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1.  Supplemental SQS Theory—Upward Curvature Strongly Distinguishes in Favor of SQS 
1A. Derivation of main paper Equation 2; SQS analytic equation yields upward curvature if r < 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 

The ‘slow quick slow’ SQS mechanism is a subclass of the basic system (Figure S1A of main paper Figure 
2A) with three requirements.  The first is ‘quick’ switching between states 2-3 (in both directions), where 
the probabilities of occupying states 3 and 2 must reach steady-state levels within the millisecond duration 
of a channel opening (Topen) and closing (Tclose).  As will be explained in Supplementary Information 2, this 
holds only when kon⋅ 2

spikeCa + koff 1/Topen  and  koff 1/Tclose.  Second, there must be ‘slow’ switching 
between states 1-2, which is satisfied if (a + b)  1 / min(Topen, Tclose), where the time constant of 
equilibration between states 1 and 2 is 1 / (a + b).  Third is the requirement of ‘slow’ switching between 
states 3-4, i.e. (α + β)  1 / min(Topen, Tclose).  The latter two conditions ensure that the probabilities of 
occupying states 1 and 4 cannot change significantly on the millisecond timescale of channel gating.   
 
Under conditions of high-buffering, the SQS mechanism can convert many times between states 2 and 3 
before exiting to either state 1 or 4.  By the analysis of Neher and Steinbach (Neher and Steinbach, 1978),  
states 2 and 3 may be coalesced into a single ‘compound’ state 2-3, with all rate constants becoming time 
invariant (Figure S1B).  The rate constants in Figure S1B can be understood if we consider the fractional 
occupancy in state 3 while in compound state ‘2-3’ (Figure S1C):  
 
 

(1A-1) 

Figure S1 Analytic solution of the SQS mechanism.  (A) Basic time-varying 4-state mechanism.  (B) Equivalent time-invariant 
SQS mechanism.  (C) Schematized Ca2+ signal under high buffering (top) and corresponding oscillations of fractional state 3 
occupancy (bottom).  Duration of channel opening (Topen) and closing (Tclose) shown (top).  (D) Steady-state SQS behavior. 
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H(t) will fluctuate between Hhigh (during channel openings) and Hlow (during channel closings).  Under 
high-buffering, Hlow = 0.  Given Caspike ~100 μM (Neher, 1998) and typical kon and koff of a lobe of CaM 
(Bayley et al., 1984; Martin et al., 1985; Teleman et al., 1986), Hhigh ≈ 1.  The time-averaged value of H(t), 
which represents the fraction of time spent in state 3 while within compound state 2-3, thus approximates 
PO.  Since transitions to state 4 only occur from state 3, the rate constant from state ‘2-3’ to state 4 becomes 
equal to α ⋅ PO. Similarly, the rate constant from state ‘2-3’ to state 1 becomes a ⋅ (1 - PO).  Solving this 
equivalent time-invariant system (Figure S1B) yields the CDI(∞)–PO relationship reproduced here from 
main paper Equation 2: 
 
 

with individual rate constants (a, b, α, β) defined in Figure S1A, r = γ / ε, γ = α / β, and ε = a / b. We add 
the term CDImax to account for the small open probability of inactivated channels (Imredy and Yue, 1994). 
 
This equation is rather unique, particularly because it can produce CDI(∞)–PO relations with different 
curvatures (Figure S1D). To prove this, we can take the first and second derivative with respect to PO: 
 

(1A-2) 
 

 
Equation 1A-2 reveals that CDI(∞) vs. PO is monotonically increasing (i.e., first derivative > 0).  
Importantly, if r > 1, the second derivative is negative, indicating a saturating CDI(∞)–PO relation (e.g. red 
curve in Figure S1D).  When r = 1, the second derivative is identically zero, indicating a linear CDI(∞)–PO 
relationship (gray curve).  Finally, when 0 < r < 1, the second derivative is positive for all PO, which is 
synonymous with upward curvature (green curve).  As discussed in the main paper, this upward curvature 
arises from the combination of two measures of protection—slow apoCaM preassociation combined with 
rapid Ca2+ release from CaM.  As will be shown, the SQS mechanism is uniquely distinguished by this 
upward curvature among a large class of alternate mechanisms. 

 
1B. The SQS mechanism cannot exhibit upward curvature without an apoCaM binding site 
If the apoCaM binding site is absent, ε = 0.  The analytic solution in this case can be found by multiplying 
the numerator and denominator of main paper Equation 2 by ε/γ, and setting ε = 0. 
 

(1B-1) 
 

 
We can take the first and second derivative with respect to PO: 
 

(1B-2) 
 

 
The CDI(∞)–PO relationship in the absence of apoCaM binding is of a Michaelis-Menton form.  For this 
form, the first derivative is always positive, which states that CDI increases with increasing PO.  The 
second derivative is always negative, which formally establishes that the curvature must always be 
saturating in nature.  Thus, complete removal of the first measure of protection (i.e. apoCaM protection) 
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precludes global CDI(∞)–PO relationships with upward curvature. 
 
1C. A ‘quick-quick-slow’ (QQS) mechanism cannot exhibit upward curvature 
Section 1B proves that apoCaM binding is required for upward curvature.  Here, we prove that upward 
curvature only arises when apoCaM binding is slow, as in the SQS mechanism.  As a counterexample, 
suppose apoCaM binding is ‘quick,’ as would be the case in a QQS mechanism (Figure S2A).  Here, the 
system may convert many times between states 1, 2 and 3 before exiting to state 4.  By the analysis of 
Neher and Steinbach (Neher and Steinbach, 1978),  states 1, 2 and 3 may be coalesced into a single 
‘compound’ state 1-2-3, with all rate constants becoming time invariant (Figure S2B).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The fractional occupancy in state 3 while in compound state 1-2-3 (Figure S1C) becomes:  
 
 

(1C-1) 
 
 
 
Under high-buffering, H(t) will fluctuate between Hhigh (during channel openings) and Hlow = 0 (during 
channel closings).  The time-averaged value of H(t) represents the fraction of time spent in state 3 while 
within compound state 1-2-3.   The average H(t) thus approximates PO ⋅ Hhigh.  Since transitions to state 4 
only occur from state 3, the rate constant from the compound state to state 4 becomes equal to α ⋅ PO ⋅ Hhigh 
(Figure S2B).  Solving this equivalent time-invariant system yields the CDI(∞)–PO relationship: 
 

(1C-2) 
 

 
Even though CaM kinetics are rapid in this case, the result is of a Michaelis-Menton form.  By the analysis 
of Equation 1B-2, the QQS regime will always produce saturating CDI(∞)–PO relations inconsistent with 
global Ca2+ selectivity.  This can be understood as follows.  In the SQS mechanism, the first protective 
measure is effective because the duration of state 1 occupancy outlasts the duration of channel openings.  In 
the QQS regime, however, state 1 occupancy is brief, thus undermining its protective nature.  The resulting 
system behaves as if it were lacking apoCaM preassociation (compare Equations 1C-2 and 1B-1). 
 
1D. A slow CaM mechanism cannot exhibit upward curvature 

Figure S2 Analytic solution of the QQS mechanism.  (A) Basic time-varying 4-state model.  (B) Equivalent time-invariant 
QQS model.  (C) Schematized Ca2+ signal under high buffering (top) and corresponding oscillations of fractional state 3 
occupancy (bottom).  (D) Steady-state QQS behavior, plotted according to Equation 1C-2 with G = 1 and Keff = 0.025. 
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The slow-CaM analytic solution is reproduced here from main paper, Equation 1:  
 

  
 
Details of the derivation of this equation appear in Supplementary Information 2.  Given this result, we can 
appreciate that this also conforms to a Michaelis-Menton form, consistent only with saturating curvature 
(via the analysis of Equation 1B-2).  Thus, removing the second measure of protection (i.e. rapid Ca2+ 
release from CaM) precludes global CDI(∞)–PO relationships with upward curvature. 
 
1E. Relaxing kinetic constraints of the SQS mechanism diminishes CDI(∞)–PO upward curvature. 
Thus far, we have proven that the SQS mechanism is capable of producing upward curvature (Section 1A), 
and that mechanisms with large deviations from the SQS regime cannot produce upward curvature 
(Sections 1B-1D).  Here we explore the uniqueness of the SQS mechanism further, and demonstrate that 
even subtle deviations from the SQS mechanism (e.g., moderately speeding state 1-2 transitions, slowing 
state 2-3 transitions, and other kinetic adjustments) will always produce CDI(∞)–PO relations residing 
above the prototypic curve for a given r in main paper Equation 2.  Hence, upward curvature can only arise 
from the basic four-state system (main paper Figure 2A) insofar as the SQS mechanism is approximated.   
 
To facilitate these proofs, we first derive an analog to main paper Equation 2, which holds for all regimes 
of CaM kinetics.  Consider the general time-varying system in main paper Figure 2A (or Figure S1A).  We 
can determine several concrete statements about the time averages of occupying various states.  For 
example, we define the time average of occupying state 3 as 
 

(1E-1)

We also find it convenient to define  

(1E-2) 
 

Over time, with a recurring pattern of Ca2+ influx, the net flux across any transition must be zero.  Thus: 
 

(1E-3) 
 

(1E-4) 

Finally, by the definition of probability, it must be that 

(1E-5) 

Equations 1E-2 through 1E-5 are a set of four equations, with four unknowns ( 1( )P t  through 4( )P t ).  
Recalling that CDI(∞) = CDImax ⋅ 4( )P t , algebraic manipulation yields a rather amazing result: 
 

(1E-6) 
 
 

This equation is entirely analogous to main paper Equation 2, except that PO is replaced by ( )H t .  Hence, 
the intuitive power and mechanistic insight of main paper Equation 2 is incorporated within Equation 1E-6.  
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The key advantage to Equation 1E-6, however, is that it always holds true, even when the kinetics of CaM 
are not fast, and when the kinetics of state 1-2 or state 3-4 transitions are not slow. 
 
Armed with this general theoretical result (Equation 1E-6), we can sketch proofs that the CDI(∞)–PO 
relations for systems that deviate from the SQS mechanism will always reside above those predicted by 
main paper Equation 2, for a given value of r.  A good place to start is to consider how ( )H t  relates to 
PO.  For the case of the SQS mechanism, with rapid CaM kinetics under high buffering (as in Figure S1), 

( )H t  = PO (Figure S3A, solid line).  Feeding this identity relation through Equation 1E-6 thereby 
produces main paper Equation 2, with CDI(∞)–PO relations shown as solid curves in Figure S3B.   
 
What if the kinetics of CaM slow down?  As an illustrative example, we consider a system in which the 
kinetics of Ca2+ (un)binding from CaM are somewhat slow compared to Tclose.  We also maintain that 
transitions between states 1 and 2 remain slow, as well as those between states 3 and 4.  Given these latter 
regimes, we could simulate the behavior of ( )H t , based solely on a subsystem containing states 2 and 3.  
Numerical simulations were performed to calculate ( )H t , with kon⋅ 2

spikeCa = 1×102 ms-1, koff = 2 ms-1, 
Topen = 1 ms, and Tclose was varied to adjust PO (= Topen / (Topen + Tclose)) between zero and unity.    The 
results of the simulation are shown as the dashed curve in Figure S3A.  Importantly, the dashed curve 
resides above the line of identity.  Thus, feeding the dashed relation in Figure S3A through Equation 1E-6 
produces the dashed curves in the CDI(∞)–PO graph (Figure S3B).  Additional simulations illustrate that 
further slowing of koff enhances the degree to which these curves are shifted upwards (Figure S3A), 
whereas lesser slowing of koff has the opposite effect.   
 
 
 
 
 
 
 
 
 
 
 
 
 
These numerical results can be supported more generally by solving explicitly for the analytic solution to a 
subsystem comprised of states 1-3.  State 4 can be considered separately because exchange between states 3 
and 4 are slow, in accord with the typical kinetics of CDI onset and recovery (Schnee and Ricci, 2003).  
The bi-exponential solution for the subsystem would provide the analytic relation between PO and ( )H t , 
confirming that whenever the kinetic constraints of the SQS mechanism are relaxed, the corresponding 
relation in the ( )H t –PO plane (Figure S3A) will always reside above the identity relation.  Hence, upon 
transformation through Equation 1E-6, the corresponding CDI(∞)–PO curves will always reside above the 
curves predicted by the SQS mechanism (main paper Equation 2).   
 
