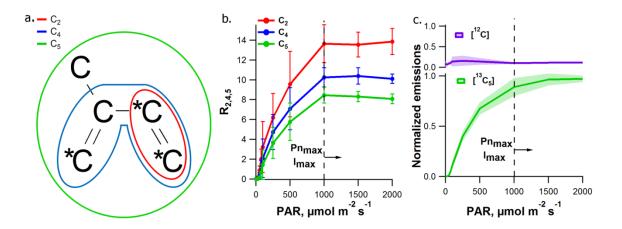
Supplementary Information

Dynamic balancing of isoprene carbon sources reflects photosynthetic and photorespiratory responses to temperature stress

^{*1}Kolby Jardine, ¹Jeffrey Chambers, ³Eliane G. Alves, ³Andrea Teixeira, ³Sabrina Garcia, ¹Jennifer Holm, ³Niro Higuchi, ³Antonio Manzi, ⁴Leif Abrell, ⁵Jose D. Fuentes, ²Lars K. Nielsen, ¹Margaret Torn, and ²Claudia E. Vickers


^{1*}Corresponding author: Climate Science Department, Earth Science Division, Lawrence Berkeley National Laboratory, One Cyclotron Rd, building 64-241, Berkeley, CA 94720, USA, email (kjjardine@lbl.gov)

²Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Building 75, Cnr Cooper and College Rds, St. Lucia, QLD, 4072, Australia

³National Institute for Amazon Research (INPA), Ave. Andre Araujo 2936, Campus II, Building LBA, Manaus, AM 69.080-97, Brazil

⁴Department of Chemistry & Biochemistry and Department of Soil, Water and Environmental Science, University of Arizona, Tucson, AZ, USA

⁵Department of Meteorology, College of Earth and Mineral Sciences, Pennsylvania State University, University Park, PA, USA

Figure S1: GC-MS ¹³C-labeling analysis of isoprene emissions from 4 mango leaves during photosynthesis under ¹³CO₂ as a function of PAR. **a**) Structure of isoprene GC-MS fragment ions with two carbon atoms (C₂, red) and four carbon atoms (C₄, blue) together with the isoprene parent ion with five carbon atoms (C₅, green). Carbon atoms derived from glyceraldehyde-3-phosphate (GA3P) and pyruvate are shown as *C and C respectively. **b**) Average ¹³C/¹²C isotope ratios (R) of C₂ (2:¹³C/0:¹³C, R₂ = m/z 29/27) and C₄ (4:¹³C/0:¹³C, R₄ = m/z 57/53) fragment ions and C₅ (5:¹³C/0:¹³C, R₅ = m/z 73/68) parent ions. **c**) Average emission rates for [¹²C]isoprene (m/z 68) and [¹³C₅]isoprene (m/z 73) normalized to the maximum emissions of [¹³C₅]isoprene. [¹²C]isoprene emissions were low and variable while [¹³C₅]isoprene increased with PAR. Vertical dashed lines represent optimum PAR range for net photosynthesis (Pn_{max}) and isoprene emissions (I_{max}) determined from the ¹²CO₂ studies (see **Figure 1** of the main manuscript).