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Supplementary Fig. S1: (A) Schematic showing the direct targets of Stat3, Tcf3 and Mek/Erk. 

LIF activates expression of the transcription factor Stat3, which, in turn, activates Klf4 (1), Gbx2 

(2) and Tfcp2l1 (3). GSK3 inhibition by CH has been shown to stabilise the ES cell state via 

abrogation of T-cell factor 3 (Tcf3) (4). Esrrb and Tfcp2l1 have been identified as a direct 

functional targets of Tcf3 (5). ES cell differentiation involves stimulation of the mitogen-

activated protein kinase (ERK1/2) pathway by fibroblast growth factor-4 (FGF4), and blockade 

of this pathway is achieved using PD (6). The downstream targets of MEK/ERK are Nanog and 

Tcf3 (7, 8) (see panels B and C). (B) Gene-expression analysis of ES cells cultured in presence 

of LIF+CH (blue bars) or 2i+LIF (red bars) for 10 days. Note that PD significantly increases the 

expression of both Nanog and Tcf3. ActinB served as a loading control, and bars indicate the 

mean and SD of two independent experiments. (C) Gene-expression analysis of ES cells cultured 

in presence of LIF+CH for 10 days, exposed for the indicated time to PD. Note that PD 

significantly increases the expression of both Nanog and Tcf3 after 2h. ActinB served as a 

loading control and bars indicate the mean and SD of two independent experiments. (D) In order 

to determine the essential interactions required in the pluripotency program we followed the 

illustrated workflow. First, we inferred optional interactions from gene expression data (Fig. 1B) 

and thereby constructed a meta-model of the network. Known experimental behaviour of ES 

cells was used to constrain this set (Fig. 2A), which was subsequently used to make predictions 

of ES cell behaviour in response to genetic perturbations. The predictions were experimentally 

tested (Fig. 3). This approach can be iterated to incorporate new experimental results and refine 

the model. 



 

4 

 

 



 

5 

 

Supplementary Fig. S2: (A) Culture conditions used to maintain pluripotency in vitro: any two 

of LIF, CH and PD (together ‘2i’) are sufficient to prevent differentiation. Top panels show the 

undifferentiated morphology. Bottom panels show immunostaining for the naïve pluripotency 

marker Esrrb.  (B) Under the four different culture conditions, ES cells homogeneously express 

the Rex1GFP pluripotency marker. 72h after signal withdrawal the majority of cells 

downregulate the reporter (profile in grey). (C) Box-whisker plots showing the fluorescence 

immunostaining intensity for Nanog, Oct4 and Esrrb in ES cells cultured under each of the four 

conditions. As a negative control cells were stained without primary antibody incubation. The 

red dashed lines indicate the fluorescence intensity measured in the negative control. Under the 

four different culture conditions >97% of cells expressed the indicated pluripotency markers. 

This is in stark contrast to previous reports (Niwa et al, 2009 Nature; Martello et al, 2012 Cell 

Stem Cell) where the naïve markers Nanog and Esrrb were expressed by only ~50% of cells 

cultured in LIF+Serum. Boxes show the first, second and third quartile, whiskers show the 

maximum and minimum value. See Table S3 for the list of antibodies and conditions used.  (D) 

Colony formation in the indicated culture conditions. Cells were cultured for 10 days and plated 

at clonal density (500 cells for each well). The number of undifferentiated AP+ colonies obtained 

5 days after plating is indicated. Bars show mean and SD (n=3). (E) Chimaera formation and 

germline transmission. ES cells were cultured in either LIF+CH or LIF+PD for 2 weeks before 

blastocyst injection. Representative images of high contribution chimeras and offspring are 

shown. The presence of brown pups indicates germ-line transmission. Black siblings are 

included for comparison. Chimera formation from 2i or 2i+LIF cultures was previously reported 

(11, 12, 17). 
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Supplementary Fig. S3: (A) Pearson correlation coefficients are generated for each gene pair 

for each of the five experiments in Fig. 1B. The variation in Pearson coefficients for each gene 

pair is shown. (B) The optional interactions inferred from the experimental data in Fig. 1B for an 

initial Pearson coefficient threshold of 0.7, and the expected gene expression for conditions of 

LIF+PD (left) and 2i+LIF (right). Gene expression is discretised to high (blue) or low (white). 