In sum, for extreme deviations from the SQS regime, the resulting mechanisms (e.g., slow CaM or QQS) 
produce Michaelis-Menton CDI(∞)–PO relations, incapable of upward curvature (Sections 1B-1D).  
Mechanisms with subtler deviations from the SQS regime always experience a reduced ability to realize the 

Figure S3.  Generalized theory for kinetic deviations from SQS regime.  (A) Transformation from PO to ( )H t .  For the SQS 
mechanism, the relation is the line of identity.  Deviations from SQS (e.g., slowing of CaM) cause ( )H t -PO relations to 
deviate upwards, as shown by the dashed curve.  (B) Resulting CDI(∞)–PO curves, obtained by mapping panel A through 
Equation 1E-6.  Solid line in panel A yields solid curves in panel B.  Dashed lines in panel A yield dashed curves in panel B. 
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global end of the spectrum (Figure S3B, green shaded area is lost).  Hence, global CDI(∞)–PO relations can 
only arise from the basic four-state system insofar as the SQS mechanism is approximated.   
 
1F. Disfavored states reduce the upward curvature of SQS-mechanism CDI(∞)–PO relations. 
Beyond simply changing the relative kinetics of rate constants within the SQS mechanism, what would 
happen if additional disfavored states were added?  The main text contends that a basic four-state 
mechanism embodies the dominant conformations of the CaM/channel complex. Direct Ca2+ binding to 
preassociated apoCaM, which would create an additional state 5 (Figure S4A), was omitted, given that such 
interaction appears unlikely in an analogous apoCaM/peptide atomic structure (Houdusse et al., 2006).  
ApoCaM binding to the effector site, which would generate an additional state 6 (Figure S4A), was also left 
out, because CDI is absent without Ca2+.  Here, we consider the effects of including these additional states, 
and find that their inclusion diminishes the degree to which CDI(∞)–PO relations with upward curvature 
can be produced.  This analysis strengthens the case for omitting these disfavored states, since their 
presence would contradict the experimentally quantified upward curvature of N-lobe regulation.  
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Figure S4. Inclusion of disfavored states diminishes CDI(∞)–PO upward curvature.  (A) General six-state configuration with 
original four states in shaded region.  Disfavored states include Ca2+-CaM bound to apoCaM site (state 5), and apoCaM bound 
to Ca2+/CaM site (state 6).  Rate constants interconnecting states 1-4 have the original N-lobe values (main text Figure 2G).  
Additional parameters: for state 5, a5 = 0.003 ms-1, b5 = 1 ms-1, kon5 = 1.1×106 M-2 ms-1, and koff5 = 0.03 ms-1; for state 6, 
α6 = 0.1 ms-1, β6 = 0.01 ms-1, kon6 = 3.7×108 M-2

 ms-1, and koff6 = 0.0003 ms-1.  Scaling factor f is applied to a5 and kon5; scaling 
factor g is applied to α6 and koff6.  (B-C) Progressive addition of state 5 (f = 1, blue;  6.7, green; and 33.3, red), while state 6 is 
omitted (g = 0).  Baseline 4-state (f = 0, g = 0) in black.  Format as in main text Figure 2G-H.  (D-E) Progressive addition of 
state 6 (g = 1, blue;  5, green; and 10, red), while state 5 is omitted (f = 0).  See Supplementary Information 4F for detailed 
numerical simulation methods.   
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Figure S4A diagrams a generalized set of CaM/channel conformations, where the original four states 
appear within the shaded region. Additionally, the new scheme includes Ca2+-bound CaM associated with 
the apoCaM preassociation site (state 5), as well as apoCaM bound to the Ca2+/CaM effector site (state 6).  
To accord with the lack of CDI in the absence of Ca2+, state 6 does not produce CDI.  The effects of 
including states 5 or 6 are illustrated by numerical simulations (Figure S4, B-E).  In these computations, all 
rate constants directly interconnecting the standard SQS states (1, 2, 3, 4) were held at their original values, 
as given in the main text (Figure 2G).  The additional parameters of the six-state model are detailed in the 
figure legend of Figure S4.  Because these parameters must accord with thermodynamic detailed balance, 
only six of the eight parameters could be freely modified.  For convenience, we introduce two scale factors, 
f and g, which can be adjusted to induce occupancy of states 5 and 6 in a graded manner, while respecting 
thermodynamic constraints (Figure S4A). 
 
Figure S4B-C explores the effects of including state 5.  For orientation, black traces reproduce the baseline 
behavior of the four-state SQS mechanism (i.e., f = 0 and g = 0), as presented in the main text (Figure 
2G-H, with r = 1/10).  For the colored traces, we preclude state 6 occupancy (g = 0) and introduce state 5 
occupancy in a graded manner (f = 1, blue; 6.7, green; and 33.3, red).  Interestingly, CDI for every Ca2+ 
input is enhanced (Figure S4B) compared to the usual SQS behavior, and the degree of enhancement is 
proportional to f.  Importantly, state 5 occupancy induces CDI in response to intermittent local Ca2+ signals 
(Figure S4B2).  This inability to reject local Ca2+ signals corresponds to CDI(∞)–PO relations with 
diminishing upward curvature (Figure S4C), and diminished global Ca2+ selectivity. Intuitively, this 
outcome is expected because allowing state 5 occupancy (i.e. allowing state 1 to directly bind Ca2+) 
undermines the extent to which preassociated apoCaM is sheltered from large Ca2+ spikes, thus weakening 
the first of two ‘measures of protection.’  
 
Figures S4D-E summarize a similar analysis regarding occupancy of state 6.  The behavior of the four-state 
SQS mechanism is again displayed for reference in black.  Here, we preclude state 5 occupancy (f = 0) and 
introduce state 6 occupancy in a graded manner (g =1, blue; 5, green; and 10, red).  In this case, CDI in 
response to a global pedestal (Figure S4D1) or continuously present local Ca2+ signal (Figure S4D3) are 
unaffected by inclusion of state 6.  However, CDI in response to intermittent Ca2+ spikes (Figure S4D2) 
grows with increasing state 6 occupancy, resulting in progressively diminishing upward curvature in 
CDI(∞)–PO relations (Figure S4E), and diminished global Ca2+ selectivity.  This finding accords with 
intuition because state 6 competes with state 1 for apoCaM.  Thus, some fraction of apoCaM will reside in 
state 6, wherein CaM is unprotected from large Ca2+ spikes.   
 
In summary, this section argues that the SQS mechanism is rather unique in its ability to support global 
Ca2+ selectivity, as visualized by CDI(∞)–PO relations with upward curvature.  Any generic mechanism 
(Figure S4A) which manages to produce global selectivity only does so to the degree that the SQS 
mechanism is approximated.  For this reason, and the close correspondence of main text Equation 2 with 
experimentally determined CDI(∞)–PO relations, we favor the essential four-state SQS mechanism.   
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2.  Supplemental Slow CaM Theory 
 
2A. Simplifications of the CaM decoding mechanism when CaM kinetics are slow 
This section proves that when the kinetics of Ca2+ binding to or unbinding from a lobe of CaM are slow, the 
steady-state behavior of the time-varying system in Figure S5A (equivalent to main paper Figure 2A) can 
be well-approximated by the simpler system in Figure S5E (equivalent to main paper Figure 2E).  In this 
alternate system, the rate constant for transition from state 2 to 3 is not treated as pulsating with fluctuating 
Ca2+, but is held constant at 2

on spike Ok Ca P⋅ ⋅ .  Before dissecting the system, we specifically define ‘slow 
CaM kinetics’ by the condition kon⋅ 2

spikeCa + koff 1/Topen  or  koff 1/Tclose.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
To start, we consider a portion of the complete time-varying system, in which states 2 and 3 are excised 
(Figure S5B).  If this subsystem is continuously driven by a Ca2+ spike train (high Ca2+ buffering 
conditions), as shown in Figure S5C (top), the subsystem will eventually achieve an exactly recurring 
pattern of oscillations in state 3 probability P3(t) (Figure S5C, bottom).  At steady-state, P3(t) at the end of 
channel open and closed periods can be solved explicitly: 
  

(2A-1) 

where 2 2
3 on spike on spike off( )P k Ca k Ca k∞ = ⋅ ⋅ + , = ⋅ +2

open on spike off
( )u T k Ca k , and = ⋅

close off
d T k . Note that P3∞ 

represents the probability of populating state 3 if Caspike were to persist indefinitely, and adopts values 
within the range 0 to 1.  The relative speed of CaM kinetics as compared to channel opening/closing 
durations are represented by u and d, which are unitless positive real numbers.  We can think of u as a 
measure of the upward deflection in P3(t) during channel openings, and d as a measure of its downward 
deflection during channel closings (Figure S5C, bottom).  If Ca2+ binding is slow relative to channel 
openings, then u 1, and the upward deflections in P3(t) are minimal.  If Ca2+ release is slow relative to 
channel closings, then d 1, and the downward deflections in P3(t) are minimal.  Solving the system of 
two equations (Equation 2A-1) yields:  
 
 

(2A-2) 

Figure S5. Analytic solution of the slow CaM mechanism.  (A) Basic time-varying 4-state model.  (B) Excised portion of 
time-varying model.  (C) Schematized Ca2+ signal under high buffering (top) and corresponding steady-state oscillations of 
state 3 occupancy for panel B model (bottom).  (D) Equivalent model to that in panel B, under conditions of slow CaM.  
(E) Equivalent model to that in panel A, under conditions of slow CaM. 
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First, suppose that both u 1 and d 1, that is, kon⋅ 2
spikeCa + koff 1/Topen and koff 1/Tclose.  In this case, 

eu ≈ u + 1 and ed ≈ d + 1.  The equations in (2A-2) can then be simplified as follows: 

 
(2A-3) 

where the channel open probability PO = Topen / (Topen + Tclose).  Two points merit emphasis.  First, Equation 
2A-3 states that the occupancy of state 3 essentially does not change between channel openings and 
closings, thus the behavior of the system is non-pulsatile.  Second, Equation 2A-3 is exactly the steady-
state solution that would be predicted by the subsystem in Figure S5D, where the rate constant for 
transition from state 2 to 3 is time invariant and equal to 2

on spike Ok Ca P⋅ ⋅ .   Hence, the time-varying 
subsystem in Figure S5B is well approximated by the time-invariant subsystem in Figure S5D.   
 
In actuality, the C-lobe of CaM is unlikely to satisfy both conditions that u 1 and d 1.  Based on typical 
koff for the C-lobe (Bayley et al., 1984; Martin et al., 1985; Teleman et al., 1986), it is clear that d 1 (i.e. 
koff  1/Tclose for slow Ca2+ release).  However, given best estimates for Caspike ~100 μM (Neher, 1998), 
kon⋅ 2

spikeCa  is likely much greater than 1/Topen, i.e. u 1 (fast Ca2+ binding).  Nonetheless, the approximation 
made in Figure S5D and Equation 2A-3 will still hold when either u 1 or d 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In Figure S6A, we show numerical values of P3/high (red) and P3/low (blue) from Equation 2A-2, and of P3(SS) 
(green) from Equation 2A-3.  As can be seen, the simplification of Figure S5D (i.e. that the system is non-
pulsatile) is actually true when either u 1 or d 1.  This is further appreciated if we look at the residuals 
between the fluctuations in P3(t) and P3(SS) (Figure S6B): P3/high – P3(SS) (red) and P3/low – P3(SS) (blue) are 
both very close to zero (i.e. system is non-pulsatile) when either u 1 or d 1.  The system only becomes 
pulsatile when both u 1 and d 1 (which is a requirement for the SQS regime).  It can rigorously be 
shown that the maximum deviation of P3(t) from P3(SS) is bounded by the minimum of u and d.  i.e.:  

(2A-4) 

∞

⋅ ⋅
= =

+ ⋅ ⋅ +

2
on spike O

3/high 3/low 3(SS) 3 2
on spike O off

~ ~
( )

k Ca Pu
P P P P

u d k Ca P k

( )( ) ∞− ≤ ⋅ ≤3 3(SS) 3 ( , ) ( , )max P t P P min u d min u d

Figure S6 Behavior of the time-varying 2-state model (Figure S5B), under conditions of high-buffering, as in Figure S5C.  
(A) Numerical values of P3/high (red), P3/low (blue), and P3(SS) (green), from Equation 2A-2 and Equation 2A-3.  Here we 
assume that spike Ca2+ is large, and thus P3∞=1.  (B) Deviations from P3(SS) of P3/high (red) and P3/low (blue).  Across all values 
of u and d, the maximal deviation from P3(SS) is bounded by min(u,d) (cyan surface), demonstrating Equation 2A-4. 
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Equation 2A-4 gives a very important result: when either u 1 or d 1 (i.e. slow CaM), the oscillations in 
P3(t) must also be small (as in Figure S5C, bottom), and P3(t) is closely approximated by P3(SS).  The proof 
of Equation 2A-4 rests on the following four claims, for which it is helpful to refer to Figure S6B: 

1.  P3/high – P3(ss) > 0    and    P3(ss) - P3/low> 0 

2.  If d≥u, then P3/high – P3(ss) ≥ P3(ss) – P3/low;      If u≥d, then P3(ss) – P3/low ≥ P3/high – P3(ss).  Thus:   

 
 
 
 
3.  The derivative of (P3/high – P3(ss)) with respect to d is always positive, thus, max(P3/high – P3(ss)) for any 
fixed u occurs at d → +∞.  Plugging in d → +∞ and simplifying yields:  max(P3/high – P3(ss)) ≤ P3∞⋅u.  
Combining this result with claim #2, we satisfy Equation 2A-4 when d ≥ u. 

