Supporting Information

spxA2, encoding a regulator of stress resistance in *Bacillus anthracis,* is controlled by SaiR, a new member of the Rrf2 protein family

Michiko M. Nakano¹, Wren Kominos-Marvell¹, Bhagyashree Sane¹, Yaldah Mohammad Nader¹, Skye M. Barendt¹, Marcus B. Jones², and Peter Zuber^{1*}

¹Institute of Environmental Health, Oregon Health & Science University, Portland, OR 97239, USA.

²Craig Venter Institute, La Jolla, CA 92037, USA.

Tables S1-S4

Figs. S1-S6

Fig. S1. Hydrogen peroxide sensitivity of the $\Delta spxA1$ mutant is restored by mutations in *saiR*. *B. anthracis* strains were grown in LB until OD₆₀₀ reached ca. 1.0. Five μ l of 10-fold serial dilutions of cells (left to right) were spotted onto LB agar with and without 0.44 mM H₂O₂. Strains: wt, 7702; $\Delta spxA1$, ORB8170; $\Delta spxA1sup6$, ORB8492; $\Delta spxA1\Delta saiR$, ORB8606. The results are representatives of three experiments.

BsNsrR 83 TEDDFNIVECFDANKNLCVISPVCGLKHVLNEALLA 118 BaSaiR 80 TSEGALQPKCPESN-DQCIVG-SNMRKVLFTIFLGA 115 BmSaiR 80 TSEGTLLPKCPEGN-ESCIVG-KNLLSILLNIFEEA 115 GtSaiR 80 TSEETLVPKCPDSN-ENCPIG-RNLSNILIRVCHNA 115

Bs: Bacillus subtilis Ba: Bacillus anthracis Bm: Bacillus methanolicus Gt: Geobacillus thermoglucosidasius

Fig. S2. Amino acid alignment of effector-binding regions of SaiR orthologs with *Bacillus subtilis* NsrR. Numbers indicate amino acid residues of each protein. Shaded are conserved amino acids and the asterisks show three cysteine residues that are ligands of the 4Fe-4S cluster in NsrR.

Fig. S3. SaiR cysteine mutant proteins are produced in *B. subtilis*. The wild-type and mutant SaiR proteins were induced with 1 mM IPTG for 1 h in *B. subtilis* (at OD_{600} around 0.5). Each lysate contained 20 µg of total protein was loaded on SDS-15% polyacrylamide gels.

A. Stained gel with Coomassie brilliant blue.

B. Western analysis using anti-His tag monoclonal antibody (GenScript).

Lanes: wt, wild-type saiR- his_6 (ORB8985); none, with the empty vector (ORB8824); C96S, C96S saiR- his_6 (ORB9047); C89S C96S, C89S C96S saiR- his_6 (ORB9064). The higher molecular-weight protein that cross-reacts with the antibody is likely a SaiR dimer caused by intermolecular disulfide bond formation.

Fig. S4. SaiR protects *Dra*I cleavage of the *spxA2* DNA but not other *Dra*I recognition sites in the PDG793 vector plasmid.

A. 300 ng of each plasmid was digested with 10 units of *Dra*I in 10 μl reaction at 37°C for 1 h. After inactivation of the enzyme at 65°C for 20 min, the reaction was run on 2% agarose to separate the digested fragments. pMMN861, 874, and 877 are pDG793 carrying *spxA2*(-50/+31), *spxA2*(-50/+174), and *spxA2*(-50/+31: A-17C, G-20T) DNA.
B. pMMN861 was digested with *Dra*I as described above in the absence and presence of increasing concentrations of SaiR.

NaOCl (µM)	-	-	-	1	5	25	50	100	200	200
SaiR (250 nM)	-	-	+	+	+	+	+	+	+	-
Dral (0.2 unit)	-	+	+	+	+	+	+	+	+	+
	-	2	-	-	-		-	2	2.	22
	13	33	135	38	10	88	88	12		
							22	2	<u>18.</u>	
		57					π	-	10	8
	1000		200	1000	250	1996	1000	180		
diamide (uM)	_	_	_	1	5	25	50	100	200	200
SaiR (250 pM)	_	_	+	- -	+	2J +	+	+	+	-
	-	- -	T L	T L	+	+	+	+	+	+
<i>Dra</i> i (0.2 unit)	-	T	T INDE	T COMP	12952	netar.	Neto	17165		
	322	3%	89	36	ere!	198	36	1999	ant.	
	_									
					-	-	۲			
					-	-		-	•	-
			「「高	1			「中心湯			
			「一道道	「「	-		中心地震	14	*	-
			でいたの	1		のための	市に定職業	1 () () () () () () () () () (「「「「	
H ₂ O ₂ (μM)				1	5	25	50	100	200	200
H ₂ O ₂ (μM) SaiR (250 nM)	-			1+	5 +	25 +	50 +	100 +	200 +	200
H ₂ O ₂ (μM) SaiR (250 nM) <i>Dra</i> l (0.2 unit)	-	+		1 + +	5 + +	25 + +	50 + +	100 + +	200 + +	200 - +
H ₂ O ₂ (μM) SaiR (250 nM) <i>Dra</i> l (0.2 unit)		+	- + +	1 + +	5 + +	25 + +	50 + +	100 + +	200 + +	200 - +
H ₂ O ₂ (μM) SaiR (250 nM) <i>Dra</i> l (0.2 unit)		+	······································	1+++	5++	25 + +	50 + +	100 + +	200 + +	200
H ₂ O ₂ (μM) SaiR (250 nM) <i>Dra</i> l (0.2 unit)			· + + *	1 + +	5 + +	25 + +	50 + +	100 + +	200 + +	200
H ₂ O ₂ (μM) SaiR (250 nM) <i>Dra</i> l (0.2 unit)			· + + · · ·	1++	5++	25 + +	50 + +	100 + +	200 + +	200 - +

Fig. S5A. NaOCl affects binding of SaiR to *spxA2* DNA carrying SaiR box-1. The *Dral*-digestion protection assay using the wild-type probe was carried out as described in Fig. 5, except that SaiR was treated with increasing concentrations of NaOCl, diamide, or H_2O_2 at room temperature for 5 min before addition of the radioactive wild-type *spxA2* DNA probe, followed by *Dral* digestion.