Positive regulation is shown as a black arrow, while negative regulation is shown as a red circle-

headed line. Dashed lines indicate optional interactions, solid lines indicate definite interactions: 

these are direct downstream targets of Stat3, Tcf3 and MEK/ERK that have been previously 

experimentally validated (see Fig. S1) (1–3, 5, 7, 8). 
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Supplementary Fig. S4: (A) Based on our gene expression data, there are 6 possible positive 

interactions that involve Nanog, which are highlighted. (B) Microarray data reveals the effect of 

a single knockdown of Nanog on these 6 genes. Only 3 genes, Esrrb, Klf2 and Tfcp2l1, show a 

mild downregulation upon Nanog knockdown. (C) Nanog ChIP-Seq data reveals that Nanog 

directly binds Esrrb, Klf2 and Tfcp2l1 gene loci. (D) Venn diagram of the overlap in the possible 

interactions independently inferred from ChIP-Seq data, knockdown experiments and our gene 

expression data. Only 12 of our interactions are not validated and represent previously 

unsuspected relationships. In addition these alternative data sets suggest interactions that we do 

not consider. However, we show that these additional interactions are not required to satisfy the 

constraints shown in Fig. 2B. 
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Supplementary Fig. S5: (A) A summary of the interactions inferred using a Pearson correlation 

coefficient threshold of 0.792, with the additional optional positive Oct4/Sox2 interaction that is 

required to correct the incorrect prediction for conditions of 2i+LIF. This summary indicates 

whether these interactions are supported by microarray data after TF knockdown, ChIP-Seq 

binding data, or a model obtained using Bayesian inference methods (9). Blank indicates that the 

interaction is not suggested by these data / approach. (B) Model obtained applying a Bayesian 

network inference method, previously used to study somatic cell reprogramming (10), to our 

gene expression data. Arrows indicate positive regulations, whereas negative regulations are 

shown as blunted lines. Note that in this model there are no external inputs to Oct4, Sox2 or 

Nanog. 
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Supplementary Fig. S6: (A-C) Clonal assays in 2i+LIF. The predictions involving loss of 

Nanog (panel B) or Tbx3 (panel C) have been tested both by double knockdown (right) and by 

single knockdown in cells lacking either Tbx3 or Nanog (left). Importantly, we obtained similar 

results from the two approaches. For each sample the number of AP+ colonies, relative to 

irrelevant siRNA transfected cells, is indicated. Each bar represents the mean and SEM of at 

least 4 independent experiments. (D) Additional predictions formed in 2i, which were not 

experimentally tested. (E) Clonal analysis of the indicated samples in 2i. Each bar represents the 

mean and SEM of at least 4 independent experiments. In all experiments only reductions >50% 

in ES cell colony formation (red dashed lines) are considered significant. (F) Clonal assay of ES 

cells in LIF+PD. Those indicated with a red asterisk correspond to incorrect model predictions. 

(G) Clonal assay of ES cells in LIF+CH. Only one wrong prediction was made in these 

conditions. Each bar represents the mean and SEM of at least 2 independent experiments. (H) 

Assessment of the stability of ES cells in 2i+LIF and 2i by plating in unsupplemented medium 

for 0, 24, 48 or 72 hours, and subsequently analysing the Rex1-GFP profile (Figure 3C), and 

replating for clonal assays in 2i + LIF (Figure S6I). (I) Clonal assay of cells maintained either in 

2i+LIF or 2i and withdrawn for the indicated time, then replated in 2i+LIF. Representative wells 

are shown. Mean and SD are indicated (n=3). (J) Venn diagram showing the overlap of possible 

interactions as inferred from different sources. With no prior knowledge, there are 272 possible 

interactions between the 17 TFs. The set of possible, but still optional, interactions is reduced to 

59 assuming the experimental constraints prescribed in Fig. 2B. Correspondingly, the set of 

consistent models derived represents a reduction by a factor of 1064. 
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Figure S7 

 

 

Supplementary Fig. S7: The constrained set of models that satisfy the original set of 23 

specifications, in addition to the experimental data from knockdowns in 2i+LIF. The interactions 

that are highlighted correspond to the minimal model (Fig. 3D), while the interactions shown in 

grey define the remaining set of possible network models.  
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Materials and Methods 

 

S1A: Embryonic Stem Cell Culture  

 

ES cells were cultured without feeders on plastic coated with 0.1% gelatine (Sigma, cat. G1890) 

and replated every three days at a split ratio of 1 in 10 following dissociation with Accutase 

(PAA, cat. L11-007). Cells were cultured in serum-free media N2B27 (NDiff N2B27 base 

medium, Stem Cell Sciences Ltd, cat. SCS-SF- NB-02) supplemented, as indicated, with small-

molecule inhibitors PD (1 μM, PD0325901) and CH (3 μM, CHIR99021) and LIF prepared in-

house. Colony forming assays were carried out by plating 500 ES cells per well on plates coated 

with laminin (Sigma, cat. L2020). Plates were fixed and stained for alkaline phosphatase (Sigma, 

cat. 86R-1KT) according to the manufacturer’s protocol. Plates were scanned using a 

CellCelector (Aviso) and scored manually. 

