Supplementary figure legends:

Figure S1. Map-based cloning of RSN1.

(A) The positions of the mapping markers. The *rsn1* mutations are flanked between markers F24M12 and T5P19.

(B) Gene structure of *RSN1* and the mutation sites in *RSN1*. Exons are indicated with gray boxes and introns with lines. Arrows indicates the mutation sites of *rsn1* mutants.

Figure S2. Alignment of RSN2 and its homologs from other eukaryotes. Amino acid sequences of hSPF45 from human, SPF45 from *Drosophila*, F58B3.7 from *C.elegans*, OsDRT111 from rice and RSN2 were aligned with Clustal Omega program (<u>http://www.ebi.ac.uk/Tools/msa/clustalo/</u>) and the alignment result was shaded with BOXSHADE program (<u>http://www.ch.embnet.org/software/BOX_form.html</u>).

Figure S3. flg22-induced ROS burst in wild type and *rsn2-1* **plants.** Four-week-old soilgrown plants were used in this assay.

Supplementary Table S1. Primers used in this study.

Figure S1. Map-based cloning of RSN1.

T

А

F58B3.7 RSN2 OSDRT111 hSPF45 SPF45	<pre>1MYNDDEDDVPQGPPAAKQAKPMHNIQMAFMQSQLAQRKAALQQQAARQKLVKSSAP 1 MLGGLYGDLPPPTDDEKPSGNS-SSVWSSSTKMAPPTLRKPPAF-AP</pre>
F58B3.7 RSN2 OSDRT111 hSPF45 SPF45	 57 PPVIDLSTRNRTITTAVTSKSFQPIRANPVSDNISFLPKAATDESVMIFGEEHVKCEYYP 46 -PQTILRPLNKPKPIVSAPYKPPPPSNSSQSVLIPANESAPSHQPALVGVTSSVIEEYDP 47 -PPSVLRN-SRPAPKAPAAQPPPPPTLPIETTISTSFQPALVAVQSTVMEEYDP 52 APVIDLKRGGSSDDRQIV-DT-PPHVAAGIKDPVPSGFSAGEVLIPIADEYDP 42 TPVVNLRSKRLADPEVTC-FA-PITTVVSKPLISGKALPSILERINRGDWDVADEYDP
F58B3.7 RSN2 OSDRT111 hSPF45 SPF45	117 MTPNNYEVVAKEINDRKQREKTAREVAKRLQREHEEEDKKRS 105 ARPNDYEEYKREKKRKATEAEMKREMDKRRQEDEERDKREREEREKERERDNSDPSR 99 ARPNDYEDYRKDKLKRAKEAEVRKELERRRREEEERERE-RELREREGRDA 103 MFPNDYEKVVKRQREERQRQRELERQKEIEEREKRRK-DR 98 QRPNEYEKLKEKSNGSDKNRAGVSDREDRDDKEKDRKRGRVGRREFYR
F58B3.7 RSN2 OSDRT111 hSPF45 SPF45	159KGAAIAPPTMIMEPEPEV 162LNISGEEA-WKRRAAMSGGGSGGKGRSSSPPGNVDGFSI 149LNISGEEA-WKRRAAMSGSAAPRPSSSPPHGDGFAI 142HEASGFARRPDPDSDEDEDYERERRKRSMGGAAIAPPTSIVEKDKEL 146 DEVSAPNIKISGFGHRQNDDDMYLPSPGLVAKQGGATIAPPPSIQEMSI
F58B3.7 RSN2 OSDRT111 hSPF45 SPF45	177 IKNTNENQDEKPHSSFMPPPSFLPAFGKATSRGLGTAANIMKR 200GKSETSCLGVCAGGQMTAAQRMMAK 184GNSSSSCLGLCAGGQMTAAQRMMAR 189 PRDFPYEEDSRPRSQSSKAAIPPPVYEEQDRPRSPTGPSNSFLANMCGTVAHKIMQK 195DSGCEATNTMPYSASSVAAKIMAK
F58B3.7 RSN2 OSDRT111 hSPF45 SPF45	 HGYKEGAGLGKSEQGMSTALSTEKTGVRGGNIVAEAPKAP-T
F58B3.7 RSN2 OSDRT111 hSPF45 SPF45	<pre>261FATNSMEAVQNATKILQLWNLTDLSEVSGEEGKKEFADELKEE 267AEKKVVKSVNINGEPTRVLLLRNMVGPGQVDDELEDEVGGE 247KQEKKPKSVNFDGPPTRVLLLRNMVGPGEVDDELEDEVASE 286DASKKSDSNPLTEILKCPTKVVLLRNMVGAGEVDEDLEVETKEE 279 KAMPPPQMVDTAAESGDIGYSITEIMKSPSKVVLLRNMVGPGDVDEELEPEVKDE</pre>
F58B3.7 RSN2 OSDRT111 hSPF45 SPF45	 304 ME-KCGQVVNVIVHVDESQEEDRQVRMFVEFTNNAQAIKAFVMMNGRFFGGRSVSAGF 308 CG-KYGTVTRVLIFEITEPNFPVHEAVRIFVQFSRPEETTKALVDLDGRYFGGRTVRATF 288 CS-KYGTVLRVLIFEITQADFPAFEAVRIFTLFERAEEATKAMIDLEGRFFGGRVVRATF 330 CE-KYGKVGKCVIFEIPGAPDDEAVRIFTEFERVESAIKAVVDLNGRFFGGRVVKACF 334 CNTKYGEVNSVIIHESFGTVPEDAVKIFVEFRRIESAIKAVVDLNGRFFGGRQVRAGF
F58B3.7 RSN2 OSDRT111 hSPF45 SPF45	<pre>361 QNVSDYNNREF 367 YDEEKFSKNELAPVPGEIPGY- 347 DDEERFGKNQLAPMPGEVAGFD 387 YNLDKFRVLDLAEQV 392 YNYDKFKCFQLH</pre>

