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Appendix A. ParƟal derivaƟves of Δ𝜓.
Here, we present parƟal derivaƟves of Δ𝜓 with respect to the experimental quanƟƟes (beam direcƟon,
wavelength, and crystal orientaƟon matrix), necessary for parameter opƟmizaƟon with target expression
(2).

A.1 ParƟal derivaƟves with respect to ̂𝐬𝟎
For the data presented in Table 1 the direcƟon of the incident beam is exactly known ( ̂𝐬𝟎 = − ̂𝑧). However, it
may be necessary to refine the ̂𝐬𝟎 model for someexperimental situaƟons, so themethod is presented here.
We assume that ̂𝐬𝟎 is expressed as a funcƟon of parameters 𝑝𝑖 with known parƟal derivaƟves 𝜕 ̂𝐬𝟎/𝜕𝑝𝑖.
Then based on equaƟons (4) to (12) we have:

𝜕𝐪
𝜕𝑝𝑖

= 0, (A.1)

𝜕 ̂𝐪𝟎
𝜕𝑝𝑖

= 0, (A.2)

𝜕 ̂𝐞𝟏
𝜕𝑝𝑖

= ̂𝐪𝟎 × 𝜕 ̂𝐬𝟎
𝜕𝑝𝑖

, (A.3)

𝜕 ̂𝐜𝟎
𝜕𝑝𝑖

= 𝜕 ̂𝐬𝟎
𝜕𝑝𝑖

× ̂𝐞𝟏 + ̂𝐬𝟎 × 𝜕 ̂𝐞𝟏
𝜕𝑝𝑖

, (A.4)

𝜕𝑎
𝜕𝑝𝑖

= 𝜕𝑏
𝜕𝑝𝑖

= 0, (A.5)

𝜕𝐫
𝜕𝑝𝑖

= −𝑎𝜕 ̂𝐬𝟎
𝜕𝑝𝑖

+ 𝑏𝜕 ̂𝐜𝟎
𝜕𝑝𝑖

, (A.6)

𝜕 ̂𝐪𝟏
𝜕𝑝𝑖

= ̂𝐪𝟎 × 𝜕 ̂𝐞𝟏
𝜕𝑝𝑖

. (A.7)

Defining 𝑦 = 𝐫 ⋅ ̂𝐪𝟏 and 𝑥 = 𝐫 ⋅ ̂𝐪𝟎 we have:

𝜕𝑦
𝜕𝑝𝑖

= 𝜕𝐫
𝜕𝑝𝑖

⋅ ̂𝐪𝟏 + 𝐫 ⋅ 𝜕 ̂𝐪𝟏
𝜕𝑝𝑖

, (A.8)

𝜕𝑥
𝜕𝑝𝑖

= 𝜕𝐫
𝜕𝑝𝑖

⋅ ̂𝐪𝟎, (A.9)

and finally

𝜕Δ𝜓
𝜕𝑝𝑖

=
𝑥 𝜕𝑦

𝜕𝑝𝑖
− 𝑦 𝜕𝑥

𝜕𝑝𝑖
𝑥2 + 𝑦2 . (A.10)
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A.2 ParƟal derivaƟves with respect to 𝜆
In the work presented here the wavelength 𝜆 is exactly known; however, it may be important to refine the
wavlength in XFEL experiments where the incident radiaƟon is from a self-amplified pulse, and is therefore
different for each shot. If we wish to refine 𝜆 directly as a parameter, then

𝜕𝐪
𝜕𝜆 = 𝜕 ̂𝐪𝟎

𝜕𝜆 = 𝜕 ̂𝐞𝟏
𝜕𝜆 = 𝜕 ̂𝐜𝟎

𝜕𝜆 = 0, (A.11)

𝜕𝑎
𝜕𝜆 = 𝑞2

2 , (A.12)

𝜕𝑏
𝜕𝜆 = −𝑎

𝑏
𝑞2

2 , (A.13)

𝜕𝐫
𝜕𝜆 = − ̂𝐬𝟎

𝜕𝑎
𝜕𝜆 + ̂𝐜𝟎

𝜕𝑏
𝜕𝜆 , (A.14)

𝜕 ̂𝐪𝟏
𝜕𝜆 = 0, (A.15)

𝜕𝑦
𝜕𝜆 = 𝜕𝐫

𝜕𝜆 ⋅ ̂𝐪𝟏, (A.16)

𝜕𝑥
𝜕𝜆 = 𝜕𝐫

𝜕𝜆 ⋅ ̂𝐪𝟎, (A.17)

and finally

𝜕Δ𝜓
𝜕𝜆 =

𝑥𝜕𝑦
𝜕𝜆 − 𝑦𝜕𝑥

𝜕𝜆
𝑥2 + 𝑦2 . (A.18)

