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Appendix A. Par al deriva ves of Δ𝜓.
Here, we present par al deriva ves of Δ𝜓 with respect to the experimental quan es (beam direc on,
wavelength, and crystal orienta on matrix), necessary for parameter op miza on with target expression
(2).

A.1 Par al deriva ves with respect to ̂𝐬𝟎
For the data presented in Table 1 the direc on of the incident beam is exactly known ( ̂𝐬𝟎 = − ̂𝑧). However, it
may be necessary to refine the ̂𝐬𝟎 model for someexperimental situa ons, so themethod is presented here.
We assume that ̂𝐬𝟎 is expressed as a func on of parameters 𝑝𝑖 with known par al deriva ves 𝜕 ̂𝐬𝟎/𝜕𝑝𝑖.
Then based on equa ons (4) to (12) we have:

𝜕𝐪
𝜕𝑝𝑖

= 0, (A.1)

𝜕 ̂𝐪𝟎
𝜕𝑝𝑖

= 0, (A.2)

𝜕 ̂𝐞𝟏
𝜕𝑝𝑖

= ̂𝐪𝟎 × 𝜕 ̂𝐬𝟎
𝜕𝑝𝑖

, (A.3)

𝜕 ̂𝐜𝟎
𝜕𝑝𝑖

= 𝜕 ̂𝐬𝟎
𝜕𝑝𝑖

× ̂𝐞𝟏 + ̂𝐬𝟎 × 𝜕 ̂𝐞𝟏
𝜕𝑝𝑖

, (A.4)

𝜕𝑎
𝜕𝑝𝑖

= 𝜕𝑏
𝜕𝑝𝑖

= 0, (A.5)

𝜕𝐫
𝜕𝑝𝑖

= −𝑎𝜕 ̂𝐬𝟎
𝜕𝑝𝑖

+ 𝑏𝜕 ̂𝐜𝟎
𝜕𝑝𝑖

, (A.6)

𝜕 ̂𝐪𝟏
𝜕𝑝𝑖

= ̂𝐪𝟎 × 𝜕 ̂𝐞𝟏
𝜕𝑝𝑖

. (A.7)

Defining 𝑦 = 𝐫 ⋅ ̂𝐪𝟏 and 𝑥 = 𝐫 ⋅ ̂𝐪𝟎 we have:

𝜕𝑦
𝜕𝑝𝑖

= 𝜕𝐫
𝜕𝑝𝑖

⋅ ̂𝐪𝟏 + 𝐫 ⋅ 𝜕 ̂𝐪𝟏
𝜕𝑝𝑖

, (A.8)

𝜕𝑥
𝜕𝑝𝑖

= 𝜕𝐫
𝜕𝑝𝑖

⋅ ̂𝐪𝟎, (A.9)

and finally

𝜕Δ𝜓
𝜕𝑝𝑖

=
𝑥 𝜕𝑦

𝜕𝑝𝑖
− 𝑦 𝜕𝑥

𝜕𝑝𝑖
𝑥2 + 𝑦2 . (A.10)
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A.2 Par al deriva ves with respect to 𝜆
In the work presented here the wavelength 𝜆 is exactly known; however, it may be important to refine the
wavlength in XFEL experiments where the incident radia on is from a self-amplified pulse, and is therefore
different for each shot. If we wish to refine 𝜆 directly as a parameter, then

𝜕𝐪
𝜕𝜆 = 𝜕 ̂𝐪𝟎

𝜕𝜆 = 𝜕 ̂𝐞𝟏
𝜕𝜆 = 𝜕 ̂𝐜𝟎

𝜕𝜆 = 0, (A.11)

𝜕𝑎
𝜕𝜆 = 𝑞2

2 , (A.12)

𝜕𝑏
𝜕𝜆 = −𝑎

𝑏
𝑞2

2 , (A.13)

𝜕𝐫
𝜕𝜆 = − ̂𝐬𝟎

𝜕𝑎
𝜕𝜆 + ̂𝐜𝟎

𝜕𝑏
𝜕𝜆 , (A.14)

𝜕 ̂𝐪𝟏
𝜕𝜆 = 0, (A.15)

𝜕𝑦
𝜕𝜆 = 𝜕𝐫

𝜕𝜆 ⋅ ̂𝐪𝟏, (A.16)

𝜕𝑥
𝜕𝜆 = 𝜕𝐫

𝜕𝜆 ⋅ ̂𝐪𝟎, (A.17)

and finally

𝜕Δ𝜓
𝜕𝜆 =

𝑥𝜕𝑦
𝜕𝜆 − 𝑦𝜕𝑥

𝜕𝜆
𝑥2 + 𝑦2 . (A.18)

