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Using Sensor Data and Model Inference to Tailor Home  
Health Interventions for the Elderly 
Across the world, many societies are experiencing a health-care 
crisis as their aging demographic grows and overall health-care 
expenditures escalate. The societal challenge to providing quality 
care for the elderly needs to be addressed with changes in practice 
on several fronts, including reimbursement policies, clinical 
workflow, and a move toward more proactive and out-of-hospital 
continuous care. Technology and model-based approaches for 
home monitoring and home-based health interventions can play a 
large role in this transformation.

There are several important approaches to using computational 
modeling to augment the effectiveness of technology-based health 
interventions in the home (see [S1] and [S2]). First, we need 
computational models to make inferences about behaviors and 
health states based on streaming sensor data from the home and 
environment. This is a new area of research where behavioral 
markers of health states based on unobtrusive sensor data provide 
clinically useful metrics for the early detection of conditions and for 
monitoring that is useful for providing input and evaluation of the 
effectiveness of ongoing health interventions.

Second, it is important to use sensor data to monitor 
adherence to action plan activities associated with health 
interventions. These data inform model estimates of an individual’s 
readiness to change, motivations,  and barriers.  Finally, 
computational models are necessary in taking the estimates of 
health states, motivations, barriers, readiness to change, and 

preferences to inform a dynamic user model of an individual. The 
computational inferences from this user model can then be used 
to tailor just-in-time messages for encouragement and feedback to 
better enable a person’s ability to change.

An example of a system that uses unobtrusive sensor data along 
with computational models to infer health states and features of 
behavior change to tailor messaging in health interventions is 
shown in Figure S1. This diagram represents the information flow in 
the Health Coaching Platform used for interventions with seniors in 
the Oregon Center for Aging and Technology’s (ORCATECH) Living 
Lab. The participants using this system are typically around 85 years 
of age with multiple chronic conditions. They live independently in 
their homes and have consented to try a variety of new 
technologies. Each home has motion sensors for inferring activities 
of daily living, walking speed, and sleep quality; contact switches 
(e.g., for the exterior door used to infer time out of the home or 
apartment); and all participants have computers that they use to 
play our adaptive cognitive computer games, specifically designed 
to monitor metrics of working memory, executive function, divided 
attention, and verbal fluency. 

The monitoring of computer interactions also includes typing 
speed and linguistic complexity measures from written materials. In 
addition, some participants have Bluetooth-enabled medication 
dispensers for intelligent medication reminding, phone monitors, and a 
Kinect camera for our interactive video exercise intervention. Various 

FIGURE S1  A variety of sensors used in the ORCATECH participants’ homes. These include passive IR motion sensors for activ-
ity monitoring, reduced field-of-view motion sensors for measuring walking speed, computers with software for measuring 
cognitive function and motor speed, door switches, phone sensors, and Bluetooth-enabled medication monitoring [S2].
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computational modeling techniques are used in first describing robust 
behavior inference metrics such as walking speed, socialization 
behaviors, or a description of sleep. These estimates require a careful 
understanding of optimal sampling methods, a model and 
representation of noise versus the inherent variability in behaviors, and 
a careful model that takes indirect data from a variety of inputs to infer 
an individual’s behavior in real time.

The classified and quantified behavior measures can then inform 
models of health states. For example, repeated measures of walking 
speeds can serve as an early indicator of cognitive decline. Similarly, 
typing speed, the linguistic complexity of typed text, and cognitive 
measures derived from computer game interactions also inform 
estimates of cognitive health. Our measures of balance, flexibility, and 
strength derived from the skeletal representation from the Kinect 
camera during use of the interactive physical exercise module are an 
example of using computational modeling to infer an individual’s 
physical health state.

Figure S2 describes how the home-based unobtrusive sensor 
technology is used as input to computational modeling components of 
the system to derive measures of behaviors and health states, shown in 
the “Inference” box. These estimates, along with assessments of 

preferences, motivations, barriers, and readiness to change, are then 
used as part of a dynamic user model. The diagram shows information 
flow from a message database and the dynamic user model to 
automatically create tailored messages for the user. Our semiautomated 
messages contain the following:

▼▼ greeting: a randomly selected greeting phrase using the 
participant’s preferred name

▼▼ review of the past week’s activities: based on comparing action 
plan activities with sensor data monitoring, e.g., “You came 
close to completing your goal of three chair exercise sessions 
this week and did a great job in achieving your memory 
game goals”

▼▼ plan for next week: e.g., progress to the next phase of the 
physical exercise program, with the content automatically 
tailored based on previous performance and estimated 
readiness to change

▼▼ complementary closure: randomly selected closure using the 
health coach’s name.