NaOCl (μ M) - - - 1 5 25 50 100 200 200 SaiR (250 nM) - - + + + + + + + -Dral (0.2 unit) - + + + + + + + + +

Fig. S5C. Preformed SaiR-DNA complex is resistant to NaOCI. The wild-type *spxA2* probe was incubated with SaiR at room temperature for 15 min and the reaction was treated with increasing concentrations of NaOCI for 5 min before *Dra*I digestion.

Fig. S5B. SaiR proteins with cysteine substitutions respond to NaOCI. The protection assay was performed with the wild-type *spxA2* probe as described in Fig. S5A.

А	-3	5 TG promoter	-10
TTCA	AGGCACCTTCC <u>TTG</u>	ACTGTTACATTGGCCAATACA	<u>TATACT</u> CGAAAGAAAAG
AGAA	ATTTTTATATAGGG	GATGAATAT <u>ATG</u>	
р			
ь spx	A2 SaiR site-1	ACTGTAAGGTTTAAAATT	ACAGT
spx	A2 SaiR site-2	ACTGTAATTTTTTTTAAT	ACATT
BAC	0787 SaiR	ACTGTTACATTGGCCAATA	ACATA
Bc/	Bt group A	ACTGTTACATTGGCCAAT	ACATA
Bc/	Bt group B	ACTGTTTCATTGGCCAAT	ACATA
Bc/	Bt group C	ACTGTTGCATTGGCCAAT	ACATA

Fig. S6. A possible SaiR site is present around the core promoter of BA0787. (A) The nucleotide sequence of the promoter region of BA0787. The ATG translational start site is underlined. Putative -10 and -35 elements are underlined and possible TG (extended) promoter is marked. (B) Comparison of the possible SaiR-binding site in BA0787 with the two sites in the *spxA2* promoter. Conserved sequences are shown in blue. Blast search showed that *spxA2* SaiR site-1 and site-2 in *B. cereus* and *B. thuringiensis* have perfect matches with those in *B. anthracis*. The regions corresponding to BA0787 are classified into three groups. Four *B. cereus* and one *B. thuringiensis* strains belong to group A, six *B. cereus* and four *B. thuringiensis* strains belong to group B, and two *B. cereus* and three *B. thuringiensis* strains belong to group C.

Table S1 Strains used in the study

Strain	Relevant genotype	Construction
B. anthracis		
7702	Sterne	(Cataldi <i>et al.,</i> 1990)
7702 SR1	streptomycin resistant	(Barendt <i>et al.,</i> 2013)
ORB8170	ΔspxA1	(Barendt et al., 2013)
ORB8285	$\Delta spxA1 \Delta spxA2$	(Barendt et al., 2013)
ORB8398	ΔspxA1 streptomycin resistant	(Barendt et al., 2013)
ORB8404	<pre>ΔspxA1 ICEBs1-Pspank(hy)-spxA1DD streptomycin resistant</pre>	(Barendt et al., 2013)
ORB8438	ΔspxA2	(Barendt et al., 2013)
ORB8476	$\Delta spxA1 \ saiR(C95A) \ cya(G2265T)$	spxA1 suppressor
ORB8477	ΔspxA1 saiR(T83A)	spxA1 suppressor
ORB8478	ΔspxA1 saiR(C86T) BAS3859 (C2237T)	spxA1 suppressor
ORB8479	ΔspxA1 saiR(G179T)	spxA1 suppressor
ORB8480	ΔspxA1 saiR(G221A)	spxA1 suppressor
ORB8492	$\Delta spxA1 \ saiR(\Delta T144)$	spxA1 suppressor
ORB8493	$\Delta spxA1 \ saiR(+T145)$	spxA1 suppressor
ORB8494	ΔspxA1 saiR(G32A)	spxA1 suppressor
ORB8495	$\Delta spxA1 \ saiR(\Delta ACCCA104-108)$	spxA1 suppressor
ORB8496	ΔspxA1 saiR(ΔT201 Δ204)	spxA1 suppressor
ORB8497	ΔspxA1 saiR(G181A)	spxA1 suppressor
ORB8564	$\Delta spxA1 \Delta spxA2 \Delta saiR$	pMMN839 (Δ <i>saiR</i>) x ORB8285
ORB8571	ΔsaiR	pMMN839 (Δ <i>saiR</i>) x 7702
ORB8606	ΔspxA1 ΔsaiR	pMMN839 (Δ <i>saiR</i>) x ORB8170
ORB8611	ΔspxA1 ΔsaiR streptomycin resistant	Spontaneous isolate from ORB8606
ORB8723	Δ <i>spxA1</i> Δ <i>saiR</i> ICE <i>Bs1</i> -P <i>spank</i> (<i>hy</i>)- <i>saiR</i> (C89S) streptomycin resistant	ICE <i>Bs1</i> ::pMMN851 [<i>saiR</i> (C89S)] x ORB8611
ORB8724	Δ <i>spxA1</i> Δ <i>saiR</i> ICE <i>Bs1</i> -P <i>spank</i> (<i>hy</i>)- <i>saiR</i> (C96S) streptomycin resistant	ICE <i>Bs1</i> ::pMMN852 [<i>saiR</i> (C96S)] x ORB8611
ORB8725	Δ <i>spxA1</i> Δ <i>saiR</i> ICE <i>Bs1-Pspank(hy)-saiR</i> (wt) streptomycin resistant	ICE <i>Bs1</i> ::pMMN850 [<i>saiR</i> (wt)] x ORB8611

