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This is the supplement for ((PESCUEet al., 2014). We begin by complementing
our simulation results for PSIKO fd£ = 3 founders presented in GPESCUet al.,
2014) with those for larger values &fi.e. K =4...10. We then present a pseudo-
code version of PSIKO ( Algorithm 1). Subsequent to this, wespnt mathematical
details on how equations underpinning PSIKO are solved. Mielade with details on
themsms commands used to generate our simulated datasets. Urdess stherwise,

our notation follows that of (BPESCUet al., 2014).

LARGER VALUES FORK

For various Dirichlet distribution parameter settings isyanmetric simulation sce-
nario (see BPEscuUet al. (2014) for details), we present in Tab®& the average
Root Mean Squared Error (RMSE) between inferred and @wmeatrices for values
of K=4,...,10. As can be readily observed, the average RMSE over all aG&elts
for each Dirichlet distribution parameter choice and eaalue forK is below 1.6%

which suggests that PSIKO performs very well for larger galofK.
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Dirichlet parametery 1 | 05 | 0.1

K=4 0.013| 0.009| 0.007
0.013| 0.01 | 0.01
0.015| 0.01 | o0.01
0.015| 0.011| 0.011
0.015| 0.012| 0.012
0.016| 0.013| 0.013
0 0.016| 0.013| 0.01
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Table S1: Denoting the Dirichlet distribution parameter settimgsll 1s, all 05s and
all 0.1s, by 1, 05 and 01 respectively and using the latter as column labels, weeptes
the average RMSE between the true and the estim@tawhtrix for PSIKO for the
valuesK =4,...,10.

PSIKO PSEUDO-CODE

A representation of PSIKO in pseudocode is given in Algaonith LetnComp denote

the number of found significant components.

Algorithm 1 PSIKO

Input: A dataset in the form of a SNP matrk with accession loci encoded as 2’s,
1'sand0’s.

Output: The numbeK of founders, the significant principal components (PCs)and
Q-matrixQ = (qex) for X, wherec is a founder ofX andx is a an accession &.

STEP | (Dimensionality Reduction):

1: first apply linear kernel-PCA tX to reduce dimensionality of the dataset and
then the Tracy-Widom test for non-zero eigenvalues to ittfier numbemComp

of significant principal components. Finally use those congnts to compute a
nComp dimensional dataset’

2 : normalizeX’ to have zero mean and unit variance

STEP Il (Population Structure Inference):

3:find the vertices (and thus the numbeof founders) of thénComp — 1)-simplex
representing(’ by minimising Equation (1) below

4 : returnK and the matrixQ found in Step 3 and the significant PCs found in line 1
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OPTIMISING EQUATIONS UNDERPINNING PSIKO

In this section, we give details on the algorithm used to misé Equation (2) of

(PopPEscuet al., 2014), that is:

Z(A.Q) =X —AQ|, 1)

whereA = (gj)1<i<k andas,ay,...ak are the founders oX represented as column
vectorsQ = (Oxi)1<i<k IS the matrix of ancestry coefficients for each accessiarX,
andK is the number of putative founders.

We start by making some observations that are specific tanggitig Equation (1),
and then present in Algorithm 2 an efficient algorithm for miising it. The notation
used follows that of (BPESCUet al., 2014).

Suppose we are given a mat@x Finding a matriXA which minimises Equation (1)
can easily be achieved via linear least-squares optiraisaNore precisely, we have

that
K
X=") Oxid, )
i; X1

holds for any accessionin our data set. In the context of optimising Equation (1) we
are interested in finding values fay, 1 <i < K such that a given accessiarin X is

approximated as closely as possible by Equation (2). Thidezachieved by using:

Observation 0.1.

A=(QTQ+rrT)QXT, (3)
where Q and X are asbeforeand I = | isa Tikhonov regularisation matrix.

Now consider the converse problem, i. e.that the maitris known, and that we
are interested in finding the matr@x For this we once again use Equation (2) above.

More precisely, utilising the fact thgiK:l Oxi = 1 holds for allx € X, we obtain:
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Ox1

_ 1 1 ... 1 U2
Observation 0.2. Let B := , Ox 1= and x' :=
aig ax ... ag . X
OxK
Then Bgy = X’ or, equivalently,
Gx =B~ 4)

We note that the above solution fqg can produce entries which are outside the
interval [0,1]. To address this we followed the strategy employed in SNM&EHO
et al., 2014), and first set for akt € X all entries ofqy that are negative to zero. We
then divide each entry afy by the sum of entries ajx. This ensures that the values of
gx lie in the interval[0, 1] and that they also sum to one.

Using Observations 0.1 and 0.2, we can optimise Equatioitgftively (see Al-
gorithm 2, withe set to 10°°). We found that that algorithm returns accurate estimates
of theQ matrix across all simulation scenarios as well as for theliiotbgical datasets

under investigation in (BPESCUet al., 2014).

Algorithm 2 Algorithm used to optimise Equation (1)

Input: A data matrixX as returned by Step | of PSIKO

Output: A matrix A of founders foiX as well agQ-matrix Q for X, minimising Equa-
tion (1).

Initialise A andQ randomly.

prev=0

cur =.2(A,Q)

sete to a small number, say 18

while |prev—cur| < € do
estimateQ givenA using Equation (4)
estimateA givenQ using Equation (3)
prev = cur
cur =.2(A,Q)

end while

returnA,Q
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MSMS COMMANDS USED

In order to simulat&k > 1 independent, randomly mating populations, we used the
msms coalescent simulator (EING and HERMISSON 2010). We simulat& indepen-
dent demes (populations) with no migration between thenmt aveeriod of 10,000
generations. Each deme is represented by 100 simulateddudis. After 10,000
generations, alk demes are merged and the coalescent process is allowednto ter
nate. We simulate a fixed number of segregating sites (SN&srinase) in each case.
Specifically, fork = 3 and 13626 segregating sites, we used the followdizghs com-
mand:

msms.jar 300 1 -s 13626 -N 1000 -I 3 100 100 100 -ej 2.5 1 2 -¢j
2.5 23

By modifying the -I flag and adding more -ej flags, this commeaad be used to
simulate an arbitrary number of independent populatiortse dser is referred to the

msms manual for more details.
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