The knowledge representation and computational technique for 
the tailored message generation is based on active methods, where 
active components in the dynamic user model database trigger the 

FIGURE S2  Information flow diagram for the ORCATECH Health Coaching Platform, highlighting the components using compu-
tational modeling algorithms to tailor a health intervention.
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concatenation of a sequence of message phrases from the 
message database. This modeling approach serves as a 
framework for tailoring health interventions.

Thus far, 33 elderly participants (average age 80.3 ± 9.4 years) 
have participated in the health coaching study and have tested 
the feasibility of modules on cognitive training, sleep 
management, socialization, and physical exercise. For each of 
these modules, we first use an in-home visit or Skype 
conferencing to assess current activity levels, health behavior 
goal selection, readiness to change, motivations, and barriers 
(when appropriate). For example, with our sleep intervention, we 
assess sleep hygiene behaviors anxiety, and circadian rhythm 
patterns before recommending changes to the environment or 
relaxation exercises. A tailored action plan is created and 
updated each week.

Although we make use of a human health coach for face-to-
face training and assessments, the computational modeling 
and analysis described earlier offers a mechanism for 
facilitating this health coach in keeping the intervention 
personal and tailored to each individual’s needs and 
preferences while enabling the coach to manage a large group 
of clients simultaneously. This approach of using computational 
analysis for inferring behaviors and health states and 
incorporating models of health behavior change provides a 
method for improving the effectiveness of health interventions 
through tailoring and for improving the scalability through 
automated message generation.
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Dynamical Systems Modeling of a Gestational 
Weight Gain Intervention
Dynamical systems modeling has the potential to improve 
behavioral theories and, by extension, improve health 
interventions. However, there is still much debate among 
behavioral scientists regarding the best theoretical models of 
behaviors, and the best methods for studying and developing 
behavioral theories. One illustration of how dynamical systems, 
concepts, and behavioral theories can inform the modeling of 
behavior change is a model of an intervention to prevent 
excessive weight gain during pregnancy. This is part of the 
activities of a recently funded National Institutes of Health 
grant between Penn State and Arizona State (Grant 
R01HL119245: “Control systems engineering for optimizing a 
prenatal weight intervention,” Downs, PI; Rivera, consortium PI). 

High prepregnancy body mass index (BMI) and excessive 
gestational weight gain (GWG) are serious health concerns. 
Research shows that excessive weight gain during pregnancy is 
often associated with many adverse maternal and neonatal 
outcomes, including gestational diabetes, pregnancy-related 
hypertension, complications through labor and delivery, infant 
macrosomia, and childhood obesity. Pregnancy thus represents 
an opportune moment in a woman’s life to promote healthy 
lifestyle behaviors and learn effective techniques for proper 
weight management.

A dynamical model for a gestational weight intervention is 
developed through the integration of a mechanistic energy 
balance model for gestational weight gain and a fluid analogy of 
the theory of planned behavior (TPB), augmented with self-
regulation. TPB is a broad-based psychological theory that can be 
understood conceptually through the path diagram shown in 
Figure S3(a) [S7].

While there are many different and competing theoretical 
models about behavior and behavioral change, a path diagram such 
as the one describing the TPB provides a solid starting framework for 
expressing behavioral change as a dynamical system represented 
via a fluid analogy. In TPB, behavior ( )h5  is determined by intention 
( )h4  and perceived behavioral control (PBC; ) .h3  Intention, 
meanwhile, is influenced by attitude toward the behavior ( ),h1  
subjective norm ( ),h2  and PBC ( ) .h3  Navarro et al. [S8] show that 
the path diagram associated with TPB represents a steady-state 
association between these variables. Each block in the TPB path 
diagram can be viewed as an inventory, as depicted in Figure S3(b), 
with inflows corresponding to exogenous variables reflecting the 
strength of beliefs (e.g., ,, pp 21  and )p3  or (for intention and 
behavior) the outflows from other inventories in the network. The 
levels of the various inventories accumulate or deplete over time 
based on the magnitude and changes occurring in the exogenous 
variables as well as the corresponding changes in the outflows of 
the other interconnected tanks.