B. subtilis

JH642 and it	s derivatives	
JH642	parent	James Hoch
JMA475	cgeD::Pspank(hy)-rapI	(Auchtung <i>et al.,</i> 2005)
ORB8713	ICEBs1-Pspank(hy)-saiR(C89S)	pMMN851 x JH642
ORB8714	ICEBs1-Pspank(hy)-saiR(C96S)	pMMN852 x JH642
ORB8715	ICEBs1-Pspank(hy)-saiR(wt)	pMMN850 x JH642
ORB8718	cgeD::Pspank(hy)-rapl ICEBs1-Pspankhy-saiR(C89S)	JMA475 x ORB8713
ORB8719	cgeD::Pspank(hy)-rapl ICEBs1-Pspankhy-saiR(C96S)	JMA475 x ORB8714
ORB8720	cgeD::Pspank(hy)-rapl ICEBs1-Pspankhy-saiR(wt)	JMA475 x ORB8715
168 and its d	lerivatives	
168	parent	(Kunst <i>et al.</i> , 1997)

ORB8812	amyE::Pspank(hy)-saiR	pSS9 x 168
ORB8820	thrC::spxA2(-247/+268)-lacZ amyE::Pspank(hy)-saiR	ORB8605 x ORB8812
ORB8821	amyE::pDR111	pDR111 x 168
ORB8822	amyE::Pspank(hy)-saiR(C89S)	pSS10 x 168
ORB8823	amyE::Pspank(hy)-saiR(C96S)	pSS11 x 168
ORB8824	thrC::spxA2(-247/+268)-lacZ	ORB8605 x ORB8821
ORB8825	thrC::spxA2(-247/+268)-lacZ amyE::Pspank(hy)-saiR(C89S)	ORB8605 x ORB8822
ORB8826	thrC::spxA2(-247/+268)-lacZ amyE::Pspank(hy)-saiR(C96S)	ORB8605 x ORB8823
ORB8835	thrC::spxA2(-50/+31)-lacZ	pMMN861 x 168
ORB8839	thrC::spxA2(-50/+31)-lacZ amyE::Pspank(hy)-saiR	pMMN861 x ORB8812
ORB8845	thrC::trxB-lacZ	ORB6824 x 168
ORB8846	thrC::trxB-lacZ amyE::Pspank(hy)-saiR	ORB6824 x ORB8812
ORB8855	thrC::spxA2(-100/+31)-lacZ	pMMN865 x 168
ORB8859	thrC::spxA2(-100/+31)-lacZ amyE::Pspank(hy)-saiR	pMMN865 x ORB8812
ORB8863	thrC::spxA2(-50/+4)-lacZ	pMMN869 x 168
ORB8864	thrC::spxA2(-38/+31)-lacZ	pMMN870 x 168
ORB8865	thrC::spxA2(-50/+4)-lacZ amyE::Pspank(hy)-saiR	pMMN869 x ORB8812
ORB8866	thrC::spxA2(-35/+31)-lacZ amyE::Pspank(hy)-saiR	pMMN870 x ORB8812
ORB8884	thrC::spxA2(-247/+268)-lacZ	pSB20 x 168
ORB8889	thrC::spxA2(-100/-39)-lacZ	pMMN871 x 168
ORB8890	thrC::spxA2(-100/-39)-lacZ amyE::Pspank(hy)-saiR	pMMN871 x ORB8812
ORB8900	thrC::spxA2(-100/+268)-lacZ	pMMN872 x 168
ORB8901	thrC::spxA2(-247/+31)-lacZ	pMMN873 x 168
ORB8902	thrC::spxA2(-100/+268)-lacZ amyE::Pspank(hy)-saiR	pMMN872 x ORB8812
ORB8903	thrC::spxA2(-247/+31)-lacZ amyE::Pspank(hy)-saiR	pMMN873 x ORB8812
ORB8910	thrC::spxA2(-50/+174)-lacZ	pMMN874 x 168
ORB8911	thrC::spxA2(-50/+174)-lacZ amyE::Pspank(hy)-saiR	pMMN874 x ORB8812
ORB8922	thrC::spxA2(-50/+174:T160G)-lacZ	pMMN875 x 168
ORB8923	thrC::spxA2(-50/+174:G142T, A145C)-lacZ	pMMN876 x 168
ORB8924	thrC::spxA2(-50/+174:T160G)-lacZ amyE::Pspank(hy)-saiR	pMMN875 x ORB8812
ORB8827	thrC::spxA2(-247/+268)-lacZ amyE::pDR111	ORB8821 x ORB8605
ORB8925	thrC::spxA2(-50/+174:G142T, A145C)-lacZ amyE::Pspank(hy)-saiR	pMMN876 x ORB8812
ORB8930	thrC::spxA2(-50/+31:A-17C, G-20T)-lacZ	pMMN877 x 168
ORB8931	thrC::spxA2(-50/+174:A-17C, G-20T)-lacZ	pMMN878 x 168
ORB8932	thrC::spxA2(-50/+31:A-17C, G-20T)-lacZ amyE::Pspank(hy)-saiR	pMMN877 x ORB8812
ORB8933	thrC::spxA2(-50/+174:A-17C, G-20T)-lacZ amyE::Pspank(hy)-saiR	pMMN878 x ORB8812
ORB8945	thrC::spxA2(-50/+174:A-17C, G-20T, G142T, A145C)-lacZ	pMMN879 x 168
ORB8946	thrC::spxA2(-50/+174:A-17C, G-20T, G142T, A145C)-lacZ	pMMN879 x ORB8812
	amyE::Pspank(hy)-saiR	
ORB8985	thrC::spxA2(-247/+268)-lacZ amyE::Pspank(hy)-saiRhis6	pMMN880 x ORB8884
ORB9046	thrC::spxA2(-247/+268)-lacZ spx::neo	ORB3834 x ORB8884
ORB9047	thrC::spxA2(-247/+268)-lacZ amyE::Pspank(hy)-saiR(C96S)his6	pYA1 x ORB8884