4.  The derivative of (P3(ss) - P3/low) with respect to u is always positive; thus, max(P3(ss) - P3/low) for any  
fixed d occurs at u → +∞.  Plugging in u → +∞ and simplifying yields:  max(P3(ss) - P3/low) ≤ P3∞⋅d.   
Combining this result with claim #2, we satisfy Equation 2A-4 when u ≥ d. 
 
The algebra involved in proving these claims is lengthy, and for brevity they are here omitted.  It can be 
appreciated in Figure S6B that each claim is rigorously true. 
 

To summarize, Equation 2A-4 states that when CaM is slow (either u 1 or d 1, equivalently, 
kon⋅ 2

spikeCa  + koff 1/Topen or koff 1/Tclose), the subsystem in Figure S5B reaches a non-pulsatile steady 
state, approximated by the simpler mechanism in Figure S5D.  In terms of differential equations, this result 
is equivalent to the statement 
 
  

(2A-5)  

 
 
 
Now we turn to the full time-varying system in Figure S5A.  The complete set of differential equations for 
this system is 
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with the fluctuating Ca2+ inputs as shown in Figure S5C.  Since the solution to these equations is unique, 
any solution that satisfies the equations must be the solution.  We therefore may utilize an educated guess, 
based heavily on the simplified system (Figure S5E), to derive the final solution under conditions of slow 
CaM kinetics.  The guess is as follows. 
 
 
 
 
 
 

(2A-7) 
 
 

 
 
 
 
 
 
where /γ α β=  (Ca2+/CaMlobe affinity for effector site); and /a bε =  (apoCaMlobe affinity for 
preassociation site).   
 
The solution embodied within Equation 2A-7 is equivalent to the steady-state solution for the simplified 
four-state mechanism in Figure S5E, wherein the rate constant for transition from state 2 to 3 is time 
invariant and equal to 2

on spike Ok Ca P⋅ ⋅ .  Does this solution satisfy all the constraints in the full system 
(Equation 2A-6)?  If kon⋅ 2

spikeCa + koff 1/Topen or koff 1/Tclose, then by Equation 2A-5, term x in Equation 
2A-6 is zero.   Taking the explicit forms of P1SS and P2SS within Equation 2A-7, and substituting within 
Equation 2A-6, confirms that term y of Equation 2A-6 is also zero.  Finally, taking the explicit forms of 
P3SS and P4SS within Equation 2A-7, and substituting within Equation 2A-6, confirms that term z of 
Equation 2A-6 is also zero.  Hence, all the time derivatives in Equation 2A-6 are zero, and all elements in 
our guessed solution (Equation 2A-7) are constants.  Moreover, the sum of the probabilities in Equation 
2A-7 equals unity.  Thus, Equation 2A-7 (Figure S5E) is a valid steady-state solution to the full system in 
Equation 2A-6 (Figure S5A).  Since the solution to this type of mechanism is unique, then Equation 2A-7 
represents the solution. 

 
To summarize these results: 

 

If the kinetics of CaM are slow (kon⋅ 2
spikeCa + koff 1/Topen  or  koff 1/Tclose), then the four-state 

mechanism in Figure S5A (with fluctuating transition rate from state 2 to 3) will reach a non-
pulsatile steady-state solution (Equation 2A-7), equivalent to that for a simplified four-state 
mechanism (Figure S5E), wherein the rate constant for transition from state 2 to 3 is time invariant 
and equal to 2
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2 2

0

1( ) lim ( ) 
→∞

=

= ∫
T

T
t

Ca t Ca t dt
T

2 2 2
O spike global( ) = ⋅ +Ca t P Ca Ca

2B. Derivation of main paper Equation 1 (slow CaM analytic equation) 
If the Ca2+ (un)binding kinetics of CaM are slow, the steady-state extent of CDI can be calculated from the 
simplified time-invariant system in Figure S5E: 
 

 
(2B-1) 

 
 
 
where /γ α β=  (channel effector site affinity for C-lobe in Ca2+ bound form); and /a bε =  (channel 
preassociation site affinity for C-lobe in Ca2+-free form).  We add the term CDImax to account for the small, 
but potentially non-zero open probability of inactivated channels.   
 
2C. The slow CaM mechanism cannot exhibit buffer sensitivity. 
Although the slow CaM derivations (Sections 2A-2B) assumed high-buffering conditions, more broadly, it 
is possible to solve analytically for CDI(∞) given arbitrary Ca2+ inputs. Based on the derivations in Section 
2A, it can be shown that the when the kinetics of Ca2+ (un)binding to a lobe of CaM are slow, the time-
varying rate constant for transition from state 2 to 3 can be replaced by a time-invariant constant with 
value 2 ( )⋅onk Ca t , where: 

(2C-1) 
 
Essentially, Equation 2C-1 yields the average value of Ca2(t).  Under physiological buffering conditions, 
 

(2C-2) 
 
The resulting time-invariant equivalent system would have a steady-state solution, analogous to Equation 
2B-1.  Specifically: 
 
 

 
(2C-3) 

 
 
 
 
If we take Caglobal ~5 μM and Caspike ~100 μM (Neher, 1998), then Equation 2C-3 becomes:  
 

(2C-4) 
 
Since all of the Ca2+-detection processes of interest exhibit strong CDI under physiological buffering (main 
paper Figures 1B-C, left), the values of G and Keff can be constrained. Strong CDI(∞) ~1 under 
physiological buffering requires G ≈ 1, and Keff  1.  Under conditions of high-buffering, Caglobal = 0, and 
Equation 2C-3 reduces to Equation 2B-1. Plugging in G ≈ 1, and Keff  1, it follows that all versions of the 
slow CaM mechanism which exhibit strong CDI under physiological buffering will invariably produce a 
nearly equivalent extent of CDI under high buffering.  This behavior exemplifies the definition of local 
selectivity (main paper, Figure 1B). 

eff

O O
max 4( ) max

O effoff
O 2

on spike

( )
1 1

1

⎛ ⎞
∞ = ⋅ = ⋅ ⋅ = ⋅⎜ ⎟+ +⎛ ⎞⎛ ⎞⎝ ⎠ +

+ ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟+ ⋅⎝ ⎠ ⎝ ⎠

SS

G

K

P PCDI CDI P CDI G
P KkP

k Ca

γ
γ ε

γ

eff

2 2

global global
O O

spike spike
max 2 2

global globaloff
O O eff2

spike on spike spike

( )
1 1

1

⎛ ⎞ ⎛ ⎞
+ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎝ ⎠ ⎝ ⎠∞ = ⋅ ⋅ = ⋅⎜ ⎟+⎝ ⎠ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞+

+ + ⋅ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ ⋅⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠
G

K

Ca Ca
P P

Ca Ca
CDI CDI G

Ca CakP P K
Ca k Ca Ca

γ
γ ε

γ

O

O eff

0.0025( )
0.0025

+
∞ = ⋅

+ +
PCDI G

P K



 14

3.  Comparing Continuum and Stochastic Views of Nanodomain Ca2+ Signaling and Decoding 
Figures 1-2 of the main text convey only the essential features of Ca2+ signaling and decoding near the 
mouth of a Ca2+ channel.  Local signals are portrayed as step-like waveforms that are hardly affected by 
strong intracellular Ca2+ buffering, as suggested by previous analyses (Neher, 1998; Sherman et al., 1990). 
Global signals are portrayed as constant-valued signals which are eliminated by the introduction of Ca2+ 
buffering. However, given the small dimensions of a nanodomain (~20 nm hemisphere), an average of only 
~1 Ca2+ ion would be present during channel openings.  Even though this corresponds to a large Ca2+ 
concentration of ~100 μM, the number of nanodomain Ca2+ ions would adopt one of several integer values, 
and thus differ considerably among CaM/channel complexes.  This scenario might raise concerns about the 
accuracy of continuum assumptions.  This section validates the simplified view of Ca2+ signaling and 
decoding with in-depth reaction-diffusion modeling.  Section 3A discusses possible continuum and 
stochastic methodologies, which are then implemented in Sections 3B-C. Section 3D verifies that the SQS 
and slow-CaM decoding mechanisms behave identically whether continuum or stochastic methodologies 
are employed, and Section 3E offers an intuitive explanation for this identical behavior. 
 
3A. Nanodomain Ca2+ signals: setup and possible approaches 
This section introduces approaches to solve a reaction-diffusion problem involving a single Ca2+ channel 
and pertinent intracellular Ca2+ buffers.  The result of such a solution would detail the concentration of free 
Ca2+, as a function of space and time, near a channel which is gating open and closed.  For simplicity, we 
assume an infinite-half-space geometry, where the plasma membrane is modeled as an infinite planar 
surface (impermeant to Ca2+ and buffers), with a single Ca2+ channel acting as a point source for Ca2+ entry 
on the intracellular side.  This geometry ensures that the concentration profiles will be hemispherically 
symmetric.  To accord with our experimental internal patch pipette solutions, we consider the case of a 
single buffer (such as BAPTA), which binds Ca2+ according to a first-order kinetic reaction: 
 

(3A-1) 
 
Given hemispherical symmetry, the governing reaction-diffusion equations are (Smith, 2001): 
 
 
 
 
 

(3A-2) 

 
 
where each partial derivative with respect to time is the sum of terms describing: diffusion of Ca2+ or 
buffer;  reaction of Ca2+ and buffer; and introduction of Ca2+ (J represents influx of Ca2+ from the channel). 
rd is the distance from the channel in spherical coordinates, not to be confused with the SQS model 
parameter ‘r.’  [Ca2+] (free calcium concentration) and [B] (free buffer concentration) are both functions of 
space and time.  DCa and DB are diffusion coefficients for Ca2+ and buffer; kB,on and kB,off are the buffer 
association and dissociation rates.  The total buffer concentration, BT = [B] + [CaB], is presumed constant 
over all locations on the intracellular side of the membrane.  This holds true if the diffusion coefficients of 
free and bound buffer are equal; a reasonable assumption given the negligible mass of a Ca2+ ion compared 
to a buffer molecule (Stern, 1992).  Detailed parameters regarding Equation 3A-2 are in Table S1. 
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Two sets of boundary conditions also pertain.  The first concerns constraints at the channel (Smith, 2001): 
 

(3A-3) 
 

where iCa is the unitary current, and F is Faraday’s constant.  Equation 3A-3 stipulates that at rd = 0, the 
diffusion terms of Equation 3A-2 go to zero, and the influx term (J) of Equation 3A-2 behaves as a point 
source of Ca2+ ions, located at rd = 0, with current iCa. 
 
The second set of boundary conditions relates to constraints at an infinite distance from the channel, where 
only global Ca2+ signals are present.   

 

(3A-4) 

 
 

Caglobal and Bglobal are the steady-state concentrations of free Ca2+ and free buffer in the bulk of the cytosol 
(rd → ∞).  Note that the total buffer concentration, BT = [B] + [CaB], is fixed regardless of proximity to the 
channel.  By contrast, because there is a point-source of Ca2+ at rd = 0, the total Ca2+ concentration is higher 
when closer to the channel.  Because of this, Equation 3A-4 utilizes a new parameter that describes the total 
Ca2+ concentration very far from the channel: [ ] [ ]( )

d
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r
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bulk Ca2+ load.  The balance between CaT∞ and BT determines the bulk free Ca2+ concentration, Caglobal.   
 
By examining Equation 3A-4, it can be seen that if BT = 0, Caglobal = CaT∞.  Thus, under zero-buffer 
conditions, a global Ca2+ signal of ~5 μM can be readily achieved.  By contrast, under conditions of 10 mM 
BAPTA, BT = 10,000 μM, resulting in Caglobal ~0 (Table S1).  This confirms that high buffering eliminates 
the global Ca2+ signal. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  No buffer 10 mM BAPTA 
kB,on (M-1 ms-1) - 1×105 

kB,off (ms-1) - 0.02 
BT (μM) 0 10,000 
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Bglobal (μM) 0 9,995 result of 
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Table S1:  Reaction-diffusion parameters for nanodomain Ca2+ modeling.   The buffer association and diffusion parameters 
are from (Kits et al., 1999), and the channel gating parameters are based upon our single-channel data for CaV1.3. 
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The reaction diffusion system specified by Equations 3A-2, 3A-3 and 3A-4 comprise a set of partial 
differential equations for which a general analytic solution in time and space―which would fully specify 
the spatiotemporal details of [Ca2+]―is not known.  Three different approaches to analyze this system are 
nonetheless possible:   
 
1.  If we only consider the steady-state [Ca2+] profile, an analytic solution can be obtained (Stern, 1992):  
 
 

(3A-5) 

 
This solution describes the decline of free Ca2+ concentration with increasing distance from the channel, 
Caspike(rd), long after the onset of an ongoing channel opening.  Note that here we define Caspike as a 
function of rd, whereas the main text focuses on the value of Caspike at the position of CaM, rCaM ≈ 10 nm.  
Because CaM is constitutively attached to the channel, rCaM does not change, and the main text treats 
Caspike as a constant, whose value is Caspike(rCaM). Though useful, this steady-state solution has two major 
limitations.  First, it does not give the temporal details of Ca2+ transients induced by channel gating, and 
these details are necessary features for understanding Ca2+ decoding.  Second, this solution is only accurate 
if buffer consumption is negligible (‘excess-buffer approximation’).  Though this approximation will turn 
out to be valid, it must be verified by other means.  Thus, this approach by itself is insufficient.  
 
