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Theoretical motivation for the b/c>k condition 
 
The b/c>k condition comes from a theory of imitation dynamics (e.g. evolutionary game theory) on 
networks (1). Here we sketch the intuition underlying the b/c>k result; we refer readers to (1) for 
technical details.  
 
The theory works as follows. Each player has a strategy, either cooperate (C) or defect (D). Players 
sometimes change their strategy by copying a neighbor’s strategy. When this happens, a neighbor is 
picked proportional to payoff in the previous round to be copied (i.e. if my strategy is C, and I have a D 
neighbor with a high payoff and a C neighbor with a low payoff, then I am more likely to switch to D; or 
if I am a D player with a high payoff C neighbor and low payoff D neighbor, I am more likely to switch to 
C). In this way, the fraction of cooperators and defectors in the population evolves over time.  
 
It has been shown by (1) that cooperation can spread under this framework as long as b/c>k, which causes 
the network structure to generate enough clustering to make cooperators earn high payoffs. To gain an 
intuition for this result, consider a k=2 cycle with perfect assortment (Figure S1). 
  

 
Figure S1. A k=2 cycle with perfect assortment. Blue = C, red = D.  

Payoffs of players P1-P4 and P1’-P4’ are indicated. 
 
Under the dynamic described above, in which players copy their neighbors, the only way the 
frequency of cooperation can change is if a player on the edge between clusters (i.e. players P2, 
P3, P2’, or P3’ in Figure S1) changes strategy; the reason is that, for people on the interior of a 
cluster, they and both neighbors are playing the same strategy and so imitation cannot lead to a 
change.  
 
If P2 or P2’ compare the payoffs of their neighbors, they see that the cooperator earns 2(b-c) 
whereas the defector earns b; thus if b/c>2, they are more likely to copy the cooperator (and 
cooperation will spread on average). Similarly, if P3 or P3’ compare the payoffs of their 
neighbors, they see that the cooperator earns b-2c whereas the defector earns 0; thus, again if 
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b/c>2, they are more likely to copy the cooperator. Thus for cycles, with k=2, b/c>2 is required 
for players to preferentially imitate cooperation (and therefore for cooperation to spread). A 
generalization of this logic yields the b/c>k condition for cases with k>2 (1). 
 
As described above, under this update rule (‘death birth updating’), a player with the same 
strategy as all of her neighbors cannot change strategy when updating (since whichever of her 
neighbors is picked will result in the strategy she is already playing). If such a change does 
occur, it is referred to as exploration or ‘mutation’. See below for a detailed discussion of the 
effect of mutation on networked cooperation. 
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Statistical details 
 
Here we provide regression tables to accompany the statistics reported in the main text. Note that 
all regressions cluster standard errors on subject and session to account for the non-independence 
of repeated observations from the same subject, and from different subjects within the same 
session. 
 
Experiment 1 
 
Table S1. Cooperation in all rounds as a function of round, well-mixed indicator, and the 
interaction between the two. The non-significant coefficient on Round indicates no change over 
time in the networked condition (where Well-Mixed=0). Evaluating the net coefficient on Round 
for the Well-Mixed condition (i.e. coeff on Round + coeff on [Well-Mixed X Round]) gives 
coeff=-0.0123, p=0.053. Logistic regression clustered on subject and session. 
 

  (1) 
    

Well-Mixed -0.0984 

 
(0.445) 

Round 0.00521 

 
(0.00492) 

Well-Mixed X Round -0.0175* 

 
(0.00805) 

# Players 0.207** 

 
(0.0762) 

Constant -0.853 

 
(0.805) 

  Observations 5,450 
Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 
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Table S2. Cooperation by Well-mixed. Initially, cooperation does not vary, but later in the 
session there is significantly less cooperation when the population is well-mixed; this is true 
when considering the last half (rounds 26-50), last third (34-50) or last quarter (38-50). Logistic 
regression with robust standard errors clustered on subject and session. 