ORB9049	<pre>thrC::spxA2(-247/+268)-lacZ spx::neo amyE::pDR111</pre>	pDR111 x ORB9046
ORB9050	thrC::spxA2(-247/+268)-lacZ amyE::Pspank(hy)-saiR spx::neo	pSS9 x ORB9046
ORB9055	<pre>thrC::spxA2(-247/+268)-lacZ amyE::Pspank(hy)-saiR(C89S C96S)</pre>	pYA2 x ORB8884
ORB9064	thrC::spxA2(-247/+268)-lacZ amyE::Pspank(hy)-saiR(C89S C96S) his6	pYA3 x ORB8884

References

- Auchtung, J.M., Lee, C.A., Monson, R.E., Lehman, A.P., and Grossman, A.D. (2005) Regulation of a *Bacillus subtilis* mobile genetic element by intercellular signaling and the global DNA damage response. *Proc Natl Acad Sci USA* **102**: 12554-12559.
- Barendt, S., Lee, H., Birch, C., Nakano, M.M., Jones, M., and Zuber, P. (2013) Transcriptomic and phenotypic analysis of paralogous spx gene function in *Bacillus anthracis* Sterne. *MicrobiologyOpen* **2**: 695-714.
- Cataldi, A., Labruyere, E., and Mock, M. (1990) Construction and characterization of a protective antigen-deficient *Bacillus anthracis* strain. *Mol Microbiol* **4**: 1111-1117.
- Kunst, F., Ogasawara, N., Moszer, I., Albertini, A.M., Alloni, G., Azevedo, V., *et al.* (1997) The complete genome sequence of the Gram-positive bacterium *Bacillus subtilis*. *Nature* **390**: 249-256.

Plasmid name	Feature	Source
pDG793	thrC integration vector carrying promoter-less lacZ	(Guérout-Fleury <i>et al.,</i> 1996)
pDR111	amyE integration vector carrying IPTG-inducible Pspank(hy) promoter	(Britton <i>et al.,</i> 2002)
pET23a	expression vector for C-terminal 6xHis-tagged protein	Novagen
pJMA402	cloning vector for ICEBs1 conjugation	A. D. Grossman
pRP1028	Plasmid for allelic exchange in <i>B. anthracis</i>	S. Stibitz
pMMN839	pRP1028 carrying Δ <i>saiR</i>	this study
pMMN850	pJMA402 carrying <i>saiR</i> (wt)	this study
pMMN851	pJMA402 carrying <i>saiR</i> (C89S)	this study
pMMN852	pJMA402 carrying <i>saiR</i> (C96S)	this study
pMMN856	pET23a carrying <i>saiR</i> (wt) <i>his</i> 6	this study
pMMN857	pET23a carrying <i>saiR</i> (C89S) <i>his</i> 6	this study
pMMN858	pET23a carrying saiR(C96S)his ₆	this study
pMMN881	pET23a carrying saiR(C89S C96S)his ₆	this study
pMMN861	pDG793 carrying <i>spxA2</i> (-50/+31) promoter	this study
pMMN865	pDG793 carrying <i>spxA2</i> (-100/+31) promoter	this study
pMMN869	pDG793 carrying <i>spxA2</i> (-50/+4) promoter	this study
pMMN870	pDG793 carrying <i>spxA2</i> (-38/+31) promoter	this study
pMMN871	pDG793 carrying <i>spxA2</i> (-100/-39) promoter	this study
pMMN872	pDG793 carrying <i>spxA2</i> (-100/+268) promoter	this study
pMMN873	pDG793 carrying <i>spxA2</i> (-247/+31) promoter	this study
pMMN874	pDG793 carrying <i>spxA2</i> (-50/+174) promoter	this study
pMMN875	pDG793 carrying <i>spxA2</i> (-50/+174:T190G) promoter	this study
pMMN876	pDG793 carrying <i>spxA2</i> (-50/+174:G142T, A145C) promoter	this study
pMMN877	pDG793 carrying <i>spxA2</i> (-50/+31: A-17C, G-20T) promoter	this study
pMMN878	pDG793 carrying <i>spxA2</i> (-50/+174:A-17C, G-20T) promoter	this study
pMMN879	pDG793 carrying <i>spxA2</i> (-50/+174:A-17C, G-20T, G142T, A145C) promoter	this study
pMMN880	pDR111 carrying <i>saiRhis</i> 6	this study
pSB20	pDG793 carrying <i>spxA2</i> (-247/+268) promoter	this study
pSS9	pDR111 carrying <i>saiR</i> (wt)	this study
pSS10	pDR111 carrying <i>saiR</i> (C89S)	this study
pSS11	pDR111 carrying <i>saiR</i> (C96S)	this study
pYA1	pDR111 carrying <i>saiR</i> (C96S) <i>his</i> ₆	this study
pYA2	pDR111 carrying saiR(C89S C96S)	this study
рҮАЗ	pDR111 carrying saiR(C89S C96S)his ₆	this study