2. A finite-element method (FEM) (Figure S7A) considers the cytoplasmic space as a series of thin 
hemispherical shells; a configuration that enables numerical determination of the free Ca2+ concentration as 
a function of space and time.  Hence, this output furnishes a more complete view of nanodomain Ca2+ than 
the analytic solution above.  A further advantage is that the finite-element approach does not require the 
excess buffer approximation, so the FEM can be used to verify the validity of this approximation.  Still, this 
method only describes average Ca2+ concentrations (averaged over many nanodomains), and does not 
comment on the stochasticity of nanodomain Ca2+. 
 
3. To characterize the stochastic nature of Ca2+, we can turn to a Stochastic Monte-Carlo Method (SMCM), 
which tracks the motion and interaction of individual ions (Figure S7B).  This method is the most realistic, 
and explicitly reveals the consequences of the sparse integer-valued nature of Ca2+ ions within the 
nanodomain.  The SMCM approach may, however, entail substantial computational costs.   
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Figure S7 Numerical methods for modeling nanodomain Ca2+ signals.   (A) Finite Element Method (FEM) discretizes space 
into N well-mixed ‘shells.’  Shell n (with gray shading) has volume Vn, outer surface area An, and is bounded by rn and rn-1. 
(B)  Stochastic Monte Carlo Method (SMCM) tracks the diffusive movement of individual ions.  Local Ca2+ ions (gray circles) 
originate from the channel, and freely diffuse in all directions except for a reflective surface at the membrane.  Global Ca2+ 
ions (B2, green circles) are always present, and are bounded by a box (dashed line in B2) which is exclusively reflective to 
global ions. 



 17

In Sections 3B-C, we will calculate the spatiotemporal nanodomain Ca2+ signals in question using all three 
methods, and demonstrate that all three yield consistent results.  This will set the stage for in-depth testing 
of slow CaM and SQS mechanisms under both continuum and stochastic regimes. 
 
3B. Nanodomain Ca2+ signals by the Finite-Element Method 
Here, we use the finite-element method (FEM) to calculate the spatiotemporal features of Ca2+ signals near 
a channel which is gating open and closed.  The basic strategy is to convert the system of two partial 
differential equations (Equation 3A-2), which describes the two spatiotemporally varying state variables, 
[Ca2+](rd, t) and [B]( rd, t), into a simpler system of ordinary differential equations for state variables that 
only vary with time.  This is accomplished by discretizing space into a finite number of well-mixed, 
hemispheric compartments (‘shells’), which are arranged to exploit the spatial symmetry of this problem 
(Figure S7A).  Each compartment (n = 1, 2, . . ., N) contains time-varying free-calcium and free-buffer 
concentration, [Ca2+]n(t) and [B]n(t). Because each compartment is well-mixed, the diffusion terms of 
Equation 3A-2 can be replaced with finite-difference approximations, thus eliminating spatial derivatives.  
This system now takes the form of 2N ordinary differential equations (Kits et al., 1999): 
 
 

 

 
 

(3B-1) 

 
 
where the state-variables [Ca2+]n(t) and [B]n(t) are defined for n = 1, 2, . . ., N ; the shell radii rn are defined 
as 0 = r0  <  r1  <  r2  < . . . <  rN  <  rN+1 ; and the shell surface area and volume are defined as:  An = 2 π rn

2 
and Vn = 2 π / 3 (rn – rn-1)3. 
 
To account for the first set of boundary conditions at the channel (Equation 3A-3), we define r0 = 0 to make 
A0 = 0.  In this way, there is zero diffusive flux at rd = 0. The remaining aspect of this set of boundary 
conditions pertains to the Ca2+ influx through the channel, and this constraint is satisfied by setting   
 
 

(3B-2) 

 
The second set of boundary conditions (Equation 3A-4), relating to constraints far from the channel, is 
implemented by defining an additional shell N + 1 with the special properties   
 

(3B-3) 
 
Thus, the free calcium and buffer concentrations within this shell are clamped to the global concentrations 
defined in Equation 3A-4.  If rN is large enough, Equation 3B-3 accurately approximates Equation 3A-4.   
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The choice of rn and N are optimized to maximize accuracy and computational speed.  The well-mixed 
shell approximation is only valid if the concentration gradient across two neighboring shells is small.  One 
way to accomplish this is to make all shells very thin, while keeping shell N +1 (the global boundary 
condition shell, Equation 3B-3) far from the channel.  This approach would require a very large N, whereas 
considerations of computational speed would favor a relatively small N.  We therefore adopt a second 
approach, which optimizes these competing factors.  Here, the shells are densely spaced near the channel 
(improving accuracy where the concentration gradients are steepest), but progressively less tightly spaced 
with increasing distance from the channel (enabling a large final shell radius without incurring prohibitive 
computational costs).  In particular, the shell spacing is given by rn = n2  · 0.05 nm, with N = 200, enabling 
run times of a few minutes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S8 shows the results of FEM numerical simulations, using initial conditions [Ca2+]n = Caglobal, and 
[B]n = Bglobal, and the parameters in Table S1. The Ca2+ channel is repeatedly gated open for 4 ms and 

Figure S8 Results of the FEM 
with parameters in Table S1.  
The Ca2+ channel is 
repeatedly gated open for 4 
ms and closed for 6 ms, 
altogether for six cycles. 
Results for the final open-
closed cycle of the channel 
are shown for the no-buffer 
condition (A) as well as the 
10 mM BAPTA case (B).   

(A1, B1) [Ca2+] as a function 
of space (rd) and time (t).  
Key aspects are emphasized 
with heavy blue lines, which 
are re-plotted below for 
clarity. 

(A2, B2) Steady-state profile 
of [Ca2+] as a function of rd, 
corresponding to the end of 
the open and closed periods.  
FEM results (blue curves) are 
overlaid with the analytic 
result Caspike(rd) from 
Equation 3A-5 (thick magenta 
curves). For (B2), the fraction 
of unbound BAPTA is shown 
in cyan. 

(A3, B3) Temporal profile of 
[Ca2+] at rd = 10 nm, the 
approximate location of CaM. 
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closed for 6 ms, altogether for six cycles. Under this configuration, the FEM equations (3B-1, 3B-2, and 
3B-3) are numerically integrated for 60 ms using the MATLAB ode23tb solver.  Results for the final 10 
milliseconds of these simulations are shown.  Panel A displays results obtained in the absence of buffer, 
and panel B shows results in the presence of 10 mM BAPTA.  The surface plots in panels A1 and B1 
summarize the output of the FEM, where free Ca2+ concentration is plotted as a function of space (rd) and 
time (t).  Key aspects are emphasized with heavy blue lines, which are re-plotted in the panels below for 
clarity.  Three significant results arise: 
 
The first result concerns the lack of appreciable buffer consumption.  In panels A2 and B2, we show the 
spatial [Ca2+] profiles (as a function of rd) at the end of the open and closed periods, corresponding to 
steady-state conditions.  In the absence of buffer (A2), the concentration profile at the end of the open 
period (blue curve, channel open) matches exactly with the analytic steady-state profile (thick magenta 
curve), as given by Caspike(rd) from Equation 3A-5.  Importantly, Equation 3A-5 also accurately predicts 
Caspike(rd) under 10 mM BAPTA (B2), indicating that the excess buffer approximation, upon which 
Equation 3A-5 relies, is valid.  In fact, direct FEM results indicate that the fraction of free BAPTA remains 
at essentially 100% over all rd (B2, cyan curve).  Thus, BAPTA is replenished by diffusion much more 
rapidly than it is consumed by Ca2+ binding.  
 
The second significant outcome concerns the temporal response of Ca2+.  The bottom panels (A3, B3) show 
the temporal profile of [Ca2+] at rd = 10 nm, the approximate location of CaM.  It is clear that [Ca2+] 
develops and decays on the microsecond timescale, resulting in nearly step-like Ca2+ signals, thus 
validating the simplified square-pulse Ca2+ signals used in main text Figures 1 and 2.  To summarize, then, 
these FEM results confirm that the nanodomain Ca2+ signal can be well approximated as:  
 
 

(3B-4) 

 
The last significant result relates to the insensitivity of Caspike to buffering.  Specifically, the value of Caspike 
at the location of CaM, Caspike(rd = 10 nm) is always on the order of ~100 μM, regardless of buffering even 
with 10 mM BAPTA.  This result also holds if endogenous buffers, which are moderate in comparison to 
10 mM BAPTA, are taken into account (verified numerically, data not shown), and confirms prior analyses 
of this configuration (Neher, 1998; Sherman et al., 1990).  Because of the insensitivity of Caspike to 
endogenous buffering, and because endogenous buffers had no significant effect on the temporal aspects of 
nanodomain Ca2+, we opted to focus upon the zero-buffer and 10 mM BAPTA conditions for 
computational efficiency, in particular for the stochastic simulations in the next section.   
 
3C. Nanodomain Ca2+ signals by the Stochastic Monte-Carlo Method 
A Stochastic Monte-Carlo Method (SMCM) is fundamentally different than analytic or finite-element 
(FEM) approaches, in that the movement of individual ions is explicitly modeled.  This core difference 
distinguishes the SMCM in two important ways.  First, the SMCM explicitly treats ions as discrete non-
divisible entities, whereas the FEM is founded upon average concentrations, which may correspond to a 
fraction of an ion if small volumes are considered.  Second, a SMCM can give different outcomes on each 
trial, whereas the FEM always yields the identical mean result. These two distinctives can be illustrated 
with a simple example.  If we consider the roll of a die, each SMCM simulation would result in any integer 
between 1 and 6, whereas the FEM would always return the mean-value of 3.5, a number which could 
never actually occur on any single roll.   

global2
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Figure S9.  Diffusion over the time 
interval Δt is implemented by displacing 
each ion according to the probability 
distribution shown.  Note that Δx and Δy 
are normalized by the length 
constant Ca4 ⋅ ⋅ ΔD t , and that only a slice 
through the Δz = 0 plane is shown. 

 
To address the stochastic nature of nanodomain Ca2+ signals and their decoding, we have undertaken a 
SMCM approach founded on the algorithms used by MCell (Stiles and Bartol, 2001; Stiles et al., 1996).  
This section will focus on nanodomain Ca2+ signals generated by the SMCM, and the next sections (3D-E) 
will extend the approach to the effects of stochasticity on local/global Ca2+ decoding mechanisms. 
 
The SMCM is implemented in discrete-time, with time step = Δt.  The movement of each ion during Δt is 
calculated using random numbers drawn from a probability distribution adhering to Fick’s law, which 
states:   

(3C-1) 

This can be achieved as follows.  Over a time interval, Δt, the displacement of a Ca2+ ion is given by the 
displacement vector Δv, whose Cartesian coordinates are (Δx, Δy, Δz).  The z-axis intersects the channel 
and is perpendicular to the membrane, with z = 0 corresponding to the plane of the membrane.  Increasingly 
positive z values refer to cytoplasmic locations that are progressively distant from the channel.  Because 
diffusion is isotropic, it is advantageous to consider Δv in spherical coordinates, as given by radial distance 
rΔ ( = 2 2 2Δ + Δ + Δx y z  ), and direction specified by angles  φ  ( = ( )1 2 2tan− Δ + Δ Δx y z  ) and 
θ  ( = ( )1tan− Δ Δy x  ), drawn from the following probability density functions (Stiles and Bartol, 2001).  
First, the distance, rΔ, is determined by: 
 

(3C-2A) 

where the random variable s is a unitless standardized distance, and p(s) ⋅ ds is the probability that s adopts 
a value between s and s + ds.  The actual radial displacement rΔ (in units of μm) can be obtained by 
multiplying s with the ‘length constant’ Ca4 ⋅ ⋅ ΔD t  (in units of μm).    

Second, because isotropic diffusion is equal in all directions, θ and φ  are determined by: 
 
 

(3C-2B) 

θ  and φ  uniformly sample from the surface of a unit sphere. 
 
