File S2

Analysis of egg to adult survival of the miRNA lines.

mir-279D and mir-317D hypomorphs The two Dahomey-background miRNA-hypomorph lines and their control $w^{[Dah]}$ did not differ significantly in egg to adult survival ($G^2 = 65.31$, $F_{1,157} = 2.94$, P = 0.056 [Dispersion parameter = 11.20]; Figure S3A).

mir-279C and mir-317C hypomorphs The two $w^{[CS]}$ -background miRNA hypomorph lines differed significantly from their control in egg to adult survival ($G^2 = 137.82$, $F_{2,117} = 19.61$, P < 0.0001 [Dispersion parameter = 3.52]). *mir-279C* females showed the lowest egg to adult survival. Furthermore, egg-adult survival was lower in females mated to SP^+ control males compared to SP^0 males ($G^2 = 25.97$, $F_{1,116} = 7.39$, P = 0.008, interaction = ns; Figure S3B).

mir-278D ko mir-278D ko females had a tendency to exhibit lower egg to adult survival than did control females ($G^2 = 24.77$, $F_{1,114} = 3.32$, P = 0.071 [Dispersion parameter = 7.53]). This was independent of the male with which they mated ($G^2 = 0.54$, $F_{1,114} = 0.07$, P = 0.789, interaction = ns; Figure S3C).

mir-184 ko *mir-184* ko females had very low egg to adult survival (Female genotype: $G^2 = 1140.40$, $F_{1,75} = 82.31$, P < 0.0001 [Dispersion parameter = 6.85]). Control females showed no difference in egg to adult survival according to male genotype (male x female genotype: $G^2 = 99.76$, $F_{1,74} = 14.55$, P = 0.0003; male genotype: $G^2 = 7.48$, $F_{1,75} = 0.54$, P = 0.465; Figure S3D).

8 SI C. Fricke et al.