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In what follows, we will consider experiments with given number nr of retained

partitions. We assume nr is fixed and known. All results are derived conditional on

nr. To improve readability, we will omit this in the notation.

Derivation of the confidence interval
Under regularity assumptions, the number of target copies X in a constant volume

follows a Poisson distribution Pois(λ) [1], [2]. Since E[X] = λ, this can be defined as

the expected number of copies per partition if we assume that the partition volume

is constant. Define K the number of partitions that return a negative signal out

of the nr retained partitions. The probability that a partition did not contain an

initial target copy p = P (X = 0) = exp(−λ) can estimated as
K

nr
and λ can be

estimated as

λ̂ = − log

(
K

nr

)

It is shown in [1] that this is the maximum likelihood estimator (MLE) under the

following model: Let Y be a binary indicator that is Y = 1 if a given partition

does not contain a target copy (X = 0) and Y = 0 if it does contain a target copy

(X > 0). Under the assumptions that the number of copies in a constant volume is

Poisson distributed and all partitions have the same probability 1− p to contain a

target copy, the number of partitions with a negative signal K equals:

K =

nr∑
i=1

Yi with Yi ∼ B(1; p)⇒ K ∼ B(nr; p)⇒ K ∼ B
(
nr; e

−λ)
where B denotes the binomial distribution. Using maximum likelihood theory, we

can immediately obtain an estimate for the variance by inverting the Fisher infor-

mation matrix:

V ar
(
λ̂
)

=
1− e−λ

nre−λ

For more details, we refer to [1].

A plug-in estimator for the variance of the number of target copies per partition is

obtained after replacing e−λ by its estimator
K

nr
: V ar

(
λ̂
)

=
nr −K
Knr

.
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Since λ̂ is an MLE, the asymptotic 95% confidence interval can be calculated as:

[
λ̂− 1.96

√
nr −K
Knr

; λ̂+ 1.96

√
nr −K
Knr

]

The confidence interval above gives highly similar results to the one derived in [3].

But, it is more accurate close to the right border (few negative partitions).

Optimization of the theoretical precision
The width of the confidence interval of the concentration is dependent on the asymp-

totic variance, which is a function of λ, the number of copies per partition. As such,

it can be minimized with respect to the parameter λ. We aim to find the concentra-

tion such that the relative variance per copy number V ar
(
λ̂
λ

)
is minimal. This is

equivalent to optimizing the dilution for most accurate measurements. We minimize

the following loss function:

f(λ) = V ar

(
λ̂

λ

)
=

1

λ2
1− e−λ

nre−λ
=
eλ − 1

nrλ2

After derivation, we get:

df(λ)

dλ
=
nrλ

2eλ − 2nrλe
λ + 2nrλ

n2rλ
4

=
λeλ − 2eλ + 2

nrλ3
=

eλ

nrλ3
(
λ− 2 + 2e−λ

)
Since λ > 0, we solve λ − 2 + 2e−λ = 0 for λ. This has no closed-form solution,

but can easily numerically approximated. We get λ = 1.59 which means the most

precise estimates can be obtained for 1.59 copies per partition. Note, that the same

result can be found by maximizing the Fisher information of log(λ) [1].

Decomposition of the variance in the presence of pipette error
Suppose we examine a sample and we prepare a reaction mix in several replicates

to determine the concentration of a target gene. We define θ as the concentration of

target nucleic acids (NA) in our raw material. When preparing the technical repli-

cates, we mix the purified NA with appropriate primers, probes and other material

necessary for the PCR reaction. Under the assumptions of the Poisson model, the

concentration of each replicate, ck, is drawn from a Poisson(ηk) distribution with

ηk = η = θ V
p

V r , V p the pipetted volume and V r the volume of each reaction mix. In

practice, pipette errors and sample heterogeneity occur. Hence, we have to redefine

ηk = θ
V p
k

V r
k

as the expected concentration in each replicate given the actual pipetted

volume, V pk , and the actual volume of the reaction mix, V rk . We will thus estimate

θ̂k = η̂k
V r

V p for each replicate k. When technical replicates are prepared by the same

operator and/or pipette, systematic pipette error can lead to bias: E[ηk] = η′ 6= η

and E[θ̂k] 6= θ. Users can assess and correct for this in a controlled laboratory

environment.



