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Physical Aspects of Fruit Growth
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ABSTRACT

The skin around a lenticel on a soft fruit has been modelled as a thin
elastic plate with a rigid circular inclusion and applied tensile loads at the
edges. A solution for the stress distribution in the skin has then been found
using the linear theory of elasticity. From that solution the severity of the
stress concentration and the location and form of initial cuticular failure
have been deduced, the latter two being in broad agreement with observed
crack initiation in the cuticle of grapes.

Splitting and cracking of fruit is a physiological disorder which
occurs in many cultivated forms of soft fruits such as grape,
tomato, peach, and cherry. Commonly, the site of initiation of the
failure is the cuticle, and in a previous paper (2), we examined the
stress distribution in the skin of soft fruit, treating the fruit skin as
a pressure vessel with internal pressure. The flesh of the fruit was
treated as fluid and the stress components at points on the skin of
fruits of various axisymmetric shapes were calculated using the
theory of thin shells. A substantial degree of success was achieved
in predicting the location and nature of the failures leading to skin
cracking, but no attempt was made to predict the internal pressure
at which the cracking first occurred-such prediction would re-
quire some quite detailed knowledge of the mechanical properties
of the skin involved.

Observations of the initial cracks in fruit skins have shown that
the cracks are frequently initiated at or vety near lenticels (1, 6).
It would appear that the skin cannot be treated as uniform, and
that the lenticel is acting as a stress concentrator. The purpose of
the following work is to examine the stress distribution around
lenticels and the role of that stress distribution in fruit splitting.
Since measurement of the mechanical stress around a lenticel
would be exceedingly difficult, the discussion is based on an
analytical prediction of the stress distribution, for which analysis
it has been necessary to create a simplified model of the skin and
lenticel.

THE MODEL

The simplifying assumptions and their repercussions are out-
lined below:

(a) The lenticel and a relatively small amount of surrounding
skin can be treated in isolation-i.e. the stress distribution close to
a lenticel does not depend on the overall shape or other properties
of the fruit.

This assumption is really invoking St. Venant's principle (10, p
33) and allows treatment of the lenticel and surrounding skin as

a piece of shell including some kind of stress concentrator.
(b) The skin is thin, isotropic, Hookean elastic, and, remote

from the lenticel, is in a state of simple bi-axial tension.
If the skin thickness and lenticel size are small compared to the

radii of curvature of the shell, then the curvature may be ignored
so long as the analysis is applied only to that portion of the skin
which is close to the lenticel. The model then becomes that of a
flat skin with lenticel, with loads in the form of bi-axial tension
applied to the skin edges, at some distance from the lenticel. The
choice of an isotropic, Hookean elastic solid to model the skin has
been made principally because it leads to the simplest methods of
solution and little is known of the mechanical properties of the
skin anyway. What is known suggests that the skin is at least
roughly isotropic (3, 5). Poisson's ratio v is approximately equal to
0.25, and this figure has been adopted throughout this work. Only
minor changes to the diagrams would result from another choice.

This restriction to a Hookean elastic material is perhaps not as
severe as it seems since, should more complete information on the
material properties become available, it would be possible to
convert this elastic solution into a linear visco-elastic solution by
the use of the correspondence principle (4).

Elementary theory ofcontinuum mechanics (9, p 40) shows that
there must always exist two perpendicular directions in the skin
surface, in the planes of which there are no shear stresses. This is
true irrespective of the nature of the material or shape of the shell
and consequently, that simple bi-axial tension exists in the skin
remote from the lenticel is not really an assumption at all. In an
axisymmetric fruit, the stresses could be found by the methods of
Considine and Brown (2). Other shapes would complicate matters,
but the same principles would apply.

(c) The lenticel is circular when viewed in a direction normal
to the surface of the fruit and is either much thicker or composed
of material with sufficiently high Young's modulus to be consid-
ered absolutely rigid.
The underlying simplification introduced by this assumption is

that, whatever loads are applied, the relative displacements of
points in the skin immediately adjacent to the lenticel are trivially
small when compared with the displacement of points in the skin
remote from the lenticel.

(d) Attachment of the lenticel to the surrounding skin is as-
sumed perfect. That is, failure occurs by deformation of the skin,
not by breaking its bonds with the lenticel. This certainly seems
to be true in the failures observed.

Thus, the model for analysis can be summarized as a flat
uniform infinite Hookean plate in plane bi-axial tension with a
rigid circular plug or inclusion.

