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Supplementary material 

 

1) Solving equation (2.1) for adult mortality 

Our aim is to solve µ from equation (2.1):   

 

𝜎𝑓𝑒−𝑟𝑏(1−𝑒−𝑐(𝑟+𝜇))

𝑟+𝜇
= 1         (2.1)  

 

To simplify this, we use the shorthand notation 𝑦 = 𝜎𝑓𝑐𝑒−𝑟𝑏 and 𝑥 = 𝑐(𝑟 + 𝜇). Equation 

(2.1) then simplifies to 

 

𝑦(1−𝑒−𝑥)

𝑥
= 1          (A1) 

 

If we can now solve x from (A1), we can consequently easily solve µ. (A1) contains both x 

and the exponential of x, which suggests the solution may involve the Lambert W function 

(Corless et al. 1996). Therefore we first need to rearrange (A1) to a form equivalent with 

𝑓(𝑥)𝑒𝑓(𝑥) = 𝑔(𝑦), where the right side does not contain x. This can be done with the 

following steps: 

 

𝑦(1−𝑒−𝑥)

𝑥
= 1     (Multiply both sides by x and rearrange) 

 

𝑥 − 𝑦 = −𝑦𝑒−𝑥    (Multiply both sides by 𝑒(𝑥−𝑦)) 

 

(𝑥 − 𝑦)𝑒(𝑥−𝑦) = −𝑦𝑒−𝑦 (This is of the form 𝑓(𝑥)𝑒𝑓(𝑥) = 𝑔(𝑦). Now 

apply the Lambert W function) 

 

(𝑥 − 𝑦) = 𝑊(−𝑦𝑒−𝑦)    (Solve for x) 

 

𝑥 = 𝑦 + 𝑊(−𝑦𝑒−𝑦)      
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Given that 𝑥 = 𝑐(𝑟 + 𝜇), it is now easy to solve 𝜇: 

𝜇 =
𝑥

𝑐
− 𝑟 =

𝑦+𝑊(−𝑦𝑒−𝑦)

𝑐
− 𝑟  , which is equation (2.2b).  

 

The argument −𝑦𝑒−𝑦 is always negative. For negative arguments there are two possible real-

valued branches to the Lambert W function. The correct branch can be determined by 

examining the left side of the equation (𝑥 − 𝑦) = 𝑊(−𝑦𝑒−𝑦). We will show that in 

biologically relevant scenarios the values of (𝑥 − 𝑦) always fall in the interval ]-1,0[, 

indicating that we must use the principal branch of the Lambert W function (Corless et al. 

1996):  

From equation (A1) we get 𝑦 =
𝑥

1−𝑒−𝑥. Therefore  

(𝑥 − 𝑦) = 𝑥 −
𝑥

1−𝑒−𝑥 =
𝑥

1−𝑒𝑥. It is easy to show that for positive values of x, the values of 
𝑥

1−𝑒𝑥 

always fall in the interval ]-1,0[, and therefore the same applies to (𝑥 − 𝑦). Noting that 𝑥 =

𝑐(𝑟 + 𝜇) is always positive in biologically relevant scenarios, we have shown that  

 

𝜇 =
𝑦+𝑊(−𝑦𝑒−𝑦)

𝑐
− 𝑟         (2.2b) 

 

where W indicates the principal branch of the Lambert W function.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
Corless, R. M., G. H. Gonnet, D. E. Hare, D. J. Jeffrey, and D. E. Knuth. 1996. On the Lambert W 

function. Advances in Computational mathematics 5:329-359. 
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2) Continuous mortality increase 

For mathematical tractability, we derived equations (2.3a-d) with the assumption of a 

truncated form of aging: adult individuals have a constant mortality rate, until they reach age 

d after which they no longer reproduce (i.e. in the absence of extrinsic mortality, adults 

survive or reproduce for exactly c time units after maturation). Here we compare the results to 

numerical solutions derived with the continuous Gompertz-Makeham mortality distribution 

(e.g. Marshall and Olkin 2007), which is commonly used to model senescence.  

With this distribution analytical equivalents of equations (2.3a-d) are not possible, but with 

numerical methods we can plot an equivalent of figure 1C, which allows us to compare the 

effect of the two alternative distributions.  

To make the results comparable, we need a way to parameterize the Gompertz-Makeham 

distribution so that it reflects the value of d, as used in the main text. It is not immediately 

clear what the equivalent of this parameter is in a continuous distribution, because a 

continuous distribution does not have an absolute maximum age. One way to draw a parallel 

between the two is to note that in the absence of extrinsic mortality, all new recruits survive 

for a further c=d-b time units when using the truncated distribution. An equivalent continuous 

distribution would be one where, in the absence of extrinsic mortality, new recruits survive on 

average  a further c=d-b time units after maturation.  

The mortality rate at age x with the Gompertz-Makeham distribution is 𝜇 + 𝛽𝜑𝑒𝜑𝑥, where 𝜇 

is an age-independent (extrinsic) mortality component, similar to the main text, while 𝛽 and 𝜑 

parameterize the age-specific component of mortality. The corresponding survival function is 

𝑒−(𝛽(𝑒𝜑𝑥−1)−𝜇𝑥).  