 

S1B: Gene Expression Analysis by Quantitative RT-PCR with Reverse Transcription 

 

Cells were plated at a density of 15,000 cells/cm2 and collected after 24h. Total RNA was 

isolated using the RNeasy kit (Qiagen) and 500 ng used for cDNA synthesis using SuperScript 

III (Invitrogen) and oligo-dT primers. Quantitative real-time PCR was carried out with SYBR 

green detection. Primers are detailed in Supplementary Table S1. Technical replicates were 

analysed for all reactions. Beta-Actin was used as an internal control and expression relative to 

the mean level of each gene has been calculated. 
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S1C: RNAi Experiments  

 

We performed siRNA transfection experiments to test the model predictions. ES cells were 

cultured in 2i+LIF and transfected with the indicated combinations of siRNAs (Fig. 3A, left 

panel). After 48h hours cells were counted and the same number of viable cells were plated at 

clonal density. The number of alkaline phosphatase positive (AP+) colonies formed after 5 days 

was counted. We used two different negative controls (an irrelevant siRNA and an anti-GFP 

siRNA). This assay provided a quantitative experimental measurement of the self-renewal 

capacity of ES cells (Fig. 3A, left panel, exp. validation column).  

 

siRNAs were transfected at a final concentration of 40nM using Dharmafect 1 (Dharmacon, cat. 

T-2001-01), following the protocol for reverse transfection.  For a 12 well plate (4cm2) we used 

2 l of transfection reagent, 2 l of 20 M siRNA solution and 30,000 ES cells in 1 ml of 

N2B27 medium. The medium was changed after overnight incubation. siRNAs were purchased 

from Qiagen and Ambion. For each gene we combined two pre-validated siRNAs to maximize 

knockdown efficiency (>65%, see Table S2).  

 

S1D: Flow Cytometry 

 

After treatment with Accutase, live ES cells were resuspended in PBS with 3% FCS and ToPro-3 

(invitrogen) was added at a concentration of 0.05nM to detect dead cells. Flow cytometry 

analyses were performed using a Dako Cytomation CyAn ADP high-performance cytometer 

with Summit software. 
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S1E: ChIP-seq and Microarray Data Analysis 

 

All raw and processed ChIP-seq data files, including lists of candidate target genes, used in 

Fig.S4C-D and S2A are available for download from 

http://bioinformatics.cscr.cam.ac.uk/ES_Cell_ChIP-seq_compendium.html. 

 

Microarray data of ES cells after knockdown of single transcription factors, used in Fig. S3 and 

S4  are described in (11) and were obtained from http://esbank.nia.nih.gov/download.html. 

 

S1F: Computational Approach  

 

The methodology for determining the architecture of the pluripotency program is shown in Fig. 

S1D. The challenge is to infer possible interactions between the pluripotency factors and to use 

experimental observations to determine which of these interactions are valid and necessary, and 

in what combinations.  

 

First, we inferred optional interactions from gene expression data (Fig. 1B) and thereby 

constructed possible models of the network. Known experimental behaviour of ES cells was used 

to constrain this set (Fig. 2B), which was subsequently used to make predictions of ES cell 

behaviour in response to genetic perturbations. The predictions were experimentally tested (Fig. 

3). This approach can be iterated to account for new experimental results, resulting in model 

refinement. 

 

 

 

http://bioinformatics.cscr.cam.ac.uk/ES_Cell_ChIP-seq_compendium.html
http://esbank.nia.nih.gov/download.html
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S1G: Abstract Boolean Networks  

 

To enable the automatic construction of computational models consistent with experimental 

observation, we developed an approach based on the application of formal synthesis procedures 

(12) to Boolean networks (13). We refer to the resulting models as Abstract Boolean Networks 

(ABNs). As in other Boolean formalisms, we represent TFs as network nodes, which can attain 

one of two levels at each time step (we use ‘low’ and ‘high’ to refer to these discrete gene 

expression levels). Directed edges in the network represent regulation interactions between TFs, 

which can be either positive (activation) or negative (inhibition). The network is considered 

‘abstract’ because certain edges (referred to as ‘possible’) indicate only the option of an 

interaction between the nodes they connect, as opposed to the definite presence of such an 

interaction. Thus, an ABN with  possible interactions encodes  different concrete Boolean 

networks (BNs) and is used to represent the set of possible models of the pluripotency network. 