  (1) (2) (3) (4) 

 
Round 1 Round 26-50 Round 34-50 Round 38-50 

          
Well-mixed 0.210 -0.849* -0.948* -0.891* 

 
(0.550) (0.411) (0.429) (0.418) 

# Players 0.398 0.150** 0.169** 0.172** 

 
(0.209) (0.0578) (0.0605) (0.0632) 

Constant -2.114 -0.0946 -0.219 -0.357 

 
(1.735) (0.596) (0.615) (0.619) 

     Observations 109 2,725 1,853 1,417 
Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

 

We note that these results are robust to a more conservative analysis in which we treat each 
session as a single data point (with value equal to the average frequency of cooperation over that 
session), and compare conditions using the non-parametric Wilcoxon Rank-sum test: comparing 
the average cooperation rates in the Networked and Well-mixed conditions shows no difference 
in round 1 (p=0.38), and significantly more cooperation in the Networked condition in the 
second half (p=0.0321), last third (p=0.0321), and last quarter (p=0.0319) of the game.  
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Experiment 2 
 
Table S3. Cooperation in the later part of the game as a function of round: cooperation is stable 
for b/c>k but decreases in b/c≤k. Logistic regression clustered on subject and session. Models 1 
and 2 are reported in the main text (second half of the game, rounds 9-15). Models 3 and 4 show 
that the results are robust to defining the second half the game as being rounds 8-15. Models 5 
and 6 show that the results are robust to considering the last third of the game (rounds 11-15) 
instead of the second half. 
 

  (1) (2) (3) (4) (5) (6) 

 
Rounds 9-15 Rounds 8-15 Rounds 11-15 

 
b/c>k b/c≤k b/c>k b/c≤k b/c>k b/c≤k 

              
Round -0.00401 -0.0387* -0.0218 -0.0400** 0.0109 -0.0556* 

 
(0.0197) (0.0176) (0.0145) (0.0149) (0.0341) (0.0269) 

# Players 0.0324 -0.00342 0.0328 -0.00472 0.0350 0.00280 

 
(0.0443) (0.0278) (0.0429) (0.0283) (0.0440) (0.0279) 

Constant -0.595 0.0486 -0.373 0.0956 -0.861 0.129 

 
(1.121) (0.703) (1.057) (0.714) (1.156) (0.624) 

       Observations 1,916 3,643 2,192 4,173 1,366 2,593 
Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 
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Table S4. Cooperation in all rounds as a function of round and b/c>k indicator. Change in 
cooperation over round differs significantly between b/c>k and b/c≤k. Data from all rounds is 
included here. Model 2 demonstrates that this effect is not driven by b/c alone. Logistic 
regression clustered on subject and session. 
 

  (1) (2) 

 
  

      
b/c>k 0.249 0.0287 

 
(0.200) (0.214) 

Round -0.0700*** -0.0905*** 

 
(0.00803) (0.0186) 

b/c>k X Round 0.0368** 0.0269** 

 
(0.0115) (0.00941) 

# Players 0.00312 0.00953 

 
(0.0224) (0.0205) 

b/c 
 

0.105 

  
(0.0584) 

b/c X Round 
 

0.00572 

  
(0.00374) 

Constant 0.243 -0.251 

 
(0.537) (0.561) 

   Observations 12,093 12,093 
Standard errors in parentheses 

  *** p<0.001, ** p<0.01, * p<0.05 
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Table S5. Cooperation in round 1 and round 15 by b/c>k. Initially, cooperation does not vary, 
but at the end of the game, there is significantly more cooperation when b/c>k. Logistic 
regression with robust standard errors clustered on subject and session. 
 