Table S2. Plasmids used in this study

References

Britton, R.A., Eichenberger, P., Gonzalez-Pastor, J.E., Fawcett, P., Monson, R., Losick, R., and Grossman, A.D. (2002) Genome-wide analysis of the stationary-phase sigma factor (sigma-H) regulon of *Bacillus subtilis*. *J Bacteriol* **184**: 4881-4890. Guérout-Fleury, A.M., Frandsen, N., and Stragier, P. (1996) Plasmids for ectopic integration in *Bacillus subtilis. Gene* **180**: 57-61.

Duine eu		llees
Primer	Sequence (5' to 3')*	Usage
oMN13-588	GCTAACCTATCTGTAATATTTATGGCTA	sequence for BAS3200
oMN13-589	GTATTTTCCATTACATTTCAATAGTAAGA	sequence for BAS3200
oMN13-590	TTCTTGATTGATAAGCAAAGTAAAGTCGCTGCTCATTGT	construction of Δ BAS3200
oMN13-591	CGACTTTACTTTGCTTATCAATCAAGAACGTTAAGCGGCT	construction of Δ BAS3200
oMN13-592	gcaggatccACGTAGCGTTCGAACATTTTTAAA	construction of Δ BAS3200
oMN13-593	ggaatgcatAACAATTGTTATCAGAGGTGTGCA	construction of Δ BAS3200
oMN13-620	TGCAATCGCTGTTACTCGTC	BA0787 RT-qPCR
oMN13-621	CGCTTGTAGTGCAGGTTGAA	BA0787 RT-qPCR
oMN13-627	GTTActcgagACGTTCTTGATTGATAAGAT	construction of pMMN856, 857, 858, and 881
oMN13-638	TATCGTTTGTTGAAATGTATTAAAAA	construction of pMMN874 and 878
oMN13-640	gaccgaattccAAGACTTAACATTTGATTAAT	construction of oMMN861, 869, 874, 875, 876, and 877
oMN13-641	attggatccAGATGATGACAACTCACTTCTT	construction of pMMN861, 865, 870, and 873
oMN13-647	gactgaattcATTTGATTAATAGAACTGTAAGGT	construction of pMMN870
oMN13-648	gaaggatccTATACTGTAATTTTAAACCTTACA	construction of pMMN869
oMN13-649	gaatgaattcAATTGGTCAGCATAACACTATGGG	construction of pMMN871 and 872
oMN13-652	gaaggatccTTAAGTCTTGGATTAATTAATCAT	construction of pMMN871
oMN14-659	gaccgaattccAAGACTTAACATTTGATTAATAGAACTTTACGGTTTA	construction of pMMN877, 878, and 879
oMN14-660	TATCGTTTGTTGAACTGTATTAAAAA	construction of pMMN875, 876, and 879
oMN14-661	TATCGTTTGTTGAAATGTATTAAAAAAAAGTAAAGTTTA	construction of pMMN879
oMN14-662	TGAAAGGAGGAAGCAGGAAA	BA3454 RT-qPCR
oMN14-663	AAAGACTCCATTGTTTCTTCACTTG	BA3454 RT-qPCR
oMN14-664	gcgaagcttAGGAGGAAAACAATGAGCAGCGACTTTACTTTG	construction of pMMN880
oMN14-665	tcggcatgcTCAGTGGTGGTGGTGGTGGTGCTCGAGACGTTC	construction of pMMN880, pYA1, and 3
oMN14-666	ATAGAACTGTAAGGTTTAAAATTACAGTATAGA	construction of SaiR site 1 (wt) for restriction enzyme protection assay
oMN14-667	TCTATACTGTAATTTTAAACCTTACAGTTCTAT	construction of SaiR site 1 (wt) for restriction enzyme protection assay
oMN14-668	ATAGAACTTTAAGGTTTAAAATTACAGTATAGA	construction of SaiR site 1 (G-20T) for restriction enzyme protection assay
oMN14-669	TCTATACTGTAATTTTAAACCTTAAAGTTCTAT	construction of SaiR site 1 (G-20T) for restriction enzyme protection assay
oMN14-670	ATAGAACTGTAAGGTTAAAATTACAGTATAGA	construction of SaiR site 1 (Δ -12T) for restriction enzyme protection assay
oMN14-671	TCTATACTGTAATTTTAACCTTACAGTTCTAT	construction of SaiR site 1 (Δ -12T) for restriction enzyme protection assay
oMN14-674	AAGCATGCAAAGAACCGAGT	spxA2 leader RT-qPCR
oMN14-675	TTTTCGACATGAAGCACAGC	spxA2 leader RT-qPCR
oSB80	taggggaattcCCGATGTAGAACTGCACTAGAAAG	construction of pSB20 and pMMN873
oSB81	taggcggatccCGCTTTTCGACATGAAGCACAGCTTGC	construction of pSB20 and pMMN872
oSB103	taggcctgcagAATTGGTCAGCATAACACTATGGGGAC	construction of pMMN865
oSH07F	tgcgaagcttAGGAGGAAAACAATGAGCAGC	construction of pSS9, 10, 11, pMMN856, 857, 858, 881, and pYA2
oSH08R	tcggcatgcTTAACGTTCTTGATTGATAAGATCAAC	construction of pSS9, 10, 11, and pYA2
oSH09F	TCAAATGATCAGAGTATTGTAGGTTCA	construction of pSS11, pMMN881, and pYA2
oSH010R	TGAACCTACAATACTCTGATCATTTGA	construction of pSS11, pMMN881, and pYA2
oSH11R	ATTTGATTCTGGGCTCTTAGGCTGCAACG	construction of pSS10
oSH12F	CGTTGCAGCCTAAGAGCCCAGAATCAAAT	construction of pSS10
793un	ΤΤΤΤΑΑGΑΤΑΑΤGCACTATCAACACACT	in vitro transcription template
JJJUD		