 

The dynamics of ABN models are defined similarly to Boolean networks with synchronous 

updates.  At each time step, the state of each node is determined through the application of a 

‘regulation function’ - a Boolean function of all regulators to the node. We limit the choice of 

regulation functions to one of 15 predefined functions (Supplementary Table 3), constrained by 

assuming that (i) a gene can be active only when at least one of its activators is present (two 

special regulation functions were defined solely for Tcf3 and MEK/ERK, which do not have 

activators) and (ii) regulation is monotonic (e.g. a repressed gene does not become activated 

when additional repressors become available). For example, regulation function 4 states that a 

gene will be expressed only if all of its activators are expressed, but not all of its repressors. In 

contrast, regulation function 15 states that a gene will be expressed if at least one activator is 

expressed, and even if all of its repressors are expressed. 

n
n2
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S1H: Reasoning about Abstract Boolean Networks  

 

Once a set of possible models is encoded as an ABN, we are interested in determining whether 

any concrete models from this set are consistent with experimentally observed behaviour (a 

synthesis problem) and generating predictions regarding the expected system behaviour (an 

analysis problem). We approached both types of questions by encoding ABNs and all additional 

constraints as Satisfiability Modulo Theories (SMT) problems. Similar strategies have been 

applied to tackle challenging problems arising in the verification and analysis of computer 

software and hardware, driving the development of efficient SMT solvers such as the Z3 theorem 

prover (21), which we use in this work. 

 

The synthesis problem we consider corresponds to the identification of a concrete BN, where 

each possible interaction is set as present or not and the regulation functions of each node are 

instantiated. Furthermore, this BN must be capable of reproducing certain expected system 

behaviour (as in Fig. 2A). Given an ABN model and a set of additional constraints representing 

the required behaviour, the identification of concrete BN models is achieved automatically 

within our tool (see ‘Reasoning Engine for Interaction Networks’ below), while multiple 

consistent models can also be enumerated. Implicitly, the set of concrete BN models represented 

as an ABN is restricted through the additional constraints to a set of consistent models where 

only certain combinations of possible, i.e. optional, interactions are allowed, but the required 

behaviour is guaranteed.  

 

Given an ABN constrained as described above, the analysis problem we consider for making 

predictions of the pluripotency network (see ‘Model Predictions’ below) amounts to deciding if 
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all concrete BN models from this set are capable of producing certain behaviour. This approach 

is conservative, since if a single concrete model from the set behaves differently, the analysis 

result is inconclusive. In general, this leads to fewer predictions than using a single concrete 

model but provides a more direct connection between experimental observations and the 

generated predictions, where all reasoning steps are based on formal logical rules and are 

performed automatically. 

 

S1I: Reasoning Engine for Interaction Networks (RE:IN) 

 

This approach was implemented within a bespoke computational tool, RE:IN, a Reasoning 

Engine for Interaction Networks. This tool is targeted towards the analysis of biological systems 

such as gene regulation networks, represented as Boolean networks, allowing us to reason about 

the possible behaviour of such models for specific choices of interactions and dynamics. This 

functionality allows the identification of network interactions capable of reproducing certain 

experimentally observed behaviour, the interrogation of constrained model sets when multiple 

solutions are identified, and the generation of predictions of new behaviour under genetic 

perturbations. The tool is available for use from http://research.microsoft.com/en-

us/projects/rein/, along with tutorials and example files required to run the analysis.  

 

S1J: An ABN model of the Pluripotency Network 

 

The Pearson correlation coefficient was used as a metric to quantify the extent of correlation 

between any two TFs, and thereby to determine the possible interactions that comprise the set of 

models of the pluripotency network. For each gene pair, five Pearson correlation coefficients 

were determined: one for each set of experimental data (Fig. S3A).  

http://research.microsoft.com/en-us/projects/rein/
http://research.microsoft.com/en-us/projects/rein/
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An interaction was deemed possible if there existed at least one Pearson coefficient with absolute 

value above the defined threshold, and out of the remaining Pearson coefficients there was a 

majority of the same sign (i.e. positive or negative). The sign of the coefficient with maximum 

absolute value determines whether the interaction is an activation, or an inhibition. If this was 

not satisfied, then the interaction was deemed not to be present.  

