	0						
$p(\theta)$	model	size		Riemanni RMHMC	an Manifold NR-RMHMC	NR-HMC	НМС
u	МАРК	2×2	$v \; { m in} \; s^{-1} \ v_r \ au_r \ au_r$	$\begin{array}{c} 0.312 \pm 0.015 \\ 1 \\ 1.491 \pm 0.070 \end{array}$	$\begin{array}{c} 0.811 \pm 0.040 \\ 2.60 \pm 0.25 \\ 1.633 \pm 0.080 \end{array}$	$\begin{array}{c} 4.19 \pm 0.29 \\ 13 \pm 2 \\ 3.60 \pm 0.24 \end{array}$	$\begin{array}{c} 0.682 \pm 0.088 \\ 2.19 \pm 0.39 \\ 16 \pm 2 \end{array}$
u	Mma	3×6	$v \text{ in } s^{-1} \ v_r \ au_r \ au_r$	$(5.8 \pm 1.0) \times 10^{-4}$ 1 18 ± 3	$(1.35 \pm 0.24) \times 10^{-2}$ 23 ± 8 19 ± 3	$\begin{array}{c} 0.376 \pm 0.065 \\ 640 \pm 230 \\ 17 \pm 3 \end{array}$	$\begin{array}{c} (2.46 \pm 0.86) \times 10^{-2} \\ 42 \pm 22 \\ 42 \pm 15 \end{array}$
u	Mifa	6×14	$v \text{ in } s^{-1} \ v_r \ au_r$	${}^{<9 imes10^{-6}}_{ m NA}$	$\begin{array}{c} (1.69 \pm 0.25) \times 10^{-2} \\ > 1930 \pm 290 \\ 11 \pm 2 \end{array}$	$\begin{array}{c} (4.92\pm0.75)\times10^{-1} \\ > 55000\pm8000 \\ 12\pm2 \end{array}$	$\begin{array}{c} (5.2 \pm 1.3) \times 10^{-3} \\ > 580 \pm 150 \\ 42 \pm 10 \end{array}$
i	Mifa	6×14	$v \text{ in } s^{-1} \ v_r \ au_r \ au_r$	NA	$\begin{array}{c} (2.36\pm 0.12)\times 10^{-1} \\ 52\pm 18 \\ 0.87\pm 0.04 \end{array}$	$(1.76 \pm 0.41) \times 10^{-1}$ 39 ± 20 36 ± 8	$(4.5 \pm 1.3) \times 10^{-3}$ 1 62 ± 17
					Newton		

Figure S1. Performance analysis for the original RMHMC for ODE models and two steady state data adapted HMC algorithms

The problem size is $n \times m$, where n is the number of state variables and m the number of parameters. The properties listed are the effective sampling speed v, relative speed v_r , and the integrated auto-correlation length $\tau_{int.,L}$. HMC with flat metric (last column) performs less efficient moves through parameter space, which sometimes results in higher auto-correlation. In our examples this efficiency loss is often compensated by lower computational costs. The last example, where we resampled the same 6×14 model with an informative prior on half of the parameters, illustrates the advantages of Riemannian manifold methods over their non-Riemannian counterparts: NR-RMHMC is faster than NR-HMC. The sample sizes N for the various models: (MAPK) N = 20000, (Mma) N = 10000, (Mifa) N = 10000.