A.3 ParƟal derivaƟves with respect to 𝐀
Assuming that the reciprocal space orientaƟon matrix 𝐀 is expressed as a funcƟon of parameters 𝑝𝑗 with
known parƟal derivaƟves 𝜕𝐀/𝜕𝑝𝑗, we have:

𝜕𝐪
𝜕𝑝𝑗

= 𝜕𝐀
𝜕𝑝𝑗

𝐡, (A.19)

𝜕
𝜕𝑝𝑗

(𝐪 ⋅ 𝐪) = 𝜕
𝜕𝑝𝑗

𝑞2 = 2𝐪 ⋅ 𝜕𝐪
𝜕𝑝𝑗

and
𝜕𝑞
𝜕𝑝𝑗

=
𝐪 ⋅ 𝜕𝐪

𝜕𝑝𝑗
𝑞

, (A.20)

𝜕 ̂𝐪𝟎
𝜕𝑝𝑗

=
𝑞 𝜕𝐪

𝜕𝑝𝑗
− [𝐪 ⋅ 𝜕𝐪

𝜕𝑝𝑗
] ̂𝐪𝟎

𝑞2 , (A.21)

𝜕 ̂𝐞𝟏
𝜕𝑝𝑗

= 𝜕 ̂𝐪𝟎
𝜕𝑝𝑗

× ̂𝐬𝟎, (A.22)
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𝜕 ̂𝐜𝟎
𝜕𝑝𝑗

= ̂𝐬𝟎 × 𝜕 ̂𝐞𝟏
𝜕𝑝𝑗

, (A.23)

𝜕𝑎
𝜕𝑝𝑗

= 𝜆 𝜕𝐪
𝜕𝑝𝑗

⋅ 𝐪, (A.24)

𝜕𝑏
𝜕𝑝𝑗

= 2 − 𝑞2𝜆2

2𝑏
𝜕𝐪
𝜕𝑝𝑗

⋅ 𝐪, (A.25)

𝜕𝐫
𝜕𝑝𝑗

= − 𝜕𝑎
𝜕𝑝𝑗

̂𝐬𝟎 + 𝜕𝑏
𝜕𝑝𝑗

̂𝐜𝟎 + 𝑏𝜕 ̂𝐜𝟎
𝜕𝑝𝑗

, (A.26)

𝜕 ̂𝐪𝟏
𝜕𝑝𝑗

= 𝜕 ̂𝐪𝟎
𝜕𝑝𝑗

× ̂𝐞𝟏 + ̂𝐪𝟎 × 𝜕 ̂𝐞𝟏
𝜕𝑝𝑗

, (A.27)

𝜕𝑦
𝜕𝑝𝑗

= 𝜕𝐫
𝜕𝑝𝑗

⋅ ̂𝐪𝟏 + 𝐫 ⋅ 𝜕 ̂𝐪𝟏
𝜕𝑝𝑗

, (A.28)

𝜕𝑥
𝜕𝑝𝑗

= 𝜕𝐫
𝜕𝑝𝑗

⋅ ̂𝐪𝟎 + 𝐫 ⋅ 𝜕 ̂𝐪𝟎
𝜕𝑝𝑗

, (A.29)

and finally

𝜕Δ𝜓
𝜕𝑝𝑗

=
𝑥 𝜕𝑦

𝜕𝑝𝑗
− 𝑦 𝜕𝑥

𝜕𝑝𝑗
𝑥2 + 𝑦2 . (A.30)

For parameters 𝑝𝑗 that represent pure rotaƟons of the crystal, we have the simplificaƟon that 𝜕𝐪
𝜕𝑝𝑗

⋅𝐪 = 0
in equaƟons (A.20), (A.21), (A.24) and (A.25).

Appendix B. Best fit mosaicity 𝜂 and block size 𝐷eff.
Here we present two procedures to compute the opƟmal effecƟve full-width mosaicity 𝜂 and spot width 𝛼.