 

The Pearson coefficient does not indicate which gene out of the pair is the regulator. Therefore in 

the case of significant positive correlation between genes A and B, we must consider two 

possible cases: A activates B, and B activates A. Given that either interaction can be present, or 

not, there are four possible assignments to define a model of the network. 

 

We found that the interactions suggested by a maximum Pearson correlation coefficient 

threshold of 0.792 were sufficient to satisfy the set of 23 experimental constraints (Fig. 2B). 

Furthermore, there were 11 interactions found to be present in all models that comprise this 

constrained meta-model. That is, we can conclude that without any one of these interactions, it 

would not be possible to satisfy the experimental constraints. These 11 interactions were also 

validated by available ChIP-Seq data (Section S2A).  

 

S1K: Encoding Experimental Behaviour 

 

We defined a set of 23 experimental constraints, each derived from experimentally-observed 

behaviour (Fig. 2A). Fig. S3B illustrates the TF expression observed during one experiment, 

namely when CH is added to cells initially in LIF+PD. These cartoons illustrate both the set of 
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possible interactions (dashed lines) and the interactions that are assumed definite (solid lines), 

because they have previously been experimentally validated (see Fig. S1) (1–3, 5, 7, 8).  

The full set of experimental constraints correspond to: 

1-12: All possible conversions between the four different culture conditions (2i+LIF, 2i, 

LIF+CH, LIF+PD), where the gene expression patterns are those observed under steady state 

conditions.  

13-15: Starting from conditions of 2i+LIF, 2i and LIF+PD and then removing all signals, we 

expect all TFs to have low expression at the final state.  

16-19: Oct4, Sox2, Stat3 and Esrrb loss of function experiments under 2i conditions.  

20: Esrrb knockdown in 2i+LIF.  

21: Esrrb overexpression starting in 2i conditions, then removing CH.  

22: Nanog knockdown in 2i+LIF.  

23: Tfcp2l1 overexpression starting from 2i+LIF conditions, then removing LIF and CH (3, 5). 

 

To encode these constraints, we first discretised the data so that the expression level of each gene 

was high (1) or low (0). For this discretisation, a threshold of 0.5 was used, above which the 

normalised gene expression was deemed to be high. Similarly, the presence or absence of the 

input signals LIF, CH and PD was encoded discretely in each case.  

 

An initial state and a final state were defined for each experiment. Where a complete gene 

expression pattern is known, this was defined. However, in some cases, only a partial pattern is 

published. For these constraints, it was required only that those genes for which we know the 

expected expression should have a defined final state, and RE:IN did not constrain the remaining 

genes. 
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The trajectory length was fixed at 20 steps, which was sufficient to enable the individual 

solutions to converge to the expected final state. Furthermore, we required that the final state be 

visited in two successive time steps, which is sufficient to guarantee stabilisation for this class of 

systems when a complete gene expression pattern is defined, given trajectories are deterministic. 

Restricting the trajectory length could eliminate solutions that take longer to converge, which 

requires very specific, and potentially unrealistic, network topologies.  

 

S1L: Model Predictions 

 

We made predictions of ES cell behaviour in response to genetic perturbations based on the 

behaviour of the entire constrained set of models.  

 

Given that ES cells can tolerate the singular loss of several TFs, but neither of Oct4 or Sox2, we 

assumed that pluripotency is maintained only when Oct4 and Sox2 expression is high. To 

investigate whether single and double knockdowns would be tolerated we encoded candidate 

experimental constraints, and tested the set of models against these new constraints separately:  

1. Both Oct4 and Sox2 are maintained under the knockdown. 

2. Both Oct and Sox2 are not maintained under the knockdown. 

3. Either Oct4 or Sox2 are not maintained under the knockdown. 

First, we test (1). If we find solutions under this constraint, this does not reveal whether all of the 

models satisfy this constraint. Therefore we next test (2). If we find solutions to this constraint, 

then our results are inconclusive and we cannot form a prediction of the response of the network, 

because a subset of the solutions lead to maintenance of pluripotency, while a different subset 
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lead to loss of pluripotency. If we do not find solutions to (2), we then test (3), to ensure that it is 

not the case that either Oct4 or Sox2 are downregulated by any solutions. If (2) and (3) agree, 

and no solutions are found, then we predict that pluripotency is sustained. Likewise, if there are 

no solutions that satisfy (1), but solutions are found for (2) and (3), then we predict that 

pluripotency is always lost.   