Jacobs et al. Page 3 of 4

Additional variability cannot be avoided as every pipetting step introduces ran-

dom error. We have as a general property:

V ar
(
θ̂k

)
= E

[
V ark

(
θ̂k

)]
︸ ︷︷ ︸

A

+V ar
[
Ek

(
θ̂k

)]
︸ ︷︷ ︸

B

Only for an ideal pipette, Ek (η̂k) = ηk = η and Ek

(
θ̂k

)
= θk = θ so term B equals

0 and we can use the asymptotic variance estimator.

In the presence of random pipette error and the absence of systematic errors, the ηk
fluctuate randomly around η and this term will not disappear. Hence, the asymp-

totic variance estimator will underestimate the variance. Pipette error, thus, intro-

duces an additional source of between replicate variation. Technical replicates can

be used to account for this. Empirical variance estimators will capture both the

variation of the individual estimates (term A) and the variation of the θk around θ

(term B).

Derivations for a model with unequal partition sizes
We assume in what follows that the probability of containing a copy is proportional

to the partition size. Using previous notation, we have:

K =

nr∑
i=1

Yi with Yi ∼ B(1; pi)⇒ E[K] =

nr∑
i=1

pi

For an experiment unequal partition sizes si we have:

pi = e−λi with λi ∝ si

When we consider a hypothetical reference experiment on the same replicate with

equal partition size then

nr∑
i=1

λi = nrλ

and we see that

E[K] =

nr∑
i=1

pi =

nr∑
i=1

e−λi = nre−λi ≥ nre−λi = nre
−λ = nrp

where the inequality follows from the property that an arithmetic average is always

at least as large as a geometric average. Consequently, we have shown that the

expected number of partitions without a copy is larger than the expected number

under the equal partition size assumption. Note, that when the si are similar, so

are the λi and thus the difference will be small.

Although at first sight invisible in the formula, this difference is highly dependent

on the number of target copies in the mix. We have:

λ̂ = − log

(
K

nr

)
⇒ dλ̂(K)

dK
=
−1

K
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We can see that changes for K closer to 0 (few negative partitions, high concen-

tration of target copies) have a much larger influence on the estimate than changes

for K closer to nr (many negative partitions, low concentration of target copies).

Consequently, the downwards bias as a result of unequal partition sizes will be es-

pecially visible when there are many target copies present in the reaction mix.

It is difficult to give a theoretical estimate for the variance in this case as every

partition has a unique λi.

An optimal ratio to minimize misclassification
We can write the ratio of false negatives to false positives as a function of the

concentration for an unbiased estimator. The estimator is unbiased if the ex-

pected number of false positives equals the expected number of false negatives.

Define πFPR = P (positive signal |no target) the false positive rate and πFNR =

P (negative signal |target) the false negative rate. Assume for simplicity an ex-

periment with equal partition size and no pipette error. We consider E[K] and

E0[K] = E [K|πFPR = πFNR = 0], the expected number of partitions that return a

negative signal and its expected value when there is no misclassification. Addition-

ally, we study E[p̂] and E0[p̂] = E [p̂|πFPR = πFNR = 0], the associated proportion

of partitions that return a negative signal. We have

E[K] = E0 [K] (1− πFPR) + (nr − E0 [K])πFNR

E[p̂] = E0 [p̂] (1− πFPR) + (1− E0 [p̂])πFNR

In the absence of bias, E[p̂] = E0 [p̂]. We can solve this for πFNR/πFPR and get an

estimate of the necessary ratio to get an unbiased estimator if the concentration is

given or already estimated.

πFNR
πFPR

=
E[p̂]

1− E[p̂]
=

e−λ

1− e−λ

This confirms the intuition that for a small number of target copies, we can accept

a higher rate of false negatives if we keep the false positive rate small. For very

concentrated samples, a higher rate of false positives is not problematic, but we

want to keep the false negative rate small.

Alternatively, we can solve the equation to E[p̂] to know for which concentration

the ratio of the proportions can be equal to a certain given ratio.

E[p̂] =
πFNR

πFNR + πFPR
⇒ λ = − log

(
πFNR

πFNR + πFPR

)
If we have an estimate of the false positive and false negative rate, we cannot only

estimate the bias, but also find the optimal concentration λ for which its estimate

is unbiased. This can be used in combination with results of a dilution series to

reduce bias. Note, that we need a less concentrated sample to reduce the bias if we

expect a higher probability of false negatives, which may seem counter-intuitive.
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