3455R1	TCCACACCGTATCTTTGCTT	BA3455 RT-qPCR
rpoBF	GAGCCGTTTGATAACCGTGT	<i>rpoB</i> RT-qPCR
rpoBR	ACCTCCATCTCACCAAAACG	<i>rpoB</i> RT-qPCR

*lowercase letters show sequences to generate restriction enzyme recognition sites for cloning purpose.

	Table S4. Genes regulated by the saiR mutation											
A. Genes	upregulated both in the wild-type and spxA1 backgrounds	5										
Locus	GeneN	GeneS	770	2 vs 85	71	Median	Mean	817	0 vs 86	606	Median	Mean
BA3452	hypothetical protein		5.62	4.51	6.08	5.62	5.41	6.46	5.48	5.40	5.48	5.78
BA3454	hypothetical protein		4.70	4.91	7.43	4.91	5.68	4.51	4.87	4.21	4.51	4.53
BA3455	hypothetical protein		3.70	5.47	4.55	4.55	4.58	3.47	4.38	3.49	3.49	3.78
BA3456	transcription regulator	spxA2	3.20	3.96	6.04	3.96	4.40	3.60	3.85	3.71	3.71	3.72
BA5693	major facilitator family transporter		1.92	1.70	1.98	1.92	1.87	NaN	NaN	NaN		
BA4024	dihydroorotate dehydrogenase, electron transfer subunit	pyrK	1.85	1.80	1.99	1.85	1.88	2.35	1.81	1.72	1.81	1.96
BA4028	aspartate carbamoyltransferase	pyrB	1.82	1.76	1.62	1.76	1.73	3.03	2.32	3.86	3.03	3.07
BA4023	dihydroorotate oxidase	pyrD	1.65	1.82	1.73	1.73	1.73	1.89	1.77	1.65	1.77	1.77
BA4025	carbamoyl-phosphate synthase, large subunit	carB	1.47	1.62	1.64	1.62	1.58	1.93	1.51	1.97	1.93	1.80
BA4021	orotate phosphoribosyltransferase	pyrE	1.61	1.57	1.56	1.57	1.58	1.82	1.71	1.91	1.82	1.81
BA4027	dihydroorotase	pyrC	1.51	1.65	1.52	1.52	1.56	2.62	2.38	2.25	2.38	2.42
BA4022	orotidine 5-phosphate decarboxylase	pyrF	1.33	1.47	1.59	1.47	1.46	1.47	0.87	1.24	1.24	1.19
BA4026	carbamoyl-phosphate synthase, small subunit	carA	1.64	1.39	1.36	1.39	1.46	2.00	1.97	1.77	1.97	1.91
BA0871	LPXTG-motif cell wall anchor domain protein		1.52	1.33	1.25	1.33	1.37	1.30	0.97	1.49	1.30	1.25
BA3406	ABC transporter, ATP-binding protein		1.16	1.46	1.28	1.28	1.30	NaN	NaN	NaN		
BA4029	uracil permease	uraA	1.16	1.23	1.24	1.23	1.21	1.45	2.56	1.44	1.45	1.81
BA5475	nucleoside transporter, NupC family		0.89	1.09	1.25	1.09	1.08	0.17	0.23	0.34	0.23	0.25
BA0610	L-lactate permease	lldP-1	1.21	0.97	1.00	1.00	1.06	1.42	1.23	1.10	1.23	1.25