ANALYSIS

Readers unfamiliar with the terms used in stress analysis should
refer to the appendix.
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Of the many stress analysis methods available, the one most
appropriate to the problem was developed by Muskhelishvili (7).
The chosen polar coordinate system of r and is shown in Figure
1 and the two applied loads P and Q were chosen to be in the
directions 0 = 00 and = 900, respectively. For convenience, the
convention P > Q has been adopted. The details of the method of
solution are laborious and are not presented here. It will be evident
that the solution obtained satisfies the given boundary conditions
viz. -loads P and Q remote from the origin, and zero displacement

on the circle p = R = 1, R being the lenticel radius. That the
R

solution also satisfies the equations of elasticity (Hooke's law,
equilibrium and compatibility) can be checked by straightforward
but laborious methods. The solution obtained was:
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where

arr = normal stress in the radial direction,

am = normal stress in the tangential direction,

are = shear stress on a face normal to the radial direction,

Ur = radial displacement,

u= tangential displacement,

P + Q
Oa =

P-Q

Of 2

E = Young's modulus, v = Poisson's ratio for the material,

and K is a combination of elastic constants peculiar to the method.
On this occasion the problem is one of plane stress (no forces

perpendicular to the skin) and K = +

The above equations allow calculation of the stresses at any

point defined by p, given P and Q. Mohr's circle (9, VI, p 46)
can then be used to find the principal stresses a, and a2 and their
directions.
Knowing the stress state at a point one then can determine

whether the material will fail at that point by the use of a yield
criterion. The one chosen, variously called the maximum shear
strain energy criterion, the Von Mises criterion, Henky criterion,
or octahedral shear stress criterion, is the one best suited to isotopic
ductile materials such as metals and plastics. It would presumably
be appropriate for the cuticle but the effect of the underlying
cellular structure is difficult to assess. No literature on the subject
is known to the authors. The failure criterion allows the definition
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FIG. 1. The location of a point on the skin is defined by its polar

coordinates r and 6, r being the radius of the point from the center of the
lenticel of radius R, and being the angle measured counterclockwise
from P, the larger of the two applied loads.
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FIG. 2. Representative displacement field. Assumed:-= 0.4 = 0.1
Ga E

Points on circles concentric with the lenticel when the skin is unloaded
displace when the load is applied to become points on concentric ellipses.

of an equivalent stress a, where

a= /ll2 + G22 G1G2.

(In this situation the third principal stress a3 normal to the skin
surface, is negligible.) When this equivalent stress ii reaches the
'Tensile yield strength' of the material, permanent deformation
and consequent splitting occurs.

All of the above equations are readily programmed on a hand
calculator, and some results are presented in the following figures.

Figure 2 shows a representative displacement field. All displace-
ments calculated are relative to the lenticel. The assumed value of

= 0.1 is probably quite unrealistic, but only changes the
E
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magnitude of the relative displacements, not their character. It can
be shown that points on the skin, which in the undeformed state
form a circle concentric with the lenticel, displace to become
points on a concentric ellipse.

Figure 3 shows the distribution of equivalent stress around a
1800 section of the circumference of the lenticel. Note that the

distribution changes considerably with variation of-.
Oa

The equivalent stress for = 0 (P = Q) is the same at all points
Oa

around the lenticel. However, with P only slightly greater than

Q - small , a clear maximum occurs at 6= 0, and with Q = 0
\a

= I), four separate and distinct maxima exist at 6= ±32.90
Oaa

and 6 = +147.1°.
This change in the nature of the equivalent stress distribution

becomes even more apparent when one compares Figures 4 and
5, which depict contours of constant a. In the degenerate case af
= 0(P = Q) the contours become concentric circles, whereas

FIG. 3. Distribution of equivalent stress a around the edge of one-half

of the lenticel (-90° < 0 < 900). When-ufis small, two maxima in a occur,
Oaa

one at 0 = 00 and a similar one at 0 = 1800. When- is large, a total of six
Ga

maxima exist, only four of which occur on the lenticel edge. Of those four
two are shown between 0 = -90° and +90° on the diagram, the other two
occur between 0 = 900 and 2700 and can be found by symmetry.
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FIG. 4. Contours of constant equivalent stress-. Assumed:- = 0.2.
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FIG. 5. Contours of constant equivalent stress-. Assumed:- = 0.1.
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FIG. 6. Location and magnitude of the maxima in equivalent stress as

functions of-O. The maxima which occur on the axis 0 = 0 (or 1800) have
°a

equivalent stress- and are located away from the lenticel at a radius R.

The maxima which occur on the lenticel edge do so at 0= i or 0 = 180°

+0 and have equivalent stress-.
gaa

Figure 5 clearly shows the existence of six maxima and two
minima within the field of interest. It would seem that as the ratio
P:Q is increased from near 1, the maximum at 6= 0 first becomes
more definite, then divides into three separate maxima, one of

value al, moves along the axis 6 = 0 to a location R-i, while the

other two of value 52 move around the edge of the lenticel to form
a symmetric pair located at 6= ±&. The location & depends upon
Of This is illustrated by Figure 6, in which the locations and
Ga
values of the maxima are plotted.

