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This is the supplement for (POPESCUet al., 2014). We begin by complementing

our simulation results for PSIKO forK = 3 founders presented in (POPESCUet al.,

2014) with those for larger values ofK i. e. K = 4. . .10. We then present a pseudo-

code version of PSIKO ( Algorithm 1). Subsequent to this, we present mathematical

details on how equations underpinning PSIKO are solved. We conclude with details on

themsms commands used to generate our simulated datasets. Unless stated otherwise,

our notation follows that of (POPESCUet al., 2014).

LARGER VALUES FORK

For various Dirichlet distribution parameter settings in asymmetric simulation sce-

nario (see POPESCU et al. (2014) for details), we present in TableS1 the average

Root Mean Squared Error (RMSE) between inferred and trueQ-matrices for values

of K = 4, . . . ,10. As can be readily observed, the average RMSE over all 100 datasets

for each Dirichlet distribution parameter choice and each value forK is below 1.6%

which suggests that PSIKO performs very well for larger values ofK.
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Dirichlet parameters 1 0.5 0.1

K = 4 0.013 0.009 0.007
K = 5 0.013 0.01 0.01
K = 6 0.015 0.01 0.01
K = 7 0.015 0.011 0.011
K = 8 0.015 0.012 0.012
K = 9 0.016 0.013 0.013
K = 10 0.016 0.013 0.01

Table S1: Denoting the Dirichlet distribution parameter settingsof all 1s, all 0.5s and
all 0.1s, by 1, 0.5 and 0.1 respectively and using the latter as column labels, we present
the average RMSE between the true and the estimatedQ-matrix for PSIKO for the
valuesK = 4, . . . ,10.

PSIKO PSEUDO-CODE

A representation of PSIKO in pseudocode is given in Algorithm 1. LetnComp denote

the number of found significant components.

Algorithm 1 PSIKO
Input: A dataset in the form of a SNP matrixX with accession loci encoded as 2’s,

1’s and 0’s.
Output: The numberK of founders, the significant principal components (PCs) anda

Q-matrixQ = (qcx) for X, wherec is a founder ofX andx is a an accession ofX.

STEP I (Dimensionality Reduction):
1 : first apply linear kernel-PCA toX to reduce dimensionality of the dataset and
then the Tracy-Widom test for non-zero eigenvalues to inferthe numbernComp
of significant principal components. Finally use those components to compute a
nComp dimensional datasetX ′

2 : normalizeX′ to have zero mean and unit variance
STEP II (Population Structure Inference):
3 : find the vertices (and thus the numberK of founders) of the(nComp−1)-simplex
representingX′ by minimising Equation (1) below
4 : returnK and the matrixQ found in Step 3 and the significant PCs found in line 1
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OPTIMISING EQUATIONS UNDERPINNING PSIKO

In this section, we give details on the algorithm used to minimise Equation (2) of

(POPESCUet al., 2014), that is:

L (A,Q) = ||X−AQ||2F , (1)

whereA = (ai)1≤i≤K anda1,a2, . . .aK are the founders ofX represented as column

vectors,Q = (qxi)1≤i≤K is the matrix of ancestry coefficients for each accessionx ∈ X,

andK is the number of putative founders.

We start by making some observations that are specific to optimising Equation (1),

and then present in Algorithm 2 an efficient algorithm for minimising it. The notation

used follows that of (POPESCUet al., 2014).

Suppose we are given a matrixQ. Finding a matrixA which minimises Equation (1)

can easily be achieved via linear least-squares optimisation. More precisely, we have

that

x =
K

∑
i=1

qxiai, (2)

holds for any accessionx in our data set. In the context of optimising Equation (1) we

are interested in finding values forai, 1≤ i ≤ K such that a given accessionx in X is

approximated as closely as possible by Equation (2). This can be achieved by using:

Observation 0.1.

A = (QT Q+ΓΓT )−1QT XT
, (3)

where Q and X are as before and Γ = I is a Tikhonov regularisation matrix.

Now consider the converse problem, i. e. that the matrixA is known, and that we

are interested in finding the matrixQ. For this we once again use Equation (2) above.

More precisely, utilising the fact that∑K
i=1 qxi = 1 holds for allx ∈ X, we obtain:
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Observation 0.2. Let B :=


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and x′ :=







1

x






.

Then Bqx = x′ or, equivalently,

qx = B−1x′ (4)

We note that the above solution forqx can produce entries which are outside the

interval [0,1]. To address this we followed the strategy employed in sNMF (FRICHO

et al., 2014), and first set for allx ∈ X all entries ofqx that are negative to zero. We

then divide each entry ofqx by the sum of entries ofqx. This ensures that the values of

qx lie in the interval[0,1] and that they also sum to one.

Using Observations 0.1 and 0.2, we can optimise Equation (1)iteratively (see Al-

gorithm 2, withε set to 10−5). We found that that algorithm returns accurate estimates

of theQ matrix across all simulation scenarios as well as for the twobiological datasets

under investigation in (POPESCUet al., 2014).

Algorithm 2 Algorithm used to optimise Equation (1)
Input: A data matrixX as returned by Step I of PSIKO
Output: A matrix A of founders forX as well asQ-matrixQ for X, minimising Equa-

tion (1).

InitialiseA andQ randomly.
prev = 0
cur = L (A,Q)
setε to a small number, say 10−5

while |prev− cur|< ε do
estimateQ givenA using Equation (4)
estimateA givenQ using Equation (3)
prev = cur
cur = L (A,Q)

end while
returnA,Q
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MSMS COMMANDS USED

In order to simulateK > 1 independent, randomly mating populations, we used the

msms coalescent simulator (EWING and HERMISSON, 2010). We simulateK indepen-

dent demes (populations) with no migration between them over a period of 10,000

generations. Each deme is represented by 100 simulated individuals. After 10,000

generations, allK demes are merged and the coalescent process is allowed to termi-

nate. We simulate a fixed number of segregating sites (SNPs inour case) in each case.

Specifically, forK = 3 and 13,626 segregating sites, we used the followingmsms com-

mand:

msms.jar 300 1 -s 13626 -N 1000 -I 3 100 100 100 -ej 2.5 1 2 -ej

2.5 2 3

By modifying the -I flag and adding more -ej flags, this commandcan be used to

simulate an arbitrary number of independent populations. The user is referred to the

msms manual for more details.
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