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Analytical approximations for the fraction of segregating sites

The proportion pseg of segregating sites is given by

pseg = 1− p(n)− p(0) (S1.1)

where

p(k) =

∫ 1

0

dq

(

n

k

)

qk(1− q)n−kφ(q) (S1.2)

and

φ(q) = Ceγqqβ−1(1− q)α−1 (S1.3)

Moments of the frequencies q and p: We first consider p(n) = qn which is

given by

p(n) =
(β)n

(α + β)n

1F1(n+ β, n+ α+ β, γ)

1F1(β, α+ β, γ)
(S1.4)

=
(β)n

(α + β)n

1 +
∑

∞

j=1G
(n)
j

γj

j!

1 +
∑

∞

j=1G
(0)
j

γj

j!

(S1.5)

where

G
(n)
j =

(n+ β)j
(n+ α + β)j

(S1.6)

and (a)j is the Pochhammer’s symbol. For α, β → 0 with κ = α/β finite, we

have

G
(n)
j ≈

{

1− α(Hn+j−1 −Hn−1) , n > 0
1

1+κ
(1− αHj−1) , n = 0

(S1.7)

where Hj =
∑j

k=1(1/k) is the jth Harmonic number. Also, we can write

(β)n
(α + β)n

≈
1

1 + κ
(1− αHn−1) (S1.8)

Substituting the above approximations in the expression for p(n) and keeping
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terms to order α, we finally obtain

p(n) ≈
1

1 + κe−γ

(

1− αHn−1e
−γ −

αe−γ

1 + κe−γ
(S1(n) + κS2(n))

)

(S1.9)

where

S1(n) =
∞
∑

j=1

(Hn+j−1 −Hj−1)
γj

j!

γ≫1
∼

eγ

γ
(n+ c1γ

−1) (S1.10)

S2(k) = e−γ

∞
∑

j=1

Hn+j−1
γj

j!

γ≫1
∼ ln γ (S1.11)

We note that the dependence on n appears at order α. Thus in the infinite

sites model where these terms are neglected, all the moments of fraction q

are equal. Setting n = 1 and 2 in the above equations reproduces the results

for q̄ in (7a) and (7b), and for q − q2 in (13) (after dividing by 2) given in

the main text. In the neutral case, we have

p(n) ≈
1− αHn−1

1 + κ
(S1.12)

while in the strong selection limit, using the asymptotic results for the sums

S1(n) and S2(n), we get

1− p(n) =
1

1 + κ−1eγ

(

1 +
α

κ
(Hn−1 +

neγ

γ
)

)

(S1.13)

For γ → ∞, the above expression shows that 1− p(n) → αn/γ.

We next consider p(0) = (1− q)n which is given by

p(0) =
(α)n

(α + β)n

1F1(β, n+ α + β, γ)

1F1(β, α+ β, γ)
(S1.14)

For α, β → 0 but arbitrary n and j, we can write

(β)j
(n+ α + β)j

≈ β
(j − 1)!(n− 1)!

(n+ j − 1)!
(S1.15)
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Using the above approximation and as before, keeping terms to order α, we

find that

p(0) ≈
κe−γ

1 + κe−γ

(

1−
α

κ
Hn−1 +

α(n− 1)!

κ
S3(n) +

αS2(0)

1 + κe−γ

)

(S1.16)

where

S3(n) =

∞
∑

j=1

γj

j(n + j − 1)!

γ≫1
∼

eγ

γn
(S1.17)

In the case of neutrality, we have

p(0) =
κ− αHn−1

1 + κ
(S1.18)

and in the strong selection limit, we get

p(0) =
1

1 + κ−1eγ

(

1−
α

κ
(Hn−1 −

(n− 1)!eγ

γn
)

)

(S1.19)

For γ → ∞, the fraction p(0) → α(n− 1)!/γn.

Segregating site fraction (pseg): Using the above results, we can now look at

the behavior of pseg. For γ = 0, both p(0) and 1 − p(n) contribute equally

(in magnitude) to give

pseg =
2αHn−1

1 + κ
(S1.20)

SinceHn ∼ lnn+γEM for large n, the proportion of segregating sites increases

logarithmically with the sample size in the neutral case. For β = 0.02, the

above expression gives pseg = 0.094 and 0.156 for n = 20 and 200 respectively

which are close to the data in Table 1 of the main text. In the strong selection

limit, for large γ, we have

pseg ≈
αn

γ
(S1.21)

which increases linearly with the sample size.

One can also look at the β → ∞ limit. For the neutral case, we have

pseg = 1−
(α)n + (β)n
(α+ β)n

(S1.22)
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For n ≪ α, β, we can write

(α)n
(α + β)n

≈

(

κ

1 + κ

)n

(S1.23)

while for n ≫ α, β, using Stirling’s approximation s! ∼
√
2πs(s/e)s, we get

(α)n
(α + β)n

≈
(α + β − 1)!

(α− 1)!
n−β (S1.24)

Using these approximations, we find that

1− pseg =

{

1+κn

(1+κ)n
, n ≪ α, β

(α + β − 1)! ( 1
(α−1)!nβ + 1

(β−1)!nα ) , n ≫ α, β
(S1.25)

Thus in small samples (relative to scaled mutation rates), pseg approaches

unity exponentially fast while for larger samples, the approach is algebraic.
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