A.3 Par al deriva ves with respect to 𝐀
Assuming that the reciprocal space orienta on matrix 𝐀 is expressed as a func on of parameters 𝑝𝑗 with
known par al deriva ves 𝜕𝐀/𝜕𝑝𝑗, we have:

𝜕𝐪
𝜕𝑝𝑗

= 𝜕𝐀
𝜕𝑝𝑗

𝐡, (A.19)

𝜕
𝜕𝑝𝑗

(𝐪 ⋅ 𝐪) = 𝜕
𝜕𝑝𝑗

𝑞2 = 2𝐪 ⋅ 𝜕𝐪
𝜕𝑝𝑗

and
𝜕𝑞
𝜕𝑝𝑗

=
𝐪 ⋅ 𝜕𝐪

𝜕𝑝𝑗
𝑞

, (A.20)

𝜕 ̂𝐪𝟎
𝜕𝑝𝑗

=
𝑞 𝜕𝐪

𝜕𝑝𝑗
− [𝐪 ⋅ 𝜕𝐪

𝜕𝑝𝑗
] ̂𝐪𝟎

𝑞2 , (A.21)

𝜕 ̂𝐞𝟏
𝜕𝑝𝑗

= 𝜕 ̂𝐪𝟎
𝜕𝑝𝑗

× ̂𝐬𝟎, (A.22)
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𝜕 ̂𝐜𝟎
𝜕𝑝𝑗

= ̂𝐬𝟎 × 𝜕 ̂𝐞𝟏
𝜕𝑝𝑗

, (A.23)

𝜕𝑎
𝜕𝑝𝑗

= 𝜆 𝜕𝐪
𝜕𝑝𝑗

⋅ 𝐪, (A.24)

𝜕𝑏
𝜕𝑝𝑗

= 2 − 𝑞2𝜆2

2𝑏
𝜕𝐪
𝜕𝑝𝑗

⋅ 𝐪, (A.25)

𝜕𝐫
𝜕𝑝𝑗

= − 𝜕𝑎
𝜕𝑝𝑗

̂𝐬𝟎 + 𝜕𝑏
𝜕𝑝𝑗

̂𝐜𝟎 + 𝑏𝜕 ̂𝐜𝟎
𝜕𝑝𝑗

, (A.26)

𝜕 ̂𝐪𝟏
𝜕𝑝𝑗

= 𝜕 ̂𝐪𝟎
𝜕𝑝𝑗

× ̂𝐞𝟏 + ̂𝐪𝟎 × 𝜕 ̂𝐞𝟏
𝜕𝑝𝑗

, (A.27)

𝜕𝑦
𝜕𝑝𝑗

= 𝜕𝐫
𝜕𝑝𝑗

⋅ ̂𝐪𝟏 + 𝐫 ⋅ 𝜕 ̂𝐪𝟏
𝜕𝑝𝑗

, (A.28)

𝜕𝑥
𝜕𝑝𝑗

= 𝜕𝐫
𝜕𝑝𝑗

⋅ ̂𝐪𝟎 + 𝐫 ⋅ 𝜕 ̂𝐪𝟎
𝜕𝑝𝑗

, (A.29)

and finally

𝜕Δ𝜓
𝜕𝑝𝑗

=
𝑥 𝜕𝑦

𝜕𝑝𝑗
− 𝑦 𝜕𝑥

𝜕𝑝𝑗
𝑥2 + 𝑦2 . (A.30)

For parameters 𝑝𝑗 that represent pure rota ons of the crystal, we have the simplifica on that 𝜕𝐪
𝜕𝑝𝑗

⋅𝐪 = 0
in equa ons (A.20), (A.21), (A.24) and (A.25).

Appendix B. Best fit mosaicity 𝜂 and block size 𝐷eff.
Here we present two procedures to compute the op mal effec ve full-width mosaicity 𝜂 and spot width 𝛼.

