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Table S1.  Bacillus subtilis strains used in this study. 
Strain Relevant Genotype Source or Reference 

PY79 Prototroph, SPβo (Youngman et al., 
1984) 

LAS440 mutS::mutS-gfp (spc); amyE::Pspac mutL (cat) (Smith et al., 2001) 
LAS397 mutL::mutL-gfp (spc) (Smith et al., 2001) 

LAS257 dnaN::dnaN-mgfpA206K (spc) (Simmons et al., 
2008) 

LAS385 dnaX::dnaX-gfp (spc) (Smith et al., 2001) 

AK151 holB::holB-gfp (spc) (Lemon and 
Grossman, 1998) 

LAS267 lacA::Prps ssb-gfp (tet) (Berkmen and 
Grossman, 2006) 

LAS387 polC::polC-gfp (spc) (Lemon and 
Grossman, 1998) 

AK74 amyE::Pxyl dnaE-gfp (spc) (Dervyn et al., 2001) 

LAS38 mutSL::kan (Simmons et al., 
2008) 

AK111 amyE::Pxyl dnaE-gfp (spc); mutSL::kan This work 
AK121 mutL::kan This work 
AK124 amyE::Pxyl dnaE-gfp (spc); mutL::kan This work 

LAS40 recA::recA-mgfp (spc) (Simmons et al., 
2009) 

JWS68 amyE::PxyldnaE-gfp (spc); mutSL::kan; 
lacA::PspacmutL+ (erm) This work 

JSL203 amyE::PxyldnaE-gfp (spc); mut-1[polC 
G430E,S621N]  (cat) This work 

BWW88 dnaE::dnaE-gfp (spc), ytsJ- This work 
BWW96 dnaE::dnaE-mgfp (spc), ytsJ- This work 

All strains used are derivates of PY79.
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Figure S1. The percentage of cells with DnaE-GFP foci decrease in a strain bearing a 
proofreading deficient polC allele.  The percentage of cells with DnaE-GFP foci were scored in 
an isogenic strain bearing the polC mut-1 allele (Sanjanwala and Ganesan, 1991).  This allele is 
defective in 3´ to 5´ exonuclease (Sanjanwala and Ganesan, 1991).  (A) DnaE-GFP is shown in 
green while the membranes are pseudo-colored red and visualized with the vital membrane dye 
TMA-DPH.  The wild type polC allele was used in the left panel, while the polC mut-1 allele 
(polCexo-) was used in the right panel to evaluate the effect on DnaE-GFP foci.  Exposure length 
for imaging DnaE-GFP was 500 ms while the TMA-DPH was imaged at 65 ms.  (B) Shows a 
quantification of the percentage of cells with DnaE-GFP foci under the indicated conditions. The 
number of cells scored for polC+ was 1644 cells and for DnaE-GFP scored in the polC mut-1 
background we scored 1101 cells.  The asterisk indicates that the results are significant with 
p<0.0001.  The white bar indicates 4 µm. 
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Figure S2. DnaE and DnaE-GFP levels are unchanged following 2-AP challenge. 
Shown is an immunoblot of strain AK74 (relevant genotype amyE::Pxyl dnaE+, dnaE+), +/- 2-AP 
treatment, as indicated above.  Cells were grown to mid exponential phase optical density 
(OD600) of 0.4 in 0.125% D-xylose.  The culture was split with one culture challenging with 600 
µg/ml 2-AP for 1 hour while the control culture was grown in the absence of 2-AP challenge.  
Cells were harvested and processed as described (Rokop et al., 2004).  Cell load was normalized 
to cell number as determined by optical density between the samples shown.  The anti-DnaE 
antiserum (MI1185) was used in 1:5000, the HRP-conjugated secondary goat anti-rabbit was 
used with a 1:5000 dilution (Pierce) as described in “Experimental Procedures.”  
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Figure S3.  2-AP mediated loss of DnaE-GFP foci is independent of DnaE levels in vivo.  (A) 
DnaE-GFP with the indicated percentage of D-xylose added to the growth medium.  The left 
panel is in the absence of 2-AP and the corresponding right panel is with 600 µg/ml 2-AP.  The 
membrane is stained with the vital membrane stain FM4-64 and the white bar indicates 3 µm.  
The exposure time for DnaE-GFP in 0.125% xylose was 400 ms. We used longer exposures of 
500 ms and 1000 ms to image the cells grown in 0.025% xylose and 0.005% xylose, 
respectively, for improved foci detection in these cells that contain lower levels of DnaE-GFP.  
(B) Bar graph of the percentage of cells with DnaE-GFP foci untreated (dark grey bars) and in 
the presence of 2-AP (light grey bars).  The error bars reflect the 95% confidence interval.  The 
asterisk indicates p<0.0001 between the untreated and 2-AP treated samples.  The bar graph 
represents a summary of the complete data set shown in Table 3.  (C) A representative 
immunoblot of DnaE-GFP and β clamp (DnaN) from cells with the amount of xylose and 2-AP 
indicated is shown.   
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