The mean of the age-specific (i.e. exluding 𝜇) component of the distribution is 
𝑒𝛽𝛤(0,𝛽)

𝜑
, where 

𝛤(0, 𝛽) is the incomplete gamma function. This is what we want to equate with c=d-b from 

the main model (because we are interested in survival after maturation). Therefore we proceed 

as follows: assign 𝛽 a value (we will use 𝛽=0.05 for the example shown here), then solve 

𝑒𝛽𝛤(0,𝛽)

𝜑
= 𝑐 for 𝜑, which yields 𝜑 =

𝑒𝛽𝛤(0,𝛽)

𝑐
. Then numerically solve the equivalent of 

equation (2.2b) (in the case of r=0) from the main text, i.e. solve the required value of age-

dependent adult mortality 𝜇 that yields a stable population. We will then have all the 

parameters required to calculate genetic generation time. These steps can be done with 

Mathematica by defining the following functions: 

beta = 0.05;  

phi[b_, d_]: = Exp[beta] Gamma[0, beta] (𝑑 − 𝑏)⁄ ;  

surv[u_, b_, d_, x_]: = Exp[−beta(Exp[phi[𝑏, 𝑑](𝑥 − 𝑏)] − 1) − 𝑢(𝑥 − 𝑏)];  

𝑢[b_, f_, d_]: = 𝑢/. FindRoot[NIntegrate[𝑓surv[𝑢, 𝑏, 𝑑, 𝑥], {𝑥, 𝑏, Infinity}] == 1, {𝑢, 1}];  

gt[b_, f_, d_]: = {utemp = 𝑢[𝑏, 𝑓, 𝑑]; NIntegrate[𝑥𝑓surv[utemp, 𝑏, 𝑑, 𝑥], {𝑥, 𝑏, Infinity}]};  
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The first four lines generate a continuous survival distribution analogous with the truncated 

one, and the final function calculates genetic generation time. With this we can plot the 

equivalent of figure 1C using the Gompertz-Makeham mortality distribution. 

 

The figure is almost indistinguishable from figure 1C. This demonstrates that our main result 

is not an artefact of the truncated mortality function used in the main text.  

For comparison, the dashed line below shows the age-dependent (intrinsic) component of the 

survival function used in the main text compared to the age-dependent component of the 

survival function used in this appendix, both with a mean survival of 20 years. Using the 

functions defined above, the command for the continuous distribution below is 

surv[0,0,20, 𝑥] Note that decreasing the value of 𝛽 from 0.05 would make the continuous 

distribution gradually approach the stepwise one. 

    

Marshall, A. W. and I. Olkin. 2007. Life Distributions: Structure of Nonparametric, Semiparametric, 
and Parametric Families. Springer.  
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3) General fecundity and mortality functions 

Assume we are comparing species where the general shape of the life-history functions is 

very similar, varying only in their relative recruitment rate 𝜎𝑓 and an extrinsic mortality (after 

age of first reproduction) µ that balances recruitment so the population is in demographic 

equilibrium. The baseline fecundity and mortality functions can now take any age-specific 

shape, while 𝜎𝑓 and µ are simply scaling factors (but not independent of each other under 

demographic equilibrium). 

We can write the survival and fecundity functions as 𝑙(𝑥) = 𝜎𝑒−𝜇(𝑥−𝑏)𝑚(𝑥) and  

𝑓(𝑥) = 𝑓𝑛(𝑥), where m(x) and n(x) determine the overall shape of survival and fecundity, 

and can be any suitable functions.  

 

Then the Euler-Lotka equation for r=0 (no population growth) yields 

∫ 𝜎𝑒−𝜇(𝑥−𝑏)𝑚(𝑥)𝑓𝑛(𝑥)𝑑𝑥 = 1 
∞

𝑏
  

Or, using the notation k(x)=m(x)n(x),  

∫ 𝜎𝑓𝑒−𝜇(𝑥−𝑏)𝑘(𝑥)𝑑𝑥 = 1 
∞

𝑏
  

Differentiating both sides for recruitment 𝜎𝑓, we get 

∫ 𝑒−𝜇(𝑥−𝑏)𝑘(𝑥)𝑑𝑥 − ∫ 𝜎𝑓(𝑥 − 𝑏)
𝜕𝜇

𝜕𝜎𝑓
𝑒−𝜇(𝑥−𝑏)𝑘(𝑥)𝑑𝑥 = 0 

∞

𝑏
 

∞

𝑏
  

or 

1

𝜎𝑓
∫ 𝜎𝑓𝑒−𝜇(𝑥−𝑏)𝑘(𝑥)𝑑𝑥 −

𝜕𝜇

𝜕𝜎𝑓
∫ 𝜎𝑓𝑥𝑒−𝜇(𝑥−𝑏)𝑘(𝑥)𝑑𝑥 +

𝜕𝜇

𝜕𝜎𝑓
𝑏 ∫ 𝜎𝑓𝑒−𝜇(𝑥−𝑏)𝑘(𝑥)𝑑𝑥 = 0

∞

𝑏
 

∞

𝑏
 

∞

𝑏
  

And using the Euler-Lotka and generation time equations to simplify: 

1

𝜎𝑓
−

𝜕𝜇

𝜕𝜎𝑓
𝑇 +

𝜕𝜇

𝜕𝜎𝑓
𝑏 = 0  

Now we can solve for T: 

𝑇 = 𝑏 +
1

𝜎𝑓
𝜕𝜇

𝜕𝜎𝑓

           (A2) 

The only difference between (A2) and equation (2.4) 𝑇 = 𝑏 +
1

𝜎𝑓
 is the factor 

𝜕𝜇

𝜕𝜎𝑓
 in the 

denominator. Therefore, whatever the overall shape of age-specific survival and fecundity, we 

still expect there to be a saturating relationship between K and recruitment rate, but the details 

might differ (encapsulated by 
𝜕𝜇

𝜕𝜎𝑓
). For the special case of constant adult mortality and 

fecundity with no senescence, mortality must equal recruitment under demographic 

equilibrium. This implies that 
𝜕𝜇

𝜕𝜎𝑓
= 1, i.e. equation (2.4) is recovered. Equation (2.3a) (with 

r=0) in the main text is an example where 
𝜕𝜇

𝜕𝜎𝑓
≠ 1, and an additional factor is required. 