  (1) (2) (3) (4) 

 
Round 1 Round 1 Round 15 Round 15 

          
b/c > k 0.176 -0.00168 0.701** 0.446* 

 
(0.203) (0.222) (0.230) (0.225) 

# Players 0.00754 0.0112 0.0316 0.0372 

 
(0.0264) (0.0247) (0.0269) (0.0267) 

b/c 
 

0.0871 
 

0.130* 

  
(0.0502) 

 
(0.0623) 

Constant 0.280 -0.0932 -1.328* -1.902** 

 
(0.609) (0.545) (0.657) (0.709) 

     Observations 840 840 787 787 
Standard errors in parentheses 

  *** p<0.001, ** p<0.01, * p<0.05 
   

We note that similar results are obtained using only one observation per session with Wilcoxon 
Rank-sums. We find significantly more cooperation in Round 15 when b/c>k than b/c≤k (Rank-
sum, p=0.004), b/c=k (Rank-sum, p=0.006) or b/c<k (Rank-sum, p=0.033); and no significant 
difference between b/c=k and b/c<k (p=0.45). 
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Table S6. Level of assortment by b/c>k. Assortment is defined as a cooperator’s average number 
of cooperative neighbors minus a defector’s average number of neighbors. As assortment is a 
session-level characteristic rather than an individual level characteristic, we have 1 observation 
per session per round. The constant in Model 1 indicates the estimate for assortment when b/c≤k 
(not significantly different from zero). To estimate the level of assortment when b/c>k, we 
evaluate the net coefficient (b/c>k coefficient + constant = 0.142, p=0.0005; significantly greater 
than 0). Linear regression with robust standard errors clustered on session.  
 

  (1) (2) (3) 

            
b/c>k 0.151*** 0.135** 0.142** 

 
(0.0390) (0.0400) (0.0414) 

b/c 
  

-0.00222 

   
(0.0115) 

k 
 

-0.00776 -0.00665 

  
(0.00898) (0.0118) 

Constant -0.00933 0.0269 0.0291 

 
(0.0125) (0.0464) (0.0455) 

    Observations 539 539 539 
R-squared 0.156 0.159 0.159 
Robust standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 
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Table S7. Round payoff relative to session average by decision (cooperate or defect) and b/c>k. 
The dependent variable is the subject’s payoff in the current round minus the average payoff of 
all subjects in that session. To make payoffs comparable across values of b/c and k, we 
normalize payoffs, dividing by the largest possible relative payoff (a player who receives 
cooperation from all of her neighbors, earning a payoff bk, relative to the average of a group 
containing her and N-1 other players all receiving the lowest possible payoff of –ck). We also 
show that results are qualitatively equivalent without the normalization in models 3 and 4. To 
evaluate the effect on relative payoff of cooperating when b/c≤k, we examine the Cooperate 
coefficient in Model 1 (significantly less than 0). To evaluate the effect on relative payoff of 
cooperation when b/c>k, we test the net coefficient (Cooperate coefficient + b/c>k X Cooperate 
coefficient = -0.041, p=0.152; not significantly different from 0). Linear regression with robust 
standard errors clustered on subject and session.  
 

  (1) (2) (3) (4) 

 
Normalized Normalized 

Not 
Normalized 

Not 
Normalized 

          
b/c>k -0.0817*** -0.0598*** -14.92*** -24.44*** 

 
(0.0175) (0.0159) (3.228) (3.938) 

Cooperate -0.238*** -0.370*** -42.78*** -24.70** 

 
(0.0161) (0.0242) (3.823) (7.492) 

b/c>k X Cooperate 0.197*** 0.126*** 35.85*** 47.49*** 

 
(0.0326) (0.0279) (5.675) (6.872) 

b/c 
 

-0.0100* 
 

4.368*** 

  
(0.00390) 

 
(1.048) 

b/c X Cooperate 
 

0.0384*** 
 

-5.595** 

  
(0.00688) 

 
(2.157) 

Constant 0.105*** 0.137*** 18.91*** 5.176 

 
(0.00659) (0.0147) (2.127) (3.385) 

     Observations 12,093 12,093 12,093 12,093 
R-squared 0.176 0.190 0.162 0.172 
Standard errors in parentheses 

   *** p<0.001, ** p<0.01, * p<0.05 
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Table S8. Cooperation in the second half of the game (rounds 9-15) as a function of round, 
comparing network structured versus well-mixed population, all for b/c>k. Logistic regression 
clustered on subject and session. 
 