Given these rules, the displacement of an ion over one time 
interval (Δt) is given by  selecting random values for rΔ, θ , and 
φ  (according to Equation 3C-2), and converting to Cartesian 
coordinates: Δv = ( ) ( ), , sin cos , sin sin , cosφ θ φ θ φΔΔ Δ Δ =x y z r .  
Figure S9 gives an intuitive sense of these movements.  A 
molecule’s displacement over Δt follows a spherically symmetric 
Gaussian distribution.  Figure S9 only shows a slice through this 
three-dimensional distribution in the plane parallel to the 
membrane (i.e. the Δz = 0 plane). 
 
To speed computation, a large number of random standardized 
distances (s) and random unit direction vectors, 
u = ( )sin cos , sin sin , cosφ θ φ θ φ , are pre-calculated and stored 
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in two lookup tables.  To ensure that the unit vectors contain no directional bias, the second lookup table is 
reflected 8-fold along the three Cartesian axes (Stiles and Bartol, 2001).  At each time step, for each Ca2+ 
ion, u and s are chosen randomly from these lookup tables, and the ion position is displaced by 
Δv = u · s · Ca4 ⋅ ⋅ ΔD t .  Diffusion for BAPTA would utilize the same lookup tables as Ca2+, but would use 
the shorter length-constant B4 ⋅ ⋅ ΔD t .   
 
Collisions with the plasma membrane result in reflections at the z = 0 plane.  As for Ca2+ sources, the 
channel is cast as a point generator of Ca2+ ions located at the origin (Figure S7B1).  The probability of 
generating a new ion at each time step is: 
 
 

(3C-3) 

where F is Faraday’s constant and NA is Avogadro’s number.  Because a newly generated Ca2+ ion can be 
released at any time during the Δt interval, it is displaced according to a modified version of Equation 3C-2, 
where the effective time step (Δt*) is a random number, uniformly distributed over the interval [0, Δt].  
Thus, for the first diffusion step, a random-valued length constant of Ca4 *⋅ ⋅ ΔD t  is used.  However, for all 
future time steps, the length-constant is fixed at Ca4 ⋅ ⋅ ΔD t .   
 
To model the global Ca2+ signal, we distinguish Ca2+ ions which originate from the channel (‘local Ca2+ 
ions’) from those which originate elsewhere (‘global Ca2+ ions’).   Local Ca2+ ions diffuse freely, except for 
a reflective surface at z = 0.  Global Ca2+ ions are present from the beginning of the simulation, and are 
constrained to remain within a bounding box, which is invisible to local Ca2+ ions but reflective to global 
Ca2+ ions (Figure S7B2).  Aside from these two differences, all other aspects of local and global Ca2+ ions 
are identical (i.e. diffusion, buffering, binding to CaM).  A large number of global ions is used (100), and 
the volume of the box is adjusted to set the global ion concentration to 5 μM. 
 
The time required for computations becomes excessive if the simulation duration and/or the number of 
diffusing ions is large.  For a one-second simulation (necessary for testing the decoding mechanisms), with 
iCa = 0.75 pA, and PO = 0.4 (Table S1), ~106 Ca2+ ions would be generated. To accurately model binding 
between Ca2+ and the CaM/channel complex (explained in the next section), the largest acceptable time 
step is Δt = 1×10-7 sec.  This corresponds to ~5×1012 diffusion movements per simulation, which would 
take ~2-5 months even on an optimized platform such as MCell2 (Stiles and Bartol, 2001; Stiles et al., 
1996).  To speed computation, ions could be discarded after reaching a certain distance from the channel; 
essentially creating a Ca2+ sink at some distance.  However, since this could degrade the validity of the 
results, we instead utilize a ‘time-skipping’ algorithm, which exploits the fact that Equation 3C-2 can 
accurately predict diffusive movements for large time steps, without the need to iterate many smaller steps.  
This idea is implemented in MCell3 (Kerr et al., submitted), and is here customized for the channel 
nanodomain problem.  The smallest time step (Δt = 1×10-7 sec) is only used for Ca2+ ions within an ‘action 
radius’ of the channel, where only these ions can potentially bind the CaM/channel complex within a single 
Δt.  Ions outside the action radius are moved less frequently, with Δtk = 2k · Δt, where k indicates a group 
index.  Ions are categorized into group k > 0 only if their distance from CaM is large enough to preclude 
interaction with CaM within Δtk.  Though dynamic reassignment of ions into groups adds some 
computational overhead, it is far remunerated by the ~10,000-fold reduction in total number of diffusion 
movements required per simulation.  Implementation of this algorithm in MATLAB enabled completion of 
a 1-sec simulation involving 106 ions in 1-2 hours, thus motivating development of customized software for 
this particular application.  
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As for Ca2+ buffering, we consider either zero-buffer or 10 mM BAPTA scenarios, so as to mirror the FEM 
simulations in Figure S8.  For the latter case, modeling of individual BAPTA molecules would pose a 
severe computational challenge, given the high concentration of BAPTA and infinite-half-space geometry. 
Furthermore, modeling of individual buffer molecules would preclude use of the time-skipping algorithm, 
since every Ca2+ ion could potentially bind to nearby buffer molecules, requiring all molecules to use the 
finest time step of 1×10-7 sec.  To circumvent these challenges, we utilize the validity of the excess-buffer 
approximation under these conditions (Figure S8B2).  This approximation allows a simple implementation 
of Ca2+ buffering, by switching Ca2+ ions between ‘free’ and ‘buffer-bound’ conformations, according to 

 
(3C-4) 

 
This scheme exploits the fact that the free BAPTA concentration is everywhere ~BT, yielding a fixed 
effective buffer association rate constant of kB,on · BT.  The probability of Ca2+ switching between free and 
buffer-bound conformations after a time Δtk = 2k · Δt  is computed via the following matrix exponentials 
 

 

 
(3C-5) 

 
 
 
 
Matrix exponentials are pre-calculated for all values of k = 0 . . . 100.  This pre-calculation enables rapid 
implementation of this buffering algorithm, which is compatible with our time-skipping methodology.  
Buffered Ca2+ ions diffuse with the slower diffusion coefficient, DB (Table S1). 
 
Given this setup, we perform SMCM simulations that parallel the FEM computational experiments above.  
The system is driven by repetitive 10-msec cycles in which the channel gates open for 4 msec, and closed 
for 6 msec.  In each simulation, one-hundred of these 10-msec cycles are delivered in succession, yielding a 
total simulation length of one second.  The simulations are run with local and global Ca2+ signals present, 
both for the no buffer and 10 mM BAPTA case.  Ten simulations are performed for each buffering 
condition.  To ensure accurate diffusion down to the Δt = 1×10-7 sec time resolution for all ions within 
100 nm of the channel, the action radius was set >100 nm. 
 
To validate our SMCM algorithms, we calculate the average Ca2+ concentrations produced, so as to permit 
direct comparison with FEM results.  These averages are calculated by defining thin hemispheric sampling 
shells (2 nm in thickness) centered at distances from the pore of 5, 10, 20, 30, 50, 70 and 100 nm.  The free 
Ca2+ concentration within each of the sampling shells is then given by: 
 
 

(3C-6) 
 
 
Using this approach, mean Ca2+ concentrations, averaged over 1,000 channel gating cycles, are derived.   
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Figure S10 compares the SMCM results to the FEM results described above (Figure S8).  The format is 
identical to that in Figure S8, such that Figure S10A pertains to the no buffer condition, and Figure S10B to 
the 10 mM BAPTA case.  The FEM outputs are reproduced in blue, and the SMCM data are shown in red.  
Results from the two methods are essentially identical.  In particular, the SMCM waveforms nicely overlay 
the overall spatiotemporal surface of the FEM (A1, B1); the spatial profiles at steady state (A2, B2) are the 
same; and comparisons of temporal waveforms at 10 nm from the pore (A3, B3) are identical.  The precise 
agreement of outputs from SMCM and FEM computations validates our implementation of both methods.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the next section, we explicitly harness the stochastic output of the SMCM to test the slow CaM and SQS 
Ca2+ decoding mechanisms.  Of note, 10 mM BAPTA simulations in which global Ca2+ ions (green circles 
in Figure S7B2) were omitted yielded identical results to those in Figure S10B (data not shown).  This 
exemplifies the ability of 10 mM BAPTA to completely buffer out the global Ca2+ signal, and was 
exploited to further optimize the upcoming stochastic simulations under 10 mM BAPTA. 

Figure S10 Results of the 
SMCM.  The Ca2+ channel is 
repeatedly gated open for 4 
ms and closed for 6 ms, 
altogether for 1000 cycles. 
The spatiotemporal free Ca2+ 
concentrations, averaged over 
the 1000 cycles, are shown for 
the no-buffer condition (A) as 
well as the 10 mM BAPTA 
case (B).   

(A1, B1) [Ca2+] as a function 
of space (rd) and time (t).  
FEM results in blue, SMCM 
results in red. 

(A2, B2) Steady-state profile 
of [Ca2+] as a function of rd, 
corresponding to the end of 
the open and closed periods.  
FEM results in blue. SMCM 
results (red with error bars) 
show the mean ± standard 
deviation of data from the last 
millisecond of the open and 
closed periods.   

(A3, B3) Temporal profile of 
[Ca2+] at rd = 10 nm, the 
approximate location of CaM.  
FEM results in blue.  SMCM 
results in red. 
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3D. Decoding Mechanisms: comparison of Monte-Carlo with continuum methods 
Though the average Ca2+ signals produced by the SMCM are identical to those produced by the FEM, the 
stochastic fluctuations of these signals could potentially affect the behavior of local/global decoding 
mechanisms. This is tested directly with SMCM simulations of the slow-CaM and SQS mechanisms.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Beyond the diffusion algorithms discussed in the previous section, investigating Ca2+ decoding mechanisms 
requires modeling stochastic interactions between Ca2+ and the CaM/channel complex.  We therefore adopt 
MCell algorithms for biological reactions in solution (Kerr et al., submitted) into our custom MATLAB 
software. For each Ca2+ ion with movement as given by the displacement vector Δv in Equation 3C-2, a 
cylindrical interaction volume of radius rint (a new parameter) and length rΔ (Equation 3C-2) is traced out 
(Figure S11A).  If this cylinder intersects CaM, we say that a collision occurred between the Ca2+ ion and 
CaM.  Since CaM is constitutively affiliated with the channel, CaM is held at a fixed position, rCaM = 10 nm 
from the channel pore ((x ,y, z) = (0, 0, 10 nm)).  We ensure that ions capable of colliding with CaM are 
updated at the finest time step (Δt = 1×10-7 sec) by setting the action radius greater than rCaM.   
 
To verify our implementation of this collision algorithm in MATLAB, we use a known equation relating 
the local free Ca2+ concentration to the average number of collisions (Kerr et al., submitted): 

 
(3D-1) 

 

Figure S11 Stochastic reaction methodology.  (A) Ca2+ ions trace out a cylindrical interaction volume during each diffusion 
step.  A collision is said to occur if CaM lies within this cylinder.  (B-C)  Average Ca2+ concentration in the vicinity of CaM 
as calculated from collisions according to Equation 3D-1, averaged over 1000 channel gating cycles (gray).  For reference, 
the FEM results are overlaid in blue.  (D) Basic 4-state configuration, featuring simultaneous binding of two Ca2+ ions, 
reproduced from main paper Figure 2A.  (E) Equivalent 5-state configuration, with sequential binding of Ca2+ ions. 
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In a validation test, Ca2+ collisions with CaM are counted, without allowing CaM to bind Ca2+.  The result 
of Equation 3D-1, averaged over 1,000 open/closed gating cycles, is plotted in the absence of buffer 
(Figure S11B, gray) and in the presence of 10 mM BAPTA (Figure S11C, gray).  The gray traces precisely 
overlay the mean Ca2+ concentration waveforms of FEM computations at rCaM, thus verifying our 
implementation of the collision algorithm.   
 
To allow compatibility of our decoding mechanisms with the SMCM, we create equivalent 5-state models, 
wherein the simultaneous binding of two Ca2+ ions (Figure S11D) is split into two sequential, single-
binding steps (Figure S11E). The sequential parameters are chosen to maintain the cooperative nature of 
Ca2+ binding, as well as the kinetics and affinity of each lobe of CaM (Table S2).  The equivalent 5-state 
model is necessary for compatibility with the first-order stochastic reaction methodology (Figure S11A), in 
which interaction radii and time steps are chosen to minimize the probability of simultaneous collisions 
(Kerr et al., submitted).  Given the equivalent 5-state mechanisms, the transition probability rules by which 
Ca2+ collisions drive conformational changes during a single time step (Δt ) are the following.   