To generate the dynamical system equations, the concept of 
conservation of mass is applied to each inventory, from which a 
system of differential equations is obtained. An illustration for the 
equation describing intention ( )h4  is
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In (S1), the parameters i jb  and i jc  represent gains of the 
system, while variables ix  and ii  are time constants and delays, 
respectively, which dictate the speed of response of the system. ig  
corresponds to disturbances.

Self-regulation, as depicted in Figure S4, is an important 
aspect of behavior change that forms part of this model. The self-
regulation theory in psychology has been largely influenced by 
the work of Carver and Scheier [S9] who proposed that human 

behavior is goal directed and regulated by feedback control 
processes. Self-regulation reflects the capacity of individuals to 
alter their behavior, enabling individuals to adjust their actions to 
a broad range of social and situational demands. Repeated 
measurement of behavioral outcomes provides a major stimulus 
to self-regulation.

The collective integration of self-regulation, the TPB, and energy 
balance in the form of a fluid analogy is depicted in Figure S5 for the 

FIGURE S3  (a) A path diagram representing the TPB and (b) a corresponding fluid analogy.
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energy intake portion of the gestational weight gain intervention. 
The energy balance model can predict changes in fat mass and fat-
free mass as functions of energy intake and characteristics of the 
mother. Daily weight measurement and dietary records of energy 
intake generate the signals that drive two self-regulation loops that 
influence perceived behavioral control along with other 
components of the behavioral intervention. Intervention 
components I1  through In  represent structured intervention 
programs such as healthy eating education, active learning, and 
goal setting, which, through the TPB model, ultimately influence 
healthy eating behavior and, consequently, meeting gestational 
weight gain targets.

The usefulness of a dynamic model for a behavioral 
intervention comes in many forms, from simulation, evaluation of 
decision policies, and, most importantly, the opportunity to 
optimize an intervention through an adaptive, just-in-time 
approach. Adaptive just-in-time interventions represent feedback 
or combined feedback–feedforward control systems that make 
decisions on the magnitude and sequencing of intervention 
components by relying on assessments of tailoring variables that 

reflect outcomes, adherence to treatment, or other important 
measures of participant response during the course of an 
intervention. Decision policies for this class of interventions can 
range from simple “IF-THEN” decision rules [S10] to model-based 
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many forms of ubiquitous but noisy or indirect data for inferring  
health behaviors.

Here, we illustrate how systems and computational mod-
eling approaches can impact behavior change and optimize 
interventions for health involving behavioral outcomes with 
two examples. The first, in “Using Sensor Data and Model 
Inference to Tailor Home Health Interventions for the Elderly,” 
is an example of integrating health behavior change variables 
with computational inference about behaviors and health 
states for tailoring interventions. The second, “Dynamical Sys-
tems Modeling of a Gestational Weight Gain Intervention,” 
demonstrates how behavioral theories from psychology come 
into play in developing a comprehensive dynamical model for 
an intervention to manage gestational weight gain.
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control-theoretic formulations that fully incorporate the dynamical 
behavior model, such as model predictive control (MPC) [S11]. 
Since adaptive interventions mirror clinical decision-making, these 
individualized, tailored forms of treatment delivery can serve as 
helpful aids to clinicians by improving effectiveness over a larger 
participant population, lowering costs, and overall resulting in 
much greater intervention potency.

Our work to date [S12], [S13] has shown proof of concept for the 
use of dynamical modeling in a gestational weight gain intervention 
and the benefits that enhancing behavioral theory with a systems 
perspective can have in providing useful predictive models of 
behavior. Behavioral theories and energy balance provide an initial 
structure for the dynamical model; however, data-driven tasks 
involving experimental design, parameter estimation, and model 
validation need to be accomplished to reach at a final model. These 
are problems that fall within the realm of semiphysical system 
identification [S14]. The increasing availability of intensive 
longitudinal data from repeated measurement and assessment of 
behavioral variables enhances the feasibility of obtaining these 
kinds of dynamical system behavioral change models.
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