B. Genes	upregulated only in the <i>spxA1</i> background						
Locus	GeneN	GeneS	817	0 vs 86	06	Median	Mean
BA0885	S-layer protein Sap	sap	4.54	4.63	4.51	4.54	4.56
BA0887	S-layer protein EA1	eag	4.82	3.34	3.83	3.83	4.00
BA0787	major facilitator family transporter		3.79	2.05	3.95	3.79	3.27
BA0800	ABC transporter, permease protein, putative		4.80	2.79	3.38	3.38	3.66
BA0956	hypothetical protein		2.46	1.18	2.02	2.02	1.88
BA3524	conserved hypothetical protein		1.57	1.90	2.06	1.90	1.84
BA0556	conserved hypothetical protein		1.48	1.85	1.98	1.85	1.77
BA0535	potassium channel protein, putative		2.03	1.66	NaN	1.84	1.84
BA3438	alcohol dehydrogenase, zinc-containing		3.50	1.77	1.83	1.83	2.36
BA2029	hypothetical protein		1.80	1.50	2.11	1.80	1.81
BA2390	ABC transporter, permease protein, putative		2.96	1.50	1.78	1.78	2.08
BA0918	hypothetical protein		0.70	2.19	1.75	1.75	1.55
BA4875	universal stress protein family		1.72	1.92	1.30	1.72	1.65
BA2289	aldehyde dehydrogenase family protein		1.69	1.65	1.64	1.65	1.66
BA1317	ykgG family protein		1.60	1.64	1.64	1.64	1.63
BA1316	iron-sulfur cluster-binding protein		1.68	1.63	1.55	1.63	1.62
BA3465	metallo-beta-lactamase family protein		1.55	1.62	2.04	1.62	1.74
BA4668	ABC transporter, permease protein		1.61	1.53	1.79	1.61	1.64
BA1951	conserved hypothetical protein		1.63	1.40	1.58	1.58	1.54
BA1127	S-layer protein, putative		1.46	1.53	1.54	1.53	1.51
BA3324	RNA polymerase sigma-70 factor, ECF subfamily		1.50	1.48	1.52	1.50	1.50
BA3322	conserved domain protein		1.46	1.36	1.48	1.46	1.43
BA3466	conserved hypothetical protein		NaN	1.09	1.81	1.45	1.45
BA2389	ABC transporter, ATP-binding protein		1.57	1.40	1.32	1.40	1.43
BA3655	oxidoreductase, Gfo/Idh/MocA family		1.30	1.45	1.22	1.30	1.32
BA3529	hypothetical protein		1.19	1.29	1.43	1.29	1.30
BA0196	oxidoreductase, aldo/keto reductase family		1.30	1.16	1.28	1.28	1.25
BA4669	ABC transporter, ATP-binding protein		1.24	1.23	0.87	1.23	1.12
BA4935	hypothetical protein		1.13	1.19	1.23	1.19	1.18
BA5648	uracil-DNA glycosylase	ung	NaN	1.08	1.28	1.18	1.18
BA2902	CAAX amino terminal protease family protein		1.40	1.16	1.17	1.17	1.24
BA3433	glucose-6-phosphate 1-dehydrogenase	zwf	1.14	1.16	1.48	1.16	1.26
BA3525	conserved hypothetical protein		0.78	1.19	1.15	1.15	1.04
BA2269	membrane protein, putative		1.66	0.90	1.14	1.14	1.23
BA0197	pyrroline-5-carboxylate reductase, putative		1.22	1.05	1.13	1.13	1.13
BA3323	conserved hypothetical protein		1.11	1.12	1.09	1.11	1.11
BA3947	tRNA pseudouridine synthase B	truB	1.14	1.09	0.92	1.09	1.05
BA5238	PAP2 family protein		2.25	1.16	1.01	1.07	1.47
BA1122	hypothetical protein		1.06	1.37	1.03	1.06	1.16

C. Genes downregulated more in the spxA1 background										
Locus	GeneN	GeneS	770	2 vs 85	71	Median	Mean			
BA5072	hypothetical protein		-2.79	-2.75	-2.40	-2.75	-2.64			
BXA0072	hypothetical protein		-2.61	-2.33	-2.40	-2.40	-2.45			
BA4370	hypothetical protein		-2.16	-2.00	-2.04	-2.04	-2.07			
BA0422	conserved hypothetical protein		-2.00	-1.89	-2.19	-2.00	-2.03			
BA4490	ribosomal protein L33	rpmG-2	-1.89	-2.35	-2.00	-2.00	-2.08			
BA2666	hypothetical protein		-1.99	-1.91	-1.94	-1.94	-1.94			