 

 
 

 
 
 
 

(3D-2) 
where 
 
 
 
Note that the average value of C is equivalent to the local Ca2+ concentration in the vicinity of CaM, as can 
be appreciated by comparison with Equation 3D-1.  Equation 3D-2 stipulates that transitions which involve 
CaM binding Ca2+ are only allowed when a collision occurs.  Once a Ca2+ ion binds to CaM, it is not 
allowed to diffuse, but rather is frozen at the end of its diffusion trajectory.  Subsequently, if a model 
transition occurs which corresponds to release of this bound Ca2+ ion, the ion is simply allowed to diffuse 
starting from its frozen location.  Such an algorithm obviates the need for more sophisticated placement of 
released ions (Kerr et al., submitted), since it exactly produces the theoretical ideal of microscopic 
reversibility.  Finally, it is necessary to ensure that every element of the transition matrix in Equation 3D-2 
is less than one, since probabilities cannot exceed one.  The elements that do not include C are guaranteed 
to satisfy this constraint, given the small Δt of 10-7 sec, and the modest magnitudes of Ca2+-independent 
rate constants. For terms with C, we consider that kon2 is always larger than kon1 for both the C-lobe and N-
lobe models.  Hence, each element of the transition matrix will be less than unity if the term containing 
kon2 · C · Δt is less than unity.  This is equivalent to the condition 

 
 

(3D-3) 
 
Given the dimensions of a nanodomain, rint is chosen as small as possible while satisfying Equation 3D-3.  
This corresponds to rint = 6 nm for the N-lobe, and rint = 5 nm for the C-lobe. 
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To verify the results of main paper Figure 2, we ran the 5-state C- and N-lobe models under conditions of 
zero-buffer and 10 mM BAPTA, with several channel open probabilities.  The diffusion/buffering 
conditions are summarized in Table S1, and the channel gating and decoding parameters and are in Table 
S2.  Each condition was repeated 75-200 times, with different random number seeds.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S12 compares the extent of CDI produced by the C-lobe (slow-CaM) mechanism in response to 
stochastic Ca2+ inputs (its ‘stochastic response’) with its response to continuum Ca2+ inputs (‘continuum 
response’).  Figure S12A1 shows the no-buffer PO = 0.4 case.  The top row overlays the average stochastic 
Ca2+ signal (gray trace) with its step-function continuum approximation (black).  The bottom row overlays 
the average stochastic response of the 5-state C-lobe model (red trace) with the continuum response of the 
same model (black curve), as well as the continuum response of the original 4-state C-lobe model (gray 
curve) used in main text Figures 2C-D.  As can be seen, the results of all three methods agree well.  All 
three methods also agree under conditions of 10 mM BAPTA, both at PO = 0.4 and PO = 1 (Figure S12A2-
A3).  Finally, Figure S12B demonstrates that the steady-state stochastic responses from these simulations 
(colored points with error bars) match well with main text Equation 1 (solid black curve).  Note that the 
zero-buffer simulation is a lower-limit estimate of CDI at PO = 1 (red arrow), as discussed in the main text.  
Overall, these results confirm that even when stochastic details are taken into account, the ‘slow-CaM’ 
mechanism is insensitive to buffering by 10 mM BAPTA, and its CDI(∞)–PO relation conforms to a 
saturating Michaelis-Menton profile. 
 
For the N-lobe SQS decoding mechanism, we performed extensive stochastic simulations which fully agree 
with their continuum simulation counterparts.  Figure S13 displays the results with format analogous to that 
in Figure S12.  Under conditions of no buffering and PO = 0.4, both the stochastic and continuum 
simulations exhibit strong CDI (Figure S13A1).  Moreover, at the same PO = 0.4, the addition of 10 mM 
BAPTA nearly eliminates CDI (Figure S13A2).  Thus, the essential feature of the SQS mechanism is found 
to hold true, even when stochastic Ca2+ inputs are considered: intense yet intermittant ~100 μM local 

  C-lobe N-lobe 
a (ms-1) 60 0.4 
b (ms-1) 0.04 0.004 
α (ms-1) 0.5 0.1 

CaM/channel 
binding 

β (ms-1) 0.05 0.01 
kon (M-2 ms-1) 1.2×1010 3.7×1012 CaM/Ca2+ binding 

(simultaneous) koff (ms-1) 0.003 3 
kon1 (M-1 ms-1) 1.6×106 6×106 
kon2 (M-1 ms-1) 6×106 9×106 

koff1 (ms-1) 600 9 
CaM/Ca2+ binding 

(sequential) 
koff2 (ms-1) 0.004 4.5 

PO. zero buffer 0.4 0.4 
PO,  10 BAPTA 0.4, 1 0.2, 0.4, 0.6, 0.8, 1 

topen (ms) 10·PO 
channel gating, and 
model conditions 

tclosed (ms) 10·(1-PO) 
Table S2:  Parameters for SMCM simulations of slow CaM (C-lobe) and SQS (N-lobe) mechanisms.  Rate constants defined 
in Figure S11D-E; those in Figure S11D are identical to main text Figure 2.  CaM/channel binding rates satisfy slow-CaM and 
SQS regimes; CaM/Ca2+ binding rates are consistent with those of CaM in free solution (Bayley et al., 1984; James et al., 
1995; Martin et al., 1985; Teleman et al., 1986); and channel gating parameters correspond to our single-channel data and the 
parameters TU and TB from our voltage-block protocol. 
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signals produce little CDI, whereas weak enduring ~5 μM global signals produce strong CDI.  To fully 
verify main text Equation 2, we ran numerous stochastic simulations at five different channel open 
probabilities under 10 mM BAPTA (Table S2).  Strong CDI is evident at PO = 1 (Figure S13A3, Figure 
S13B, blue), with significantly less CDI at PO ≤ 0.8 (Figure S13B).  When viewed on a CDI(∞)–PO curve, 
the stochastic N-lobe simulations show unmistakable upward curvature (Figure S13B, data points with 
error bars), with remarkable correspondence to main text Equation 2 (solid black curve).  Overall, Figures 
S12 and S13 establish that the N- and C-lobe mechanisms respond identically to stochastic and continuum 
Ca2+ inputs.   

Figure S12 SMCM results for C-lobe slow-CaM decoding.  (A, top) Stochastic Ca2+ input (gray) overlaid with continuum 
square-pulse approximation (black).  Buffer and channel open probability are as stated at top.  (A, bottom) For the SMCM, 
each condition was iterated many times (value of n is in parenthesis), and the fraction of runs which occupied state 5 (=CDI 
in Figure S11E) are shown as a function of time (colored traces, mean ± s.e.m.).  This was directly compared to the 
continuum behavior of the same 5-state model (black trace) as well as the original 4-state model (gray trace) which is the 
model simulated in main paper Figure 2.  See Supplementary Information 4F for details regarding continuum numerical 
simulations.  (B) The steady-state extent of CDI reached by the SMCM (averaged over the final 100 ms) is plotted against 
channel PO.  10 BAPTA simulations shown as colored symbols with error bars.  Red arrow corresponds to the no-buffer 
simulation.  Black curve is the CDI(∞)–PO  relation predicted by main text Equation 1. 

Figure S13  SMCM results for N-lobe SQS decoding, format as in Figure S12, with additional 10 BAPTA simulations (black 
symbols with error bars in panel (B)).  Black curve in (B) is the CDI(∞)–PO  relation predicted by main text Equation 2. 
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3E. Rationale for equivalence of stochastic and continuum simulations of decoding mechanisms 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Given the marked stochasticity of Ca2+ within the channel nanodomain, it might be unexpected that 
decoding mechanisms behave identically whether driven by stochastic or average Ca2+ inputs.  This 
equivalence can be understood by examining the nature of stochastic Ca2+ fluctuations on an expanded 
timebase (Figure S14) under condtions of no buffering (A) and with 10 mM BAPTA (B).  Fluctuations due 
to channel gating occur on the millisecond timescale, whereas fluctuations due to stochastic Ca2+ diffusion 
occur on the sub-microsecond timescale.  This feature allows us to utilize the results of Section 2, where we 
prove that the C-lobe, which unbinds Ca2+ slowly relative to millisecond channel closings, essentially 
‘sees’ only the average Ca2+ signal (averaged over channel gating).  In the present case, the C-lobe would 
certainly be unable to track the much faster sub-microsecond stochastic fluctuations, and would again ‘see’ 
only this average Ca2+ signal.  Since the average Ca2+ signal is identical for both the SMCM and FEM 
(Figure S10), it follows that the output of the slow-CaM mechanism would also be identical (Figure S12). 
 
As for the N-lobe model, the SQS mechanism, which features rapid Ca2+ (un)binding, can exhibit 
remarkable sensitivity to the millisecond Ca2+ fluctuations induced by channel gating.  The critical new 
insight is that though N-lobe Ca2+ (un)binding is rapid relative to the timescale of channel gating, it is 
nonetheless slow relative to the microsecond timescale of stochastic fluctuations.  Thus, although the N-
lobe can track channel-gating fluctuations, it essentially averages over stochastic fluctuations by analogy to 
the C-lobe analysis (Supplementary Information 2).  Since the average Ca2+ signal is clearly the same 

Figure S14 Stochasticity of collisions between Ca2+ and CaM viewed on an expanded time base.  At the top of each panel is a 
reproduction of Figure S11B/C, showing the sub-microsecond decay of nanodomain [Ca2+] following a channel closure.  
Below are individual sweeps, which detail the time course of individual collisions between Ca2+ and CaM.  These binary 
sweeps are sampled at Δt = 1×10-7 sec, and assume a value of one if at least one collision occurs during that time step.  The 
incidence of multiple collisions is small ~5%, in accord with first-order binding methodology (Equation 3D-2). 
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across records (Figure S14), it follows that the average stochastic N-lobe response will be identical to that 
produced by continuum methods.   
 
In closing, Figure S14 gives a visual representation of the extraordinary selectivity supported by N-lobe 
decoding.  Intense, densely-spaced Ca2+ collisions due to local Ca2+ signals (Figure S14B) fail to produce 
CDI, whereas sparse collisions from global Ca2+ signals, which persist during channel closings (Figure 
S14A, right), succeed to induce strong CDI.   
 
 
4.  Supplemental Experimental and Analysis Procedures 
 
4A. Single channel ramp analysis 
For each construct (main paper Figures 3C, 5B, 6A-B, and supplemental data Figures S19A, S19E), on-cell 
single-channel ramps were repeated with a repetition interval of 5-15 seconds. For any given patch, we 
recorded 50-200 sweeps. Patches containing single-channel activity were analyzed as follows: 
 
(1) The leak for each sweep was approximated by a roughly linear smooth function (third-order polynomial 
with very low-magnitude nonlinear components) fit by eye to correspond to channel closings, and was 
subtracted from each trace.   
 
(2) The unitary current relation, i(V), was fit to the open-channel current level using the following GHK 
equation (Hille, 1984):  

 
(4A-1) 

 
 
Unlike the leak fits, which were adjusted for each sweep, the same unitary current fit was used for all 
sweeps of a given patch.  Furthermore, the key parameters, g and zF/RT, were held constant for all patches 
of a given construct, only allowing Vs, a surface-charge shift, to vary slightly from patch to patch.   
 
(3) The leak-subtracted traces for each patch were averaged together, yielding an I-V curve.  Blank sweeps 
were excluded from this average for two reasons: First, the presence of blank sweeps likely results from 
accumulation of voltage-dependent inactivation resulting from the fast repetition rate necessary to obtain 
sufficient data for single-channel analysis.  This degree of cumulative VDI would not be present in voltage-
block experiments which used 90 second repetition intervals.  Second, blank sweeps represent single 
channels that are silent during the entire sweep.  Channels in this state would not contribute to whole-cell 
current, and thus would not be represented in our measurement of CDI, which only detects the fraction of 
channels initially active that become inactivated during a sweep.  
 
(4) The I-V curves obtained from different patches were averaged together.  Since there was some 
variability in Vs across patches, we first calculated an average Vs for the construct, Vs,ave. Prior to averaging, 
the data from each patch was shifted slightly in voltage by the amount Vs,ave - Vs.  An identical shift was 
applied for the unitary-current GHK relation of each patch, thus causing all patches to share a common 
GHK relation.   
 
(5) The activation curve (PO versus V ) for each construct was determined by taking the ratio of the average 
I-V curve across all patches (from step 4) with the GHK relation.   
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The resulting activation curves provided an absolute measure of PO, however, because of differences in 
surface charge shift between single-channel and whole-cell configurations, the curves needed to be 
calibrated in voltage.  This was achieved by aligning the single-channel activation curves with 
corresponding whole-cell tail-activation curves (Section 4B).  For all single-channel parameters, and 
resulting PO,max values, see Section 4D. 
 
