
Appendix

Cell shape and motion analysis

We use an active contour algorithm to extract the shapes of the D. discoideum cells [1].
The cell boundary, which is described by 400 boundary points, is locally tracked from
frame to frame using a least square mapping. Furthermore the centroid of the cell is
computed. For each frame the distance of the boundary points to the centroid is calcu-
lated, resulting in a quantitative measure of the cell shape. The algorithm also displays
the local motion of the boundary points by comparing changes in the boundary point
positions from one frame to the next. Finally, we measure the concentrations of F-actin
and myosin II at each boundary point by calculating the total intensities of the associated
fluorescent markers in a small region around each boundary point. We thus obtain the
spatio-temporal distributions of F-actin and myosin II along the cell border.

Detection and analysis of the cell boundary regions

that are in contact with the microchannel wall

To find the cell boundary regions that are in contact with the microchannel walls, we use
a gradient-based edge detection algorithm. We first find the position of the microchannel
walls from the summed fluorescence intensities of the actin and myosin II markers. We
average the summed intensity with respect to time and position x (the direction parallel
to the motion of the cell). The time average gives the average contact region of the cell
with the microchannel wall, and the x-average minimizes the noise. This averaging yields
a typical intensity profile that is narrow and rapidly decreasing close to the microchannel
wall. We find pixels that are close to the microchannel wall by selecting those which
have an intensity below 1% of the total intensity. Next, we calculate the derivative
of the intensity for these points. Then we look for a sudden change in the derivative
by performing a unidirectional search that starts from outside the microchannel wall and
scans towards the cell cytoplasm. The sudden change in the derivative ranges from 0.0005
to 0.005. We choose a different value for each cell, because the fluorescence intensity of
the labeled proteins depends on the expression level and varies from cell to cell.
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Next, we find the front-most and back-most boundary points, where the cell is in
contact with the microchannel wall, see Fig. S1A. At each x-position, we sum the total
intensity starting from the microchannel wall over a distance of 6 pixels (≈ 1.44 µm)
into the cytoplasm. An example of the resulting intensity profile along the channel wall
is shown in Fig. S1B. We next employ a similar unidirectional search as above for the
locations of the anterior and posterior contact. We search for 5 consecutive points that
each have an intensity above a threshold value. For each cell, we individually choose a
threshold intensity in the range of [0.002, 0.005]. The time evolution of the front-most and
back-most locations of the cell contact with the microchannel are shown as red outlines
in the inset in Fig. S1B.

Measuring the life time of actin foci

To obtain the life time of the actin foci on the cell membrane in contact with the mi-
crochannel wall (at a given boundary position), we consider actin intensities that are
greater than ε = 78% of the maximum intensity (thresholding). Next, we calculate the
average and the standard deviation of the intensity in the thresholded region over time.
We then smooth the actin intensity using “lowess” method in MATLAB’s smooth func-
tion. We monitor the deviation of this smoothed intensity at each time point in the region
from the time-averaged intensity and count the number of frames during which the devi-
ation is within ∆ = 2% of the average intensity. The values of ε and ∆ are picked such
that the distribution obtained from one kymograph has maximum similarity with the one
that is manually obtained (p ≈ 0.85 using Kolmogorov-Smirnov test). For the remaining
kymographs, we utilized the algorithm to obtain the distribution of actin foci life time
shown in Fig. 4C (n = 10 cells).

Model equations and parameters

To interpret our experimental findings, we performed numerical simulations of an excitable
network model with an additional polarity module. We used a reduced version of the
model that was introduced by Xiong et al. [2]. As there were no chemotactic signals present
in our experiments, we based our description solely on the excitable part of the model by
Xiong et al. and omitted the LEGI module that was introduced to account for receptor
input signals. In this model, excitable dynamics is described by a FitzHugh-Nagumo-
type two variable system, where the autocatalytic activator X stimulates production of
the inhibitor Y that downregulates production of X,

∂X

∂t
= α

[
(a+ 1)X2n

a+X2n
−X − βY

]
+ U +DX∇2X , (S1)

∂Y

∂t
= αε(γX − Y ) +DY∇2Y . (S2)
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Both the activator and the inhibitor can diffuse with DX and DY denoting the respective
diffusion coefficients. The values of the coefficients a, α, β, γ, and ε are given in the Table
below. The Hill coefficient 2n controls the nonlinearity in the autocatalytic reaction and
U sets the excitability threshold of the system. For a more detailed phase plane and
bifurcation analysis see the Supporting Information of Ref. [2].

In a recent publication, Shi et al. have extended this model to take cell polarity
into account [3]. They achieve this by including an additional two-variable LEGI module
consisting of a locally activating species and a second component that exerts a global
negative feedback. Here, we mimic this effect by a single cortical polarity variable P .
Recruitment of P to the cortex depends on the amount of locally available Y ,

∂P

∂t
= k1Y Ppool − k2P +DP∇2P , (S3)

with k1 and k2 the on and off rates for the recruitment of P to the cell cortex and DP the
diffusion coefficient of P . The pool Ppool of available non-bound P is given by

Ppool = Ptot −
∫
L

P dx , (S4)

with Ptot the total amount of P in the system and L the system size. The polarity variable
P couples back to the excitable system by locally influencing the excitability threshold
according to

U = θ + φ

(
P − 1

L

∫
L

P dx

)
. (S5)

Here, the average value of P across the cell corresponds to the second globally inhibiting
polarity variable in the model by Shi et al. [3]. The parameters θ and φ are given in the
Table below. The system size L denotes the active membrane area, where pseudopods
can form. In the presence of walls, L is reduced to the total system size minus the extent
of the walls.

In our simulations, we add noise to the activator variable X in such a way that
excitations are randomly triggered to represent pseudopod formation. Similar to the
approach of Xiong et al., we introduce the noise as a Wiener process W so that Eq. (S1)
becomes a stochastic differential equation,

dXt =

(
α

[
(a+ 1)X2n

t

a+X2n
t

−Xt − βYt
]

+ Ut +DX∇2Xt

)
dt+ σdWt . (S6)

The noise term is discretized with time step dt according to dW ∼
√

dtN(0, 1).
The channel walls are included as gaps in the computational domain, and we impose

no-flux boundary conditions at the positions where the active part of the membrane ends.
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Table 1. Model parameters. All numbers are taken from [2], except the parameters for
the polarity module.

Parameter Value
a 0.1
n 1
α 2.870
β 3.711
γ 0.214
ε 0.038
σ 0.102
θ -0.035
φ 5
k1 0.1
k2 0.01
Ptot 1
DX 1.864
DY 4.773
DP 2
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