B.1 Analy cal least-squares expression
Op mal parameters 𝛼 and 𝜂 are obtained when the par al deriva ves of (19) are zero:

𝜕ℱ
𝜕𝛼 = 𝜕ℱ

𝜕𝜂 = 0. (B.1)

This leads to a system of normal equa ons

𝛼
𝑁

∑
𝑏=1

⟨𝑑⟩2
𝑏

2 + 𝜂
𝑁

∑
𝑏=1

⟨𝑑⟩𝑏
2 =

𝑁
∑
𝑏=1

⟨𝑑⟩𝑏|Δ𝜓|max,𝑏 (B.2)

𝛼
𝑁

∑
𝑏=1

⟨𝑑⟩𝑏
2 + 𝜂𝑁

2 =
𝑁

∑
𝑏=1

|Δ𝜓|max,𝑏, (B.3)

that can be wri en in matrix form and directly solved:
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⎛⎜⎜⎜⎜⎜
⎝

𝑁
∑
𝑏=1

⟨𝑑⟩2
𝑏

2
𝑁
∑
𝑏=1

⟨𝑑⟩𝑏
2

𝑁
∑
𝑏=1

⟨𝑑⟩𝑏
2

𝑁
2

⎞⎟⎟⎟⎟⎟
⎠

( 𝛼
𝜂 ) =

⎛⎜⎜⎜⎜
⎝

𝑁
∑
𝑏=1

⟨𝑑⟩𝑏|Δ𝜓|max,𝑏
𝑁
∑
𝑏=1

|Δ𝜓|max,𝑏

⎞⎟⎟⎟⎟
⎠

. (B.4)

B.2 Maximum likelihood formalism
The obvious parameters to be op mized are 𝛼 and 𝜂. However, we wish to enforce posi vity constraints
to keep the values physically meaningful. In order to avoid special methods to impose parameter bounds,
we define the free parameters as the logarithms:

𝜉𝛼 = ln(𝛼) and 𝜉𝜂 = ln(𝜂). (B.5)

The requisite par al deriva ves are

𝜕Δ𝜓model

𝜕𝜉𝛼
= 𝑑𝑖𝛼

2 and
𝜕Δ𝜓model

𝜕𝜉𝜂
= 𝜂

2 . (B.6)

For either parameter 𝜉, and with 𝑧 as defined in (24),

𝜕𝑧
𝜕𝜉 = Δ𝜓𝑖

(Δ𝜓model)2
𝜕Δ𝜓model

𝜕𝜉 , (B.7)

𝜕𝑓
𝜕𝜉 = 𝜖 × 𝑓 × exp(𝜖(−𝑧 + 1))

1 + exp(𝜖(−𝑧 + 1))
𝜕𝑧
𝜕𝜉 , (B.8)

𝜕𝑔
𝜕𝜉 = −𝜖 × 𝑔 × exp(𝜖(𝑧 + 1))

1 + exp(𝜖(𝑧 + 1))
𝜕𝑧
𝜕𝜉 , (B.9)

𝜕(𝑓𝑔)
𝜕𝜉 = 𝑓 𝜕𝑔

𝜕𝜉 + 𝑔𝜕𝑓
𝜕𝜉 , (B.10)

𝜕𝑃𝑖
𝜕𝜉 = 1

2

𝜕(𝑓𝑔)
𝜕𝜉 Δ𝜓model − 𝑓𝑔𝜕Δ𝜓model

𝜕𝜉
(Δ𝜓model)2 . (B.11)

Now returning to the full posterior probability expression (20), we can determine the parameters𝛼 and
𝜂 by minimizing the target func on

𝒢 = −
Nobs

∑
𝑖=1

ln 𝑃𝑖, (B.12)

where the sum is over all observa ons 𝑖. For itera ve parameter op miza on we u lize the par al
deriva ves

𝜕𝒢
𝜕𝜉 = −

Nobs

∑
𝑖=1

1
𝑃𝑖

𝜕𝑃𝑖
𝜕𝜉 . (B.13)

A few prac cal details bear on the of implementa on of this procedure. Care must be taken to avoid
misindexing; a single Bragg spot assigned the wrongMiller indexmay be taken to have an erroneously large
Δ𝜓𝑖 magnitude, biasing the mosaicity and domain size es mates. Conversely, parameters that produce a
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too-large Δ𝜓model envelope predict too many Bragg spots, leading to spot overlap and misindexing. There-
fore, when ini al values are assigned for maximum likelihood refinement (by using the analy cal least-
squares expression) we insist that the es mated domain size exceeds some minimum value. We choose a
physically reasonable minimum of 10 unit cells for the edge of a domain (𝐷eff ≥ 10 × 3√unit cell volume).

Another concern is that the exponen al expressions in (24), (B.8), and (B.9) are suscep ble to arithme c
overflow if the argument is too large; the arguments must therefore be tested prior to each exponen al
execu on.
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