  (1) (2) 

 
Structured Well-mixed 

      
Round -0.00401 -0.0623** 

 
(0.0197) (0.0219) 

# Players 0.0324 0.0954* 

 
(0.0443) (0.0396) 

Constant -0.595 -1.926 

 
(1.121) (1.169) 

   Observations 1,916 2,216 
Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 
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Table S9. Cooperation in all rounds as a function of round and well-mixed indicator. Includes 
data from all rounds. Logistic regression clustered on subject and session. 
 

  (1) 

      
Round -0.0332*** 

 
(0.00851) 

# Players 0.0710*** 

 
(0.0217) 

Well-mixed -0.0726 

 
(0.224) 

Well-mixed X Round -0.0303** 

 
(0.0120) 

Constant -1.170** 

 
(0.544) 

  Observations 8,944 
Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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Table S10. Cooperation in round 1 and round 15 by well-mixed. Initially, cooperation does not 
vary, but at the end of the game, there is significantly less cooperation when the population is 
well-mixed. Logistic regression with robust standard errors clustered on subject and session. 
 

  (1) (2) 

 
Round 1 Round 15 

      
Well-mixed -0.168 -0.468* 

 
(0.198) (0.220) 

# Players 0.0967*** 0.0463 

 
(0.0215) (0.0285) 

Constant -1.721** -0.987 

 
(0.540) (0.771) 

   Observations 613 586 
Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 
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Table S11. Level of assortment by well-mixed. The constant indicates the estimate for 
assortment in the network structured population (significantly greater than zero). To estimate the 
level of assortment when the population is well-mixed, we evaluate the net coefficient (Well-
mixed coefficient + Constant = -0.055, p=0.203; not significantly different from 0). Linear 
regression with robust standard errors clustered on session.  
 

  (1) 

      
Well-mixed -0.155*** 

 
(0.0387) 

Constant 0.141*** 

 
(0.0372) 

  Observations 360 
R-squared 0.143 
Robust standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 
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Table S12. Round payoff relative to session average by decision (cooperate or defect) and well-
mixed. To evaluate the effect on relative payoff of cooperating in the network structured 
population, we examine the Cooperate coefficient in Model 1 (not significantly different from 0). 
To evaluate the effect on relative payoff of cooperation in the well-mixed population, we test the 
net coefficient (Cooperate coefficient + Well-mixed X Cooperate coefficient = -0.162, 
p<0.0001). Linear regression with robust standard errors clustered on subject and session.  
 

  (1) (2) 

 
Normalized 

Not 
Normalized 

      
Well-Mixed 0.0649*** 9.533** 

 
(0.0181) (3.070) 

Cooperate -0.0407 -6.924 

 
(0.0286) (4.225) 

Well-Mixed X Cooperate -0.121*** -17.88*** 

 
(0.0319) (5.045) 

Constant 0.0234 3.983 

 
(0.0163) (2.446) 

   Observations 8,944 8,944 
R-squared 0.051 0.047 
Standard errors in parentheses 

 *** p<0.001, ** p<0.01, * p<0.05 
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Conditions for the evolution of cooperation on networks with mutation 
 

As described in the main text, in our b/c>k conditions, we observe that defectors with all 
defecting neighbors switched to cooperation 17.4% of the time (D-to-C mutation), and 
cooperators with all cooperating neighbors switched to defection 5.1% of the time (C-to-D 
mutation). D-to-C mutations are beneficial for cooperation, as they increase the overall level of 
cooperation and also have the possibility of creating new clusters of cooperators. It is C-to-D 
mutations that are potentially harmful for cooperation, as that disrupt cooperative clusters. 

