission routes under plausible parameter
values found in the literature, there is a great deal of uncertainty surrounding true within-host pathogen population
dynamics, and as such, we repeated the analysis under a range of assumptions. The mutation rate used in the main

analysis was given in the paper describing this dataset; the mutation rate of MRSA has previously been estimated to

be higher ( 3% 1076 per nucleotide per year, equivalent to 5% 1074 per genome per generation (HARRIS et al.
2010; YouNa et al. 2012)), so we repeated the analysis with this value. With this higher mutation rate, a larger range
of genetic distances are plausible, and as such, fewer routes were excluded at the 5% level. The HCW was a plausible
source for most patients on the ward, however, the genetic distance from patients 1 and 5 to the HCW were more
similar than would be expected, given this infection route. No patient to HCW transmission route could be excluded

at the 5% level.

Changing the effective population size had a limited effect on the estimated transmission route estimates. Values of
2000 and higher produced near identical posterior probabilities. Previous studies have estimated nasal carriage of S.
aureus to have an effective population size in the range of 50-4000 (YOUNG et al. 2012; GOLUBCHIK et al. 2013). We

experimented with an effective population size of 100, finding that five patient-HCW routes, and seven HCW-patient

routes could be excluded at the 5% level.

Varying the time at which the HCW became infected had an impact on posterior transmission probabilities. Moving
this value forward in time decreases the number of SNPs expected to accumulate by the time of observation. If the
HCW infection time was 164 days after the first case, the upper bound of the range provided by (HARRIs et al. 2013),
five patients remain temporally consistent with having become infected by the HCW. Two of these transmission

routes can be excluded at the 5% level.
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We repeated our analysis using the pure Poisson model. In general, this distribution has a shorter right tail than the
geometric-Poisson distribution, and as such, can lead to more transmission routes being rejected at a given
probability level. With the same assumptions as in the main text, the HCW-patient routes were typically given a
higher posterior probability under the Poisson distribution, however, the most likely source of infection remained the

same for all individuals (Figure S5).

5. Conditional distributions

We define a phylogenetic subtree to be the unique set of branch segments linking two isolates, originating at the time
of their coalescence. Then the genetic distance I//(g1 ,gz) is dependent on another distance I//(g3 ,g4) by the

intersection of the two phylogenetic subtrees. The conditional distribution of one genetic distance given another is

length of intersection

2.1 ,2,)~ Bin 284)s
v(g,8)1v(g:.8,) v(g;.8,) length of subtree(g,,g,)

+ Pois{u((length of subtree(g,,g,))— (length of intersection))}
(8)

Figure S7 shows two possible configurations of the phylogenetic and transmission tree with three infected cases. In
both settings, I//(g2 ,g3) depends on I//(g1 ,gz) via the mutations occurring along branch b3 . If the sequences at

the internal nodes are known, or can be inferred, this estimation is unnecessary, as the true number of mutations
along any given branch segment can be calculated. However, since the genealogy is not typically observed, and does
not necessarily correspond to the transmission network, even under a strict bottleneck (PyBus and RAmMBAUT 2009;
YPMA et al. 2013), such an approximation may be useful for inference of the full network, and to account for multiple

samples per host.

Transmission chains of length 3 were simulated to investigate conditional distributions of genetic distances. Times

from infection to sampling and onward transmission were identical for all cases. With a strict bottleneck, I//(g2 ,g3)
varies only minimally with I//(g1 ,g2), but I//(g1 ,g3) shows a clear dependency. Both distances increase with
greater values of I//(g1 ,gz) under larger bottlenecks (Figure S6). With a strict bottleneck, the scenario in Figure S7B

is impossible, and as such, the intersection of subtrees (g1 ,gz) and (g2 ,g3) is relatively small. With an increasing

bottleneck size, the probability of scenario B, and therefore the potential length of subtree overlap, increases.
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