 

S1M: Refining the Meta-Model 

 

Adding additional interactions to the meta-model (e.g. by lowering the Pearson correlation 

threshold) increases the number of unique instantiations of interactions, i.e. the number of 

possible models. Since we only make predictions when all of the models agree, the predictive 

power of the meta-model could decrease as interactions are added, as this subsequently increases 

the number of unique models that can produce different behaviours.  

 

This approach motivates our desire for the minimal set of interactions that can satisfy all 23 

experimental constraints, and hence why we use a Pearson correlation threshold of 0.792 to 

define the meta-model. For example if we pick a low Pearson correlation threshold, such as 0.6, 

we do not generate any predictions of the network response to genetic knockdowns. 

 

A further refinement of the meta-model is required if the set of models cannot satisfy the set of 

experimental constraints. This was necessary to account for the model prediction of Tbx3/Klf2 

double knockdown, which was incorrectly predicted to result in loss of self-renewal. The general 

approach is to incrementally lower the Pearson correlation threshold to identify which 

interactions are required to satisfy this additional, new constraint. However, in keeping with our 
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aim to keep the simplest, and therefore predictive, meta-model, we sought not to include 

additional interactions that were unnecessary to satisfy this constraint.  

 

A maximum Pearson correlation coefficient threshold of 0.647 generated a set of possible 

interactions that defined a meta-model that could satisfy the new constraint. However, out of the 

set of interactions that were introduced by lowering the threshold, only one interaction was 

necessary: an optional, positive interaction between Oct4 and Sox2. Thus, the refined set of 

models was still defined by a threshold of 0.792, but with this additional possible interaction. 

Note that this interaction is consistent with ChIP-Seq data.  

 

S1N: Minimal Model 

 

RE:IN allows us to limit the number of interactions that constitute model solutions we seek. An 

alternative approach would be to limit the number of components that constitute model solutions 

we seek. We firstly identified that there were no models with fewer than 17 interactions, and 

RE:IN identified 2 models of this size. However, Tbx3 does not act as a regulator in either of 

these model solutions. Removing those interactions involving Tbx3 from each model produced 

an identical set of interactions, which is that shown in Fig. 3D. 

 

While Tbx3 is not required to act as a regulator in all of the models that constitute the meta-

model, and in particular, can be eliminated from the minimal model, this is not the case for 

Gbx2. Rather, Gbx2 is required to satisfy all of the experimental constraints and must be present 

in every model solution. In the minimal model, Gbx2 acts in a feedforward loop from Stat3 to 

Klf4, and so its presence is required to mediate the proper regulation of Klf4. This is an effect 
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that propagates through the network before Klf4 can no longer act as a regulator,  in order to 

satisfy the complete set of experimental observations.  
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Supplementary Text  

 

 

S2A: Initial Validation of Possible Network Interactions  

As an alternative to examining gene expression of ES cells cultured in equivalent conditions that 

each preserve pluripotency, the topology of a network can be interrogated by genetic 

perturbations. Those genes that are differentially expressed upon knockdown and/or 

overexpression are deemed to be regulated by the gene that is perturbed. To determine whether 

our set of inferred interactions are supported by such experiments, we accessed open-source 

microarray data of gene expression profiles of ES cell lines following genetic perturbations (11). 

For example, our comparison of culture conditions suggested 6 possible, positive interactions 

involving Nanog (Fig. S4A). Upon Nanog loss of function 3 out of the 6 genes were reported to 

be downregulated (Fig. S4B). 

We repeated the same procedure for each proposed interaction, and found that 44% of the 

possible interactions we proposed were validated by the perturbation studies (Fig. S2A). This 

degree of accuracy is high, given that gene expression correlation alone does not expose 

directionality and therefore maximum validation is 50%. Inferred interactions are assumed to be 

functional, but not necessarily direct. Nevertheless, when we interrogated available ChIP-Seq 

data (Fig. S4C) we found that 73% of interactions have been detected in terms of TFs binding to 

target gene loci, and therefore may be direct (Fig. S2A). Notably, this includes the 11 

interactions that we inferred to be required for the pluripotency network (Fig. 2B). Therefore the 

set of possible interactions that we found to be sufficient to generate models that can explain 

known ES cell behaviour (Fig. 2B) are supported by independent data.   

As a control, we generated the complete list of interactions inferred only from the open-source 

genetic perturbation data, which totals 81 (Fig. S4D). Importantly, when we used these 
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interactions to build a new set of models as before, the tool determined that no models from this 

set could satisfy the 23 experimental constraints. This is despite there being a greater number of 

models compared to those inferred from our gene expression correlation data. We suggest that 

significant interactions can be more reliably captured by comparing homogeneous populations of 

ES cells under different culture conditions (as in Fig. 1), than from genetic perturbation studies 

on mixed populations of differentiated and self-renewing cells. 