B.1 AnalyƟcal least-squares expression
OpƟmal parameters 𝛼 and 𝜂 are obtained when the parƟal derivaƟves of (19) are zero:

𝜕ℱ
𝜕𝛼 = 𝜕ℱ

𝜕𝜂 = 0. (B.1)

This leads to a system of normal equaƟons

𝛼
𝑁

∑
𝑏=1

⟨𝑑⟩2
𝑏

2 + 𝜂
𝑁

∑
𝑏=1

⟨𝑑⟩𝑏
2 =

𝑁
∑
𝑏=1

⟨𝑑⟩𝑏|Δ𝜓|max,𝑏 (B.2)

𝛼
𝑁

∑
𝑏=1

⟨𝑑⟩𝑏
2 + 𝜂𝑁

2 =
𝑁

∑
𝑏=1

|Δ𝜓|max,𝑏, (B.3)

that can be wriƩen in matrix form and directly solved:
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⎛⎜⎜⎜⎜⎜
⎝

𝑁
∑
𝑏=1

⟨𝑑⟩2
𝑏

2
𝑁
∑
𝑏=1

⟨𝑑⟩𝑏
2

𝑁
∑
𝑏=1

⟨𝑑⟩𝑏
2

𝑁
2

⎞⎟⎟⎟⎟⎟
⎠

( 𝛼
𝜂 ) =

⎛⎜⎜⎜⎜
⎝

𝑁
∑
𝑏=1

⟨𝑑⟩𝑏|Δ𝜓|max,𝑏
𝑁
∑
𝑏=1

|Δ𝜓|max,𝑏

⎞⎟⎟⎟⎟
⎠

. (B.4)

B.2 Maximum likelihood formalism
The obvious parameters to be opƟmized are 𝛼 and 𝜂. However, we wish to enforce posiƟvity constraints
to keep the values physically meaningful. In order to avoid special methods to impose parameter bounds,
we define the free parameters as the logarithms:

𝜉𝛼 = ln(𝛼) and 𝜉𝜂 = ln(𝜂). (B.5)

The requisite parƟal derivaƟves are

𝜕Δ𝜓model

𝜕𝜉𝛼
= 𝑑𝑖𝛼

2 and
𝜕Δ𝜓model

𝜕𝜉𝜂
= 𝜂

2 . (B.6)

For either parameter 𝜉, and with 𝑧 as defined in (24),

𝜕𝑧
𝜕𝜉 = Δ𝜓𝑖

(Δ𝜓model)2
𝜕Δ𝜓model

𝜕𝜉 , (B.7)

𝜕𝑓
𝜕𝜉 = 𝜖 × 𝑓 × exp(𝜖(−𝑧 + 1))

1 + exp(𝜖(−𝑧 + 1))
𝜕𝑧
𝜕𝜉 , (B.8)

𝜕𝑔
𝜕𝜉 = −𝜖 × 𝑔 × exp(𝜖(𝑧 + 1))

1 + exp(𝜖(𝑧 + 1))
𝜕𝑧
𝜕𝜉 , (B.9)

𝜕(𝑓𝑔)
𝜕𝜉 = 𝑓 𝜕𝑔

𝜕𝜉 + 𝑔𝜕𝑓
𝜕𝜉 , (B.10)

𝜕𝑃𝑖
𝜕𝜉 = 1

2

𝜕(𝑓𝑔)
𝜕𝜉 Δ𝜓model − 𝑓𝑔𝜕Δ𝜓model

𝜕𝜉
(Δ𝜓model)2 . (B.11)

Now returning to the full posterior probability expression (20), we can determine the parameters𝛼 and
𝜂 by minimizing the target funcƟon

𝒢 = −
Nobs

∑
𝑖=1

ln 𝑃𝑖, (B.12)

where the sum is over all observaƟons 𝑖. For iteraƟve parameter opƟmizaƟon we uƟlize the parƟal
derivaƟves

𝜕𝒢
𝜕𝜉 = −

Nobs

∑
𝑖=1

1
𝑃𝑖

𝜕𝑃𝑖
𝜕𝜉 . (B.13)

A few pracƟcal details bear on the of implementaƟon of this procedure. Care must be taken to avoid
misindexing; a single Bragg spot assigned the wrongMiller indexmay be taken to have an erroneously large
Δ𝜓𝑖 magnitude, biasing the mosaicity and domain size esƟmates. Conversely, parameters that produce a
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too-large Δ𝜓model envelope predict too many Bragg spots, leading to spot overlap and misindexing. There-
fore, when iniƟal values are assigned for maximum likelihood refinement (by using the analyƟcal least-
squares expression) we insist that the esƟmated domain size exceeds some minimum value. We choose a
physically reasonable minimum of 10 unit cells for the edge of a domain (𝐷eff ≥ 10 × 3√unit cell volume).

Another concern is that the exponenƟal expressions in (24), (B.8), and (B.9) are suscepƟble to arithmeƟc
overflow if the argument is too large; the arguments must therefore be tested prior to each exponenƟal
execuƟon.
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