4B. Tail activation protocol and analysis 

To account for rapid tail kinetics of CaV1.3 at hyperpolarized voltages, an 
improved tail-activation protocol was employed as follows (Figure S15A).  
An activating step to the reversal potential (30 ms at +75 mV for CaV2.2, 100 
ms at +90 mV for CaV1.3) was followed by a step to a family of voltages.  
The first step to the reversal potential activated channels to their maximal 
open probability, PO,max.  The second voltage transition produced a peak tail 
current followed by a steady-state current (Figure S15B).  Because unitary 
current is an instantaneous function of voltage, the decay of current during 
the second step reflects the relaxation of channel open probability from 
PO,max to the steady-state open probability at the given voltage, P(V).  So the 
ratio of the steady-state current to the peak gives PO,rel(V) = P(V) / PO,max. By 
normalizing each trace to the peak of the tail current (Figure S15C), we can 
readily appreciate the voltage-dependence of channel activation.  PO,rel is 
plotted as a function of voltage in Figure S15D, where the symbol colors 
correspond to trace colors above.   
 
For certain constructs, the presence of CDI introduced a slow inactivating 
component, which interfered with measurement of the steady-state current.  
To correct for this, a linear relation was optimally fit over the time range 
+10-100 ms after the final voltage transition (Figure S15C, thick solid lines).  
The linear fit was extrapolated back (dotted lines) to the time of the tail peak 
(open circles), and the ratio of this extrapolated value to the peak value was 
taken as PO,rel.  Although this procedure effectively corrected for slow CDI, 
as present in CaV2.2, it could not correct for fast CDI present in CaV1.3.  To 
overcome this limitation, we co-expressed CaV1.3 with CaM1234, a mutant 
CaM (Peterson et al., 1999) unable to bind Ca2+.  We verified that that 
CaM1234 did not influence the activation curve of the channel by comparing 
the tail-activation in Ba2+ with and without CaM1234, which were 
indistinguishable (data not shown).   
 
This protocol has three key advantages over the traditional tail-activation 
protocol.  First, because PO,rel is calculated from a ratio within a single 
sweep, it is insensitive to channel rundown. This factors out intra-sweep drift 
that would undermine the traditional protocol, wherein tail currents are 
normalized to the maximum across a family of sweeps. Second, since the 
rising phase of the activation curve is derived from tail repolarizations to 

relatively positive potentials (comparatively slower gating relaxations), it is possible to resolve the 
activation curve of rapidly-gating CaV1.3 channels.  Finally, our tail activation protocol involves a pre-
pulse to the reversal potential.  This mirrors our voltage-block protocol (Section 4C), and thus ideally 
calibrates channels under the same conditions as voltage block. 

Figure S15. Tail activation 
protocol. (A) Voltage waveform 
consists of a step to the reversal 
potential followed by a step to a 
family of voltages.  (B) Current 
traces obtained.  (C) Currents 
scaled to tail peak.  
Solid/dashed lines are used to 
correct for inactivation.  (D) 
Resulting activation curve 
calculated by taking the ratio of 
steady-state current to tail peak.  
Each round symbol corresponds 
to voltage waveform and data 
trace of the same color.  
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Tail activation curves were used to calibrate single-channel data. The maximal open probability was 
determined by single-channels (tail-activation curves were vertically scaled to match), and the voltage shift 
was determined by tail-activation (single-channels were horizontally shifted to match).  The close 
correspondence of activation curve shape confirms of the validity of both methods (main paper Figures 3C, 
5B, 6A-B, and supplemental data Figures S19A, S19E).  For the resulting PO,max values, see Section 4D. 
 
4C. Voltage-block determination of CDI(∞)–PO relationships  
CDI(∞)–PO relationships (main paper, Figures 3-6) were experimentally determined using a novel 
voltage-block protocol. Voltage block experiments were performed with a high intracellular concentration 
of rapid Ca2+ chelator (10 mM BAPTA).  This ensured that global Ca2+ was effectively zero, whereas local 
calcium spikes remained high ~100 μM (Neher, 1998) (Supplementary Information 3). For all experiments 
based on CaV1.3, external solutions contained 40 mM CaCl2 or BaCl2. The high concentration of 
extracellular Ca2+/Ba2+ was chosen to maximize unitary current (large Caspike).  This is relevant for the SQS 
mechanism, because large Caspike

 ensures that Hhigh ≈ 1, and thus ( )H t  ≈ PO (Sections 1A, 1E).   
 
Voltage-block waveforms were specified by the following parameters (Figure S16A; main text Figure 3A):  

1) VU: the ‘unblocked’ voltage, chosen to maximize PO while maintaining a large enough unitary current 
to drive CDI.  

2) VB: the ‘blocked’ voltage, chosen as the reversal potential. 
3) TG: ‘gating’ time spent at VU prior to first block, chosen just long enough to complete activation 

gating without incurring CDI. 
4) TB: duration of sojourns to VB. 
5) TU: duration of sojourns to VU.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For all experiments, we chose a cycle time, TB + TU = 10 ms, such that for any desired PO,EFF, 
TU = PO,EFF⋅10 ms, TB =  (1- PO,EFF)⋅10 ms.  The values of VU, VB, and TG were tailored to each construct. 
Values of VU were: CaV1.3, 17 mV;  CaV1.3(high-PO), 9 mV;  CaV2.2, 21 mV;   Δ78cBBBBb, 13 mV.   
Values of VB were: CaV1.3/CaV1.3(high-PO), 90 mV;  CaV2.2/Δ78cBBBBb, 75 mV.   
Values of TG were:  CaV1.3/CaV1.3(high-PO) + CaM12, 5 ms;  CaV1.3/CaV1.3(high-PO) + CaM34, 18 ms;  
CaV2.2 (α1B), 30 ms;   Δ78cBBBBb, 16 ms.   

Figure S16.  Voltage-block analysis.  (A) Whole-cell Ca2+ record for exemplar cell on an expanded time base, 40% block 
condition shown.  Voltage waveform (top) with current record (below).  Black symbol shows initial peak current.  Green 
symbols plot CDI time course as deduced by algorithm.  Definition of unblocked period numbers (bottom).  (B) Time-aligned 
currents for unblocked periods 1 to 100.  Every third period is shown.  First period is blue, final period is red.  (C) Method of 
deducing time course of CDI.  (D) Method of deducing average enhancement of open probability due to sojourns to VB. 
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To minimize a small degree of variability owing to endogenous G-protein and voltage-dependent 
facilitation, we preceded each sweep with a long (500 ms for CaV1.3, 50 ms for CaV2.2/Δ78cBBBBb) pre-
pulse to VB, followed by a brief (5 ms) return to -90 mV.  The pre-pulse did not permit any Ca2+-entry, thus 
it only served the purpose of ‘pre-charging’ the channels to their fully open conformation.  For all 
experiments, the holding potential was -90 mV.  Voltage-block depolarizations were delivered every 90 s.   
 
To maximize CDI, we utilized step potentials (VU) just shy of the activation-curve plateau (main paper, 
Figure 3A, top).  This practice produced small current overshoots upon returns to VU from VB, which were 
accounted for in our analysis methodology, as follows.  Figure S16A displays a 40% block record from an 
exemplar cell with an expanded time base.  After the initial depolarization to VU (unblocked period 0), the 
voltage is repetitively transitioned between VB and VU.  The current present during each sojourn to VU 
(unblocked period 1, 2, 3 …) becomes progressively smaller during each period due to CDI.  If each period 
is superimposed in time (Figure S16B), with the start of each unblocked period aligned to t = 0, the current 
waveform during unblocked period k is described by the function: 

(4C-1) 
 
where N is the number of channels in the cell, i is the unitary current at VU,  Pk(t) is the open probability (of 
channels not yet inactivated) during unblocked period k, and hk is the fraction of channels not yet 
inactivated.  Equation 4C-1 pertains to all unblocked periods, with the exception of period 0 (which does 
not follow a block to VB).  In an ideal experiment, Pk(t) = PO,max  (i.e. a constant value), since VU and VB 
should both be on the activation curve plateau (main paper Figure 3A, top).  In an actual experiment, 
however, VU is just shy of the activation curve plateau.  Because of this, Pk(t) will start out near PO,max 
because the channel had been at VB prior to the unblocked period, and then drop down slightly because the 
open probability at VU may be slightly lower than at VB.  Two points merit emphasis.  First, since the 
voltage block sojourns are repetitive, the slight changes in open probability should repeat during each 
period, thus Pk(t) should be fairly independent of k.  Second, because changes in Pk(t) occur on the 
millisecond time scale of gating, they can be easily separated from the much slower time course of 
inactivation.  In Figure S16B, the changes in Ik(t) that can be seen during a single unblock period 
characterize the rapid gating effects of Pk(t), whereas the apparent scaling of Ik(t) with increasing k reflects 
the slower process of inactivation. Though the absolute amount of inactivation reached by period k (= 1- hk) 
is not yet known, the relative degree of inactivation can be determined by scaling the current waveform for 
period k to that for period 1.  Thus, 

(4C-2) 
 
where mk is calculated by taking the ratio of the average current for unblock period k to that for unblock 
period 1: 
 

(4C-3) 
 
Figure S16C plots the time course of mk (open symbols), where the symbols are horizontally positioned to 
the center of each unblock period.  According to Equation 4C-2, these relative measures of inactivation can 
be converted to absolute measures if we could estimate h1, the fraction of channels not yet inactivated by 
period 1.  To estimate h1, we fit a smooth curve through mk (Figure S16C, open circles, fit with magenta 
curve), and extrapolate back to the time of the initial peak.  h1 is estimated as the optimal scaling factor 
needed to make the extrapolated fit pass through the initial peak (solid black circle). To make this 
extrapolation more robust, we used a series of smooth fits. The magenta curve in Figure S16C is actually an 
overlay of 10 fits.  These are the best-fit mono-exponential curve to the first 3 points, the first 4 points, the 
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first 5 points, etc.  The estimate of h1 is based on the average of these fits.  Multiplying the open circles 
(mk) by h1 yields the solid green circles (hk in Figure S16C).  These values of hk, along with the scaled fit 
are overlaid atop the raw data in Figure S16A.  The time course of inactivation, hk, is thus fully determined. 
 
Beyond calibrating inactivation, this type of analysis also improves the estimate of PO,EFF during voltage 
block.  In our single-channel calibration, we measure the baseline open probability at the unblock voltage, 
PO/base = PO(VU).  This calibration is valid for an uninterrupted step (0% block). However, sojourns to VB 
(e.g., during 40% block) may cause the open probability to increase above PO/base, with fluctuations as 
characterized by Pk(t).  This can be accounted for by describing the initial peak current quantitatively: 
 

(4C-4) 
 
According to Equations 4C-1 and 4C-4, if we calculate Ik(t) / (hk ⋅ I0), this should plot Pk(t) / PO/base.  Figure 
S16D explicitly performs this operation for all Ik(t), k ≥ 1.  Two points merit discussion.  First, the fact that 
all curves superimpose supports the contention that Pk(t) is independent of k. Second, integrating this 
waveform (Figure S16D, shaded region) and dividing by TU (i.e. taking the average of Pk(t) / PO/base) yields 
a factor c, which is the average fold-enhancement in open probability caused by sojourns to VB.  The actual 
PO,EFF plotted in voltage-block analysis (e.g., main paper Figure 3G) is specified as 
 

(4C-5) 
 
 
Time courses of pure CDI (e.g., main paper Figure 3F) were calculated by taking one minus the ratio of 
current remaining in Ca2+ versus Ba2+ (i.e. 1 – hk,Ca / hk,Ba), averaged over many cells.  CDI(∞)–PO relations 
(e.g., main paper Figure 3G) were generated by plotting the final time points from the CDI time courses 
against the average PO,EFF (Equation 4C-5).  All average data are presented as mean ± SEM, calculated, as 
described, by custom-written software in MATLAB (MathWorks).  Because the correction to PO,EFF was 
minor (c ≈ 1 in Equation 4C-5), the SEM for PO,EFF was always much smaller than the symbols.  
 
To supplement the high-buffer voltage-block data, we estimated the PO = 1 data point with physiological 
buffering (0.5 mM EGTA). This allowed a global Ca2+ pedestal of ~1-10 μM to accumulate over the 
duration of a step (Song et al., 1998).  In these experiments, we ensured that the amount of divalent 
(Ca2+/Ba2+) entry into the cell did not overwhelm the divalent buffer in the internal solution. For all traces, 
we estimated the intracellular rise in divalent concentration by integrating the total current entry into the 
cell, dividing by a cell volume estimate of ~0.3pL/pF (Satoh et al., 1996), and converting to units of mM. 
We excluded traces where the estimated rise in divalent concentration was greater than the internal 
concentration of divalent buffer (Frazier et al., 2000). We also checked for buffer depletion in high-buffer 
voltage-block experiments by examining currents at the reversal potential of each block cycle. Cells in 
which we observed an accumulation of outward current during the block sojourns were excluded, as this 
could be an indication of global divalent accumulation due to consumption of internal buffer.  
 