We compared our computational approach to Bayesian network inference, a common formalism 

for investigating and reconstructing regulatory networks (9, 10, 14–18). We applied a freely-

available Bayesian network inference method, previously used to study somatic cell 

reprogramming (10). This approach yielded fewer interactions and generated only one model. 

Crucially that model is not consistent with known experimental behaviour (Fig. S2B). For 

instance, Oct4 and Sox2 are not connected to external signals.  

S2B: Non-intuitive predictions 

Our approach generated non-intuitive predictions. For example, the combined knockdown of 

Sall4 and Klf2 was predicted to compromise self-renewal in 2i+LIF. To test this experimentally, 

we first knocked down Sall4 and Klf2 individually and found that Sall4 downregulation resulted 

in a mild reduction in the number of AP+ colonies, compared to the control siRNAs, whereas 

Klf2 downregulation had no effect (Fig. 3B). However, double knockdown of Klf2 and Sall4 

significantly reduced the self-renewal capacity of ES cells, matching the prediction from the set 

of models. Of note, the synthetic effect of the Klf2/Sall4 double knockdown could not be 

inferred from the single knockdown results, highlighting the power of our approach.  

S2C: Extended Discussion  
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Naïve pluripotency is a fleeting state in the developing blastocyst that can be sustained in vitro in 

mouse ES cells under the influence of three different signals: LIF, CH and PD. These signals are 

not equivalent and maintain pluripotency via different signalling pathways, yet only two of the 

three are required. Furthermore, ES cells can efficiently transit between the different signal 

combinations. To-date, the field has amassed considerable information on the transcriptional 

regulators that are associated with the control of this state, and the signalling pathways that are 

modulated by these culture conditions. But we have yet to provide a predictive explanation of the 

regulation of the self-renewing state. 

Here we implemented a powerful, computational approach by integrating formal synthesis 

procedures (12) within a modelling framework based on Boolean networks (19), and utilised an 

unique experimental system that allowed us to compare homogeneous pluripotent cell 

populations to investigate the possible interactions that regulate self-renewal. By integrating 

computationally gene expression data characterising the self-renewing state with known 

perturbation phenotypes, we derived possible combinations of interactions that suffice to explain 

observed ES cell behaviour. These suggested interactions are substantiated both by ChIP-Seq 

and genetic perturbation data. By virtue of the formal verification procedures we implemented, 

each possible model is proven to capture all of the observed experimental behaviour. Thus we 

derived a set of consistent, unique, candidate models of the pluripotency program, which 

together constitute a ‘meta-model’ of naïve pluripotency. 

Between the set of 17 TF initially considered, with no prior knowledge of gene interaction there 

are 1046 possible models of the network. This is an intractable number of models to interrogate 

manually, and moreover, would not yield any predictions of ES cell behaviour. We used the 

meta-model in a robust approach to identify and constrain only those interactions and 

components that are necessary to sustain naïve pluripotency. As such, we refine, not a single 
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model, but the set of possible models. Through this analysis, the number of possible models was 

greatly reduced, by a factor of 1025. Moreover, the meta-model was sufficiently constrained to 

form non-intuitive, but accurate predictions of the system behaviour under the action of 

compound perturbations. 

The Pearson correlation coefficient is applied within this methodology to identify possible 

interactions between gene pairs, and the same interactions were validated by independent 

experimental techniques. It is possible that more complex behaviour such as pulse-activation or a 

time-delayed response exists between genes, and this would not be captured by the Pearson 

coefficient. However, this has not emerged as an issue for the constrained set of models, which 

was able to accurately explain ES cell behaviour and generate new predictions. 

 

Recent reports showed that ES cell core factors, such as Nanog, undergo self-regulation (Navarro 

et al., 2012). This prompted us to examine the consequence of adding self-regulation loops by 

including optional positive and negative self-regulation to each gene. We then re-ran our analysis 

to examine whether a difference arose in the set of predictions that were obtained under 2i/LIF 

conditions. We found that 10 double knockdown predictions were generated in total, compared 

to the 11 we found without these loops. 8 of these recapitulated predictions that we had already 

generated (including the incorrect prediction that Tbx3/Klf2 double knockdown leads to loss of 

self-renewal), and the remaining 2 were predictions that we did not generate before. Therefore, 

allowance for auto-regulation has not improved predictive power; even if the two new 