BA1182	conserved hypothetical protein		-2.09 -1.88 -1.89	-1.89 -1.95
BA1284	hypothetical protein		-1.86 -1.80 -1.95	-1.86 -1.87
BA1741	hypothetical protein		-1.77 -1.83 -1.72	-1.77 -1.77
BA0034	transition state transcriptional regulatory protein AbrB	abrB	-1.83 -1.76 -1.72	-1.76 -1.77
BA3752	conserved hypothetical protein		-1.61 -1.75 -1.79	-1.75 -1.72
BA1137	hypothetical protein		-1.37 -1.74 -1.77	-1.74 -1.62
BA3426	conserved hypothetical protein		-1 72 -1 72 -2 14	-1 72 -1 86
BA/617	hypothetical protein		-1 66 -1 69 -1 69	-1.69 -1.68
BA04017	conserved hypothetical protein		-1 77 -1 51 -1 66	-1.66 -1.65
DALCOC			1.01 1.00 1.00	-1.00 -1.05
BA3020	4-0xalocrotonate tautomerase		-1.81 -1.59 -1.65	-1.05 -1.08
BA4473	conserved domain protein		-1.83 -1.02 -1.00	-1.02 -1.08
BA3860	copper-ion-binding protein		-1.38 -1.56 -1.72	-1.56 -1.55
BA1363	conserved domain protein		-1.95 -1.49 -1.51	-1.51 -1.65
BA2262	heat shock protein, Hsp20 family		-1.59 -1.45 -1.40	-1.45 -1.48
BA2282	lemA domain protein		-1.40 -1.43 -1.65	-1.43 -1.49
BA1461	conserved domain protein		-1.45 -1.36 -1.42	-1.42 -1.41
BA1607	conserved hypothetical protein		-1.30 -1.43 -1.40	-1.40 -1.38
BA3411	conserved hypothetical protein		-1.46 -1.40 -1.38	-1.40 -1.41
BA4779	conserved hypothetical protein		-1.34 -1.39 -1.42	-1.39 -1.38
BA1247	hypothetical protein		-1.66 -1.34 -1.38	-1.38 -1.46
BA1579	conserved hypothetical protein		-1.23 -1.38 -1.37	-1.37 -1.33
BA4163	conserved hypothetical protein		-1.37 -1.35 -1.54	-1.37 -1.42
BA1897	conserved hypothetical protein		-1 48 -1 31 -1 37	-1 37 -1 39
BA2166	hypothetical protein		-1 55 -0 81 -1 36	-1.36 -1.24
BA2100	transcriptional regulator. ArsP family		-1 22 -1 28 -1 22	-1.22 -1.21
DA2303	transcriptional regulator, Arsk failing	for D 2	-1.55 -1.26 -1.52	-1.52 -1.51
BA4109	propriage LambuaBauz, rostomycin resistance protein	JUSB-2	-1.44 -1.31 -1.14	-1.31 -1.30
BA5/38	ribosomai protein L34	гртн	-1.37 -1.25 -1.31	-1.31 -1.31
BA0851	nypothetical protein		-1.39 -1.23 -1.30	-1.30 -1.31
BA4265	hypothetical protein		-1.20 -1.29 -2.01	-1.29 -1.50
BA3713	hut operon transcriptional activator	hutP	-1.13 -1.37 -1.29	-1.29 -1.27
BA4550	conserved hypothetical protein		-1.19 -1.36 -1.28	-1.28 -1.28
BA4329	conserved hypothetical protein		-1.57 -1.28 -1.23	-1.28 -1.36
BA1621	hypothetical protein		-1.53 -1.20 -1.28	-1.28 -1.34
BA0488	hypothetical protein		-1.15 -1.35 -1.28	-1.28 -1.26
BA0817	hypothetical protein		-1.14 -1.34 -1.26	-1.26 -1.25
BA1135	cold shock protein CspA	cspA-1	-1.17 -1.31 -1.24	-1.24 -1.24
BA4060	acetyltransferase, GNAT family		-1.14 -1.24 -1.27	-1.24 -1.22
BA5007	hypothetical protein		-1.13 -1.39 -1.24	-1.24 -1.25
BA1782	transposase. IS605 family. OrfA		-1.19 -1.26 -1.24	-1.24 -1.23
BA4769	spore coat protein C putative		-1 25 -1 23 -1 19	-1 23 -1 22
BA5255	conserved hypothetical protein TIGR00106		-1 20 -1 22 -1 44	-1 22 -1 29
BA0816	conserved hypothetical protein		-1 12 -1 32 -1 22	-1 22 -1 22
BA0775	conserved hypothetical protein		-1 22 -1 19 -1 24	-1 22 -1 21
BA0773	conserved hypothetical protein		-1 20 -1 22 -1 14	-1.20 -1.10
DA4321	bungth attack protein		1.42 1.16 1.10	-1.20 -1.19
BA2870	nypotnetical protein		-1.42 -1.10 -1.19	-1.19 -1.20
BA2302	conserved hypothetical protein		-1.19 -1.13 -1.30	-1.19 -1.21
BA3858	DNA-binding protein HU	nup-3	-1.19 -1.22 -1.17	-1.19 -1.19
BA416/	nypothetical protein		-1.19 -1.21 -0.93	-1.19 -1.11
BA4242	hypothetical protein		-1.16 -1.06 -1.21	-1.16 -1.14
BXA0057	hypothetical protein		-1.15 -1.12 -1.24	-1.15 -1.17
BA5632	conserved hypothetical protein		-1.14 -1.20 -1.13	-1.14 -1.16
BA5316	SET domain protein		-1.13 -1.12 -1.17	-1.13 -1.14
BA2013	general stress protein	dps	-1.05 -1.12 -1.16	-1.12 -1.11
D. Genes	downregulated more in the spxA2 background			
Locus	GeneN	GeneS	8170 vs 8606	Median Mean
BA0161	gluconate operon transcriptional repressor	gntR	-3.80 -4.04 -3.70	-3.80 -3.85
BA0163	gluconate permease	gntP-1	-3.75 -3.19 -3.43	-3.43 -3.46
BA1581	spore coat protein D, putative	-	-2.62 -3.26 -2.70	-2.70 -2.86
BA0162	gluconate kinase, authentic point mutation		-2.41 -2.97 -3.17	-2.97 -2.85
BA4266	hypothetical protein		-2.37 -2.52 -1.94	-2.37 -2.27
BXA013	hypothetical protein.		-1.63 -1.65 -1.51	-1.63 -1.60
BA0164	6-phosphogluconate dehydrogenase decarboxylating	vail	-1 32 -1 28 -1 32	-1 32 -1 31
BA1727	hynothetical protein	747	-1.31 -1.60 -1.00	-1.60 -1.60
DXA012/	hypothetical protein		1.51 -1.00 -1.90	1.00 -1.00
	S laver protein		170 100 100	-1 96 1 60
BXAU124	l S-layer protein, sodium/alaning symporter family protein		-1.29 -1.88 -1.86	-1.86 -1.68

*Green shading and negative values represent genes downregulated in mutant strains compared to wild type. Red shading and positive values represent genes upregulated in mutant strains compared to wild type. NaN represents genes where no signal was present in the wild-type or mutant samples. Values are log2 changes. Columns G/L and H/M represent the median and mean value across 3 biological replicate experiements.