Figure S2. Alignment of RSN2 and its homologs from other eukaryotes.

Figure S3. flg22-induced ROS burst in wild type and *rsn2-1* plants.

Primer	5'-3' sequence	Purpose
SNC4-RT-F	cttcgcagatgaaactgttg	Real-time PCR
SNC4-RT-R	gtggaataagagcetteage	Real-time PCR
CERK1-RT-F	gcacaatttcagctacag	Real-time PCR
CERK1-RT-R	caacaaagccacaatcactcc	Real-time PCR
CERK1-SPL-1R	ggtgcatttccaccattc	Alternative splicing
AtSR1/SRp34-F	aggagcagaagtcccaaggc	Alternative splicing
AtSR1/SRp34-R	ccttctgaacagaaggtagag	Alternative splicing
U1-70K-F	cccaataatgatccaaatgc	Alternative splicing
U1-70K-R	cttatatgcagctttcatgtc	Alternative splicing
<i>RSN1-</i> F	gagcgggtaccaccaccatcatcccgag	Complementation
<i>RSN1-</i> R	cgcggggatccatagccagggatttcacctgc	Complementation
F17F8-F1	ggaagaggattgactcaaagagc	InDel marker
F17F8-R1	gcagcaaacacgtacgtgagc	InDel marker
F1K23-F	gcaaatccataggaagtgagtc	InDel marker
F1K23-R	gatctgtatctgaaacctgggaa	InDel marker
F13K9-F	ttctgctgaaccaaggtgtc	InDel marker
F13K9-R	ataatatgatgcgcgctagg	InDel marker
F14M2-F	cgcatacgtgtcaccgtgag	InDel marker
F14M2-R	tgtccgggactgcctttagc	InDel marker
T8P19-F1	agaacacgcaaaaggacacg	InDel marker
T8P19-R1	gcttagtataactggttttgg	InDel marker
F24M12-F1	tgaagattctacctcgcgtg	InDel marker
F24M12-R1	gttgatctggtgaccaatcc	InDel marker
T5P19-F1	cgtattaaaagtttggagatgttac	InDel marker
T5P19-R1	aatagactgcaaaggtttttgatc	InDel marker
MAA21-F1	gtcacccatatgatgcaaagg	InDel marker
MAA21-R1	gcaattgaagcagactcaacc	InDel marker
F24B22-F1	gtgttgtgtatgtcctgagc	InDel marker
F24B22-R1	cctaaagtacaatgccaagacg	InDel marker

Table S1. Primers used in this study