4D. Fitting 
Smooth parametric fits to the N-lobe CDI(∞)–PO data (main paper Figures 3K, 4G, 5I, 6I) were constrained 
with the following three considerations in mind:  First, because NSCaTE has been shown to selectively bind 
Ca2+/CaM (Dick et al., 2008), mutations to NSCaTE should only affect γ, as this corresponds to the channel 
affinity for Ca2+/CaM.  Second, because the amino-terminal NSCaTE sequence does not bind apoCaM, and 
because apoCaM preassociation is believed to occur predominantly on the channel carboxy-terminus 
(Erickson et al., 2003; Pitt et al., 2001), preassociation should not be affected by mutations to NSCaTE.  
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Thus, all channels based on the same backbone were constrained to the same value of ε.  Third, since 
mutations to NSCaTE likely alter the probability of entering the inactivated state without affecting the 
nature of the inactivated state itself, CDImax (the small open probability while in the inactivated state) is 
taken to be constant for a given channel backbone.  Given these three constraints, all parameters of the SQS 
analytic relation (main paper Equation 2, with parameters CDImax, ε, and r = γ / ε) were highly constrained 
by our N-lobe voltage-block data.  It was not possible to describe our N-lobe block data with any simpler 
model (for example, a Michaelis-Menton relationship could not fit the data), and the complete set of data 
could only be fit by the SQS mechanism within a narrow set of parameters.  By contrast, the C-lobe 
voltage-block data was fit well by the slow CaM mechanism (main paper Equation 1); a Michaelis-Menton 
relation described by the two parameters G and Keff.  These two parameters were well constrained by our C-
lobe data.  Values for single-channel calibration and CDI(∞)–PO fits are as follows:   
 
Single Channel Parameters 
For all constructs, zF/RT = +12 mV, as predicted for a divalent cation at room temperature.   
For CaV1.3 and CaV1.3 (high-PO),   g=20 pS, Vs=31±1 mV.   
For CaV2.2 and cBBBBb,              g=25 pS, Vs=59±3 mV.   

PO at VU was determined for the following constructs: 
CaV1.3:  0.322; CaV1.3(I48A):  0.318 
CaV1.3(high-PO): 0.59; CaV1.3(high-PO, I48A): 0.61 
CaV2.2:  0.51; cBBBBb: 0.64. 
 
N-lobe CDI:       
CaV1.3: CDImax=0.68; ε=80; native γ=435; R52A γ=158; I48A γ=55; W44A γ= 3 
CaV1.3(high-PO): CDImax=0.83; ε=80; native γ=144; R52A γ= 80; I48A γ=17; W44A γ= 6 
CaV2.2: CDImax=1; ε=30; native γ= 7.5;    
Δ78cBBBBb:   CDImax=1; ε=30; native γ=137;   W82A γ=30

C-lobe CDI:       
CaV1.3: G=0.75  native Keff =0.028 I48A Keff =0.028 
CaV1.3(high-PO): G=0.83  native Keff =0.051  
 
4E. Statistical assessment of upward curvature 
In Section 1, we proved that the SQS mechanism is capable of generating CDI(∞)–PO relationships with 
upward curvature, and that this curvature distinguishes the SQS mechanism from among a large class of 
alternatives.  Experimental resolution of upward curvature therefore provides the strongest evidence for the 
SQS mechanism.  In this work, we experimentally resolved upward curvature (r < 1) in four constructs.  
Here the statistical strength of this upward curvature is quantified (Figure S17).   
 
First, we considered both the voltage-block and low-buffer data (Figures S17A-D, left plots).  For each 
construct, we compared the ‘goodness of fit’ of the SQS relation (green or magenta curve) to a simple 
linear relation (black line).  The SQS fits correspond to main paper Equation 2 with parameters as in 
Section 4D.  The linear fits are constrained through (0, 0) with slopes chosen to minimize the chi-squared 
error.  For each construct, we compared the two fits by taking a ratio of their summed chi-squared errors, 
yielding an F-value.  The F-values could then be compared to an F-distribution, yielding p-values, which 
are shown in Figures S17A-D (left plots).  The p-values can be interpreted as the probability that the data 
arises from a mechanism with a linear CDI(∞)–PO relation, rather than an upwardly-curved SQS relation.  
Thus, the smaller the p-value, the more certain we can be that the data statistically exhibits upward 
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curvature and supports the SQS mechanism. Of  four constructs with r < 1, three had significant upward 
curvature—CaV2.2, CaV1.3(high-PO, I48A), and CaV1.3(high-PO, W44A) (Figures S17B-D, left plots). 
 
Though compelling, this initial analysis includes the physiological-buffer estimates of CDI at PO = 1.  The 
SQS analytic equation (main paper, Equation 2) is strictly derived under conditions of high-buffering.  
Though CDI under physiological buffering should serve as a lower-limit estimate of CDI under high-
buffering at PO = 1 (see main paper, discussion of Figure 2G), such reasoning is subject to some underlying 
assumptions.  The most stringent verification of the SQS mechanism therefore requires experimental 
resolution of upward curvature using only the high-buffer voltage-block data.  The statistical comparison of 
the SQS fits to linear fits was repeated using only the high-buffer data (Figures S17A-D, right plots).  The 
SQS fits (green or magenta curves) were the same as before, but the linear fits (blue lines) were re-
optimized to the five high-buffer data points.  Even under this more stringent analysis, two constructs had 
statistically significant upward curvature—CaV1.3(high-PO, I48A), and CaV1.3(high-PO, W44A) (Figures 
S17C-D, right plots).  The most compelling resolution of upward curvature was for the 
CaV1.3(high-PO, I48A) construct, which had a p-value of 0.003.  Accordingly, the data is 99.7% more 
likely for an SQS mechanism than a mechanism which exhibits a linear CDI(∞)–PO relationship. 

Figure S17.  Statistical assessment of Upward Curvature.   
(A-D, left plots) Statistical comparison of SQS fits with linear fits for the four constructs exhibiting upward curvature (r < 1).  
Both voltage-block and low-buffer data are included in this analysis.  Error bars show SEM. The SQS fits are the 
green/magenta curves (color scheme as in main paper).  The linear fits (minimum chi-squared error to all six data points) are 
the black lines.  F-test statistic (p-values) shown.  All p-values that are statistically significant are highlighted in yellow. 
(A-D, right plots) Similar analysis using only the high-buffer data, shown on an expanded vertical scale.  Here the optimum 
linear fits to the five high-buffer data points are shown in blue, with the F-test p-values showing the comparison of SQS and 
linear fits to the high-buffer data only.  Plots at the bottom of each panel show the degree to which the data and the fits 
undershoot the dashed gray line, which was chosen to pass through the 0% block data.  All p-values that are statistically 
significant are highlighted in yellow, indicating statistically significant upward curvature under high-buffering. 
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4F. Continuum numerical simulations (main text Figures 2C, G) 
Numerical simulations (main text Figures 2C, G) were performed in MATLAB (MathWorks, Natick, MA). 
Because Ca(t) is approximated as a square-pulse train (Supplementary Information 3), the time-varying rate 
constant for transition from state 2 to 3 (= kon⋅Ca2(t) in main text Figure 2A), is actually fixed for the 
duration of each channel opening or closing. Thus, the time-evolution of state occupancy over the duration 
of a channel opening or closing could be calculated via multiplication with the matrix exponential of the 
state-transition matrix. Given initial occupancy in state 1, successive matrix multiplication for each 
opening/closing yielded the time-evolution of CDI (state 4).  
  
More explicitly, the following equations were used.  Initially, all systems occupied state 1: 

 
(4F-1) 

 
where the elements of P are the probabilities of occupying states 1, 2, 3 and 4.  Note that the elements of P 
must sum to 1. 
 
The time-evolution of state occupancy over the duration of a first opening (that starts at t and ends at t + 
topen) was then calculated by: 
 
 

 
(4F-2) 

 
 
 
 
where expm indicates the matrix exponential. 
 
The time-evolution of state occupancy over the duration of a subsequent closing (that starts at t* and ends at 
t* + tclosed) was then calculated by: 
 
 

 
(4F-3) 

 
 
 
Equations 4F-2 and 4F-3 were then used iteratively to yield the time-evolution of CDI, which is shown as a 
plot of the fourth element of P(t) versus time.  A similar approach was used for the simulations involving 6 
states (Supplementary Information 1F) and 5 states (Supplementary Information 3D).   
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5.  Supplemental Data 
 
5A. Further NSCaTE mapping data for main paper, Figure 4  
To experimentally adjust the SQS parameter r, the NSCaTE region of CaV1.3 was scanned with single 
alanine point mutations (Figure 4A of the main text, Figure S18).  Functional effects were determined 
through whole-cell electrophysiology recordings (Figure S18A), which quantify CDI under high buffering.  
The binding affinity was probed utilizing a FRET 2-hybrid assay (Figure S18B-C), in which amino-
terminal fragments of CaV1.3 containing NSCaTE were fused to ECFP and co-transfected with CaM fused 
to EYFP.  Concentration-dependent spurious FRET was corrected (Stratton et al., 2004) and the relative 
dissociation constant Kd,EFF was determined as described (Erickson et al., 2001; Erickson et al., 2003).  
Briefly, the FRET Ratio (FR), defined as the fractional increase in YFP emission due to FRET interaction, 
was calculated from 

FR = [SFRET - RD1 ⋅ SCFP] / [RA1 ⋅ (SYFP - RD2 ⋅ SCFP)] 

where SX indicates the fluorescence measurement with a given filter cube X (= CFP, FRET, and YFP 
cubes).  RD1 and RA1 are optical calibration constants, which were determined for our setup.  FR = 1 in the 
absence of FRET, and increases linearly with rising FRET efficiency (FR = 5.3 at 25% FRET efficiency).  
 
FR was obtained from multiple cells, and cell-to-cell variation in expression levels permitted resolution of 
Kd,EFF and FRmax via binding-curve analysis (Erickson et al., 2001; Erickson et al., 2003).  Figures S18B and 
S18C show the FRET binding curves for the various FRET pairings, and Table S3 shows the deduced 
binding curve parameters.  Of note, there was no detectible interaction (FR ≈ 1) between apoCaM and 
either the intact NSCaTE or the I48A mutant (blue data points in Figure S18B, and values in Table S3).  By 
contrast, there was strong interaction between NSCaTE and Ca2+/CaM (red data points in Figure S18B, and 
values in Table S3).  These outcomes support the claim that NSCaTE selectively interacts with Ca2+/CaM.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table S3.  Here we list the full set of parameter values obtained for the FRET experiments shown in Figure S18(B-C), which 
are plotted as bar graphs in main paper, Figures 4B-C. 
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 Figure S18.  Data supporting the NSCaTE alanine scan of main paper Figures 4, A-C.   

(A) Whole-cell recordings of CaV1.3 (top row) and NSCaTE point mutants (below) in 10 mM BAPTA.  Traces show Ca2+ 
currents (colored or gray) overlaid with Ba2+ currents (black) in response to depolarizations to 10 mV.  Time bar, 500 ms, 
current bar, 1 nA, referenced to Ca2+ trace.  Ba2+ currents reduced by 2-3x to enable direct comparison with Ca2+.  CDI can be 
quantified by the difference in the fraction of current remaining in Ba2+ versus Ca2+ after 500 ms.  

(B-C) Exemplar FRET two-hybrid binding curves delineating Kd,EFF. YFP–CaMWT (B) or YFP–CaM34 (C) is pitted against 
CaV1.3 (α1D) amino-terminal constructs tagged with CFP.  The CFP-channel fragments contain NSCaTE (top row) and NSCaTE 
with single alanine point mutants (all other rows below).  The red symbols indicate data obtained in elevated Ca2+, and the blue 
symbols indicate resting Ca2+ conditions.   
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 5B. Supplemental CaV1.3 single-channel and voltage-block data 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S19.  CaV1.3 data supporting voltage-block analysis of main paper Figures 4-5.   

Panels in support of main paper Figure 4: 
(A) Single-channel analysis of I48A mutant is indistinguishable from the native CaV1.3 (main paper Figure 3C).   
(B) Time course of C-lobe CDI (isolated with CaM12) for the I48A mutant.  Format as in main paper Figure 3F. This data 
corresponds to main paper Figures 4D-E.     
(C-D) Time course of N-lobe CDI (isolated with CaM34) for CaV1.3 NSCaTE mutants.  Format as in main paper Figure 3J.  
The I48A data in panel (C) corresponds to main paper Figure 4F-G (green).  The R52A data in panel (D) corresponds to main 
paper Figures 4H, G (cyan).   

Panels in support of main paper Figure 5: 
(E) Single-channel analysis of high-PO/I48A is indistinguishable from high-PO with native NSCaTE from main paper Figure 
5B.  Dashed curve reproduces the relation from (A). 
(F-G) Voltage-block exemplar traces (F) and time course (G) for N-lobe CDI (isolated with CaM34) of high-PO/W44A.  This 
data supports main paper Figure 5I (magenta), and supplementary Figure S17D. 
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