predictions are correct, the addition of self-regulatory loops would generate 9 out of 10 correct 

predictions, compared to 11 out of 12 (Fig. 3A, left panel). 
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Our results reveal that ES cell decision-making is not necessarily dependent on a vast genetic 

network, as widely considered, but instead can be explained by a program that, in its simplest 

version, consists of just 16 interactions, 12 components and 3 inputs. This example model from 

the meta-model identifies the minimal essential network that can maintain naïve pluripotency 

under four different culture conditions. Environmental signals are processed via the interactions 

between pluripotency factors to stabilise the gene expression pattern that characterises a self-

renewing, pluripotent cell (Fig. 3D). As such, the program itself is unchanging under the action 

of different inputs, but determines the appropriate stable state as a consequence of these inputs. 
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Table S1 – Primers used for Real-time quantitative RT-PCR 

 

Gene Name Forward Reverse 

Beta-actin ctaaggccaaccgtgaaaag accagaggcatacagggaca 

Klf2 ctaaaggcgcatctgcgta tagtggcgggtaagctcgt 

Klf4 cgggaagggagaagacact gagttcctcacgccaacg 

Klf5 ccggagacgatctgaaacac cagatacttctccatttcacatcttg 

Nanog ttcttgcttacaagggtctgc agaggaagggcgaggaga 

Nr0b1 (Dax1) cgtgctctttaacccagacc ccggatgtgctcagtaagg 

Pou5f1 gttggagaaggtggaaccaa ctccttctgcagggctttc 

Rex1 (Zfp42) tcttctctcaatagagtgagtgtgc gctttcttctgtgtgcagga 

Sox2 tccaaaaactaatcacaacaatcg gaagtgcaattgggatgaaaa 

Tfcp2l1 ggggactactcggagcatct ttccgatcagctcccttg 

Esrrb ggcgttcttcaagagaacca cccactttgaggcatttcat 

Gbx2 ggcacctcctagatgtggac aaaacactgcagctgagatcc 

Tbx3 ttgcaaagggttttcgagac tgcagtgtgagctgctttct 

Tcf3 (Tcf7l1) ctgagcagcccgtacctct aggggccatttcatctgtag 

Sall4 gaagccccagcacatcaac ctgaggcttcatcgcagtt 

Stat3 gtccttttccacccaagtga tatcttggccctttggaatg 

Mi2b (CHD4) gccaatgcagtcctacacaa tgtaacctcacagcgactgg 

Mb3 agaagaaccctggtgtgtgg tgtaccagctcctcctgctt 

 

 

 

 

 

 

Table S2 – siRNA  

 

Name Supplier Cat. Number 

Negative Qiagen 1027280 

siGFP 

custom (target sequence 

GCAAGCTGACCTGAAGTTCA) 

Klf2_A Qiagen SI01083530 

Klf2_B Qiagen SI01083544 

Klf4_A Qiagen SI01083544 

Klf4_B Qiagen SI01083593 

Esrrb_A Qiagen SI02672110 

Esrrb_B Qiagen SI02739569 

Nanog_A Qiagen SI04460869 

Nanog_B Qiagen SI01323357 

Tfcp2l1_A Qiagen SI01444296 

Tfcp2l1_B Qiagen SI04401558 

Tbx3_A Ambion AM16708/223884 

Tbx3_B Ambion AM16708/223885 

Sall4_A Qiagen SI01409863 

Sall4_B Qiagen SI01409877 
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Gbx2_A Qiagen SI01010170 

Gbx2_B Qiagen SI01010177 

 

 

 

 

 

 

Table S3 – Antibodies used in Figure 1A and S2A-C 

Immunostaining was performed as previously described (Martello et al, 2012 Cell Stem Cell) 

 

Target protein Catalogue Number Concentration 

Nanog (rat) MLC-51 (Ebioscience) 1:200 

Oct4 (mouse) 5279 (Santa Cruz) 1:200 

Esrrb pp-H6705-00  (Perseus) 1:400 
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Table S3 - Regulation functions. Each gene can influence those genes it interacts with by any 

one of fifteen possible regulations logics. There is a unique choice of logic for each gene, per 

model. It is assumed that no gene can be activated without at least one activator present. The 

regulations logics define the conditions under which a gene can be activated, according to the 

presence / absence of those genes which regulate its activity. The logics span the range of 

regulation functions under this assumption. The red boxes indicate where the conditions under 

which a given logic will allow a gene to become activated. Two additional regulation functions 

are defined only for Tcf3 and MEK/ERK, which do not require activators. 
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