Here, we ask what predictions theory makes about the evolution of cooperation in the presence 
of these levels of mutation, based on the work of (2). Asymmetric mutation rates have not been 
studied theoretically. Therefore, we make the conservative assumption of a symmetric 5.1% 
chance of spontaneously changing strategy (neglecting the increased likelihood of defectors 
switching to cooperators, and biasing our estimate against cooperation).  

For a cycle with k=2, theory predicts that cooperation will be favored when  

𝑏
𝑐 >

2(1 − 𝑢)
1 −�𝑢(2 − 𝑢)

 

where u is the probability of mutating (defined here as choosing C or D with 50% chance – thus 
a 5.1% chance of changing strategy in our data is equivalent to u=0.102). Substituting u=0.102 
yields a condition of b/c>3.35 for cooperation to be favored on a cycle with k=2, a criterion 
which is satisfied in both of our k=2 conditions where b/c>k ([b/c=4, k=2] and [b/c=6, k=2]).  

Analytical results have not been previous derived for cycles with k>2, but a cycle with k=4 may 
be well approximated by a Cayley graph of the same degree. Theory predicts that cooperation 
will be favored on a Cayley graph with degree k when  

𝑏
𝑐 >

2𝑘(1− 𝑢)(𝑘 − 1)
(𝑘 − 1)(𝑘 − �𝑘2 − 4(𝑘 − 1)(1− 𝑢)2)

 

Substituting k=4 and u=0.102 yields a condition of b/c>4.99, which again is satisfied by our k=4 
condition where b/c>k (b/c=6, k=4). Thus, the success of cooperation in our b/c>k experimental 
conditions comports well with theoretical predictions, even taking into account 
exploration/mutation.   
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Experiment 2 Participant Demographics 
 
Because the MTurk population is much more diverse than typical undergraduate laboratory 
populations, we provide background demographics on our MTurk subjects. 
 
Gender: 48.5% female. 
 
Age: Mean 31.1 years old. 

 
 
Education: 
Less than a high school degree 1.0% 
Vocational training 3.7% 
High school diploma 16.6% 
Attended college 28.0% 
Bachelor's degree 36.7% 
Graduate degree 13.9% 
Unknown 0.1% 
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Annual income: 
$5,000 or less 17.7% 
$5,001 to $10,000 10.4% 
$10,001 to $15,000 9.4% 
$15,001 - $25,000 13.1% 
$25,001 - $35,000 13.9% 
$35,001 - $50,000 14.8% 
$50,001 - $65,000 9.0% 
$65,001 - $80,000 5.2% 
$80,001 - $100,000 3.8% 
Over $100,000 2.8% 

 
Country of residence:  

United States 81.3% 
India 11.9% 
Canada 1.4% 
Romania 0.9% 
United Kingdom 0.6% 
Macedonia 0.6% 
Serbia 0.6% 
Croatia 0.3% 
Poland 0.3% 
Germany 0.2% 
Hungary 0.2% 
Latvia 0.2% 
Mexico 0.2% 
Spain 0.2% 
Afghanistan 0.1% 
Belgium 0.1% 
Bosnia and Herzegovina 0.1% 
Brazil 0.1% 
Dominica 0.1% 
Grenada 0.1% 
Ireland 0.1% 
Italy 0.1% 
Jamaica 0.1% 
Qatar 0.1% 
Russian Federation 0.1% 
Singapore 0.1% 
Switzerland 0.1% 
Taiwan 0.1% 
Turkey 0.1% 
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Instructions & screenshots 

Experiment 1 
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Networked condition: 

 
 
Well-mixed condition: 
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Experiment 2 
 
Here we show sample instructions and play screenshots for Experiment 2, from the networked 
b/c=6, k=2 game 
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The last two screens then repeated for 15 rounds, without the orange ‘practice round’ header. 
Note that in this screen, the total payoff for the round of each neighbor is shown, along with the 
player’s own total payoff for the round. 
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