Usually a failure would be expected to initiate at the location of
the largest equivalent stress. Figure 6 then suggests that all cracks
should initiate at the boundary of the lenticel at the location &

afappropriate to the value of . However, on further consideration,
Ga

it is suggested that this may not always be the case in practice, the
reason being that assumption (b) may not be adequately satisfied
very close to the lenticel edge.
Assumption (b) has been used to validate a model of the skin

and lenticel in which the skin is represented as a thin plate, free
to deform in the thickness direction. It is this thinning or necking
which ultimately results in rupture and cracking of the skin.

P
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However, if the lenticel is strong and rigid as we have suggested,
it will restrain those deformations which would result in severe
necking. The effect would be expected to influence only defor-
mations that occur at distances within one or two skin thicknesses
of the edge of the lenticel. Observation of Figure 5 indicates that
the surface maximum &2 is extremely local, and it may well be
local enough to ensure that actual failures always occur at the
maximum ii on the 8 = 0 axis.
Having discussed the question of where the failure should

initiate, there remains the question of the direction in which the
crack should propagate. This question is a particularly difficult
one to answer in general, since as soon as the crack forms the
stress distribution will change with the result that the direction of
crack propagation will change. Nevertheless, the initiation of the
crack would be expected to involve a necking process, and the
thin neck would form perpendicular to the larger of the local
principal stresses in the plane of the skin. Figures 7 and 8 show
the 'stress trajectories' for the loadings already used in Figures 4
and 5. Stress trajectories are defined as lines which are everywhere
tangent to the local principal stress directions and therefore form
an orthogonal net. Thus, the initial crack, wherever it forms,
would be expected to lie along the stress trajectories of the smallest
principal stress.

Finally, Figure 9 shows just how much weaker than smooth
unmarked skin is the skin with a lenticel present. The information
is presented as a "stress concentration factor' K, defined as the
ratio of the maximum equivalent stress (51 or ii2) to the equivalent
stress at points remote from the lenticel (or, if preferred, the
equivalent stress if the lenticel did not exist). Even with P = Q (an
equal applied load in all directions) a stress concentration factor
of 1.44 applies, and failure would almost certainly occur at the
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FIG. 9. Stress concentration factors K as functions of 1ffor the two
Oa

maximum equivalent stresses i2 and ii.

lenticel. From the existence of the obvious maximum in the stress

concentration factor at lf-~ 0.30 it could be concluded that fruit
Ga

shapes which result in Q = 0.5P at the most highly stressed portion
of the skin would be more susceptible to cracking than are fruits
which display the same equivalent stress levels, but higher or
lower ratios of Q:P.

DISCUSSION

Q An understanding of the physical aspects of growth of plant
* * * organs requires a knowledge of the forces which attend growth

-~and the rheological properties of the materials which constrain
growth. Determination of the forces associated with growth and
extension may be considered in two parts; those which determine

-~the magnitude of the primary energy source, turgor or hydrostatic
pressure, and those which translate this turgor pressure into the
stresses acting at a tangent to the organ surface. Using a simplified-~model of a fruit, we have previously demonstrated the influence
of organ geometry and accounted for five of six defined forms of
fracture and fracture pattern (2). In this study we have elucidated

-~theoretical aspects concerning the remaining form of fracture
which originates in the region of lenticels.

Factors which impinge upon the arguments presented include
-~the assumptions of a circular plug as the form of the lenticel, and

+++ 4 + + + +4 Q the relative rheological properties of the skin and lenticel. The

IG. 7. Stress trajectories-lines which are everyhere in the direction anatomy of lenticels in fruits of the grape is not that of a simple
Of ~~~~~~~plug, but rather that of a conical plug extending under the

ie principal stresses. Assumed: Ofa 0.2. cuticular membrane (8). This observation reinforces the assump-Ga ~~~~~~~~tionof perfect adherence of cuticular membrane and lenticel but
makes it difficult to define the edge of the plug, and thus to
ascertain whether in practice the failures initiate at the edge or at
some defined distance from it.

-~ Prediction of the site of initiation of cuticular failure or splitting
is complex and will not necessarily be at the point or points of

P-Qpredicted stress maxima. At values of P+Q< 0.4 there are two

diametrically opposed maxima in line with the direction of P and
p' at the edge of the lenticel. As stated earlier in the analysis, it is
0 likely that the rigidity of the lenticel will prevent initiation of the

necking (thinning) process involved in the mechanism of failure,
and failure will occur at a distance from the lenticel sufficient to

- -- - ~~allow the necking process. At values of
P Q> 0.4, the site

IG.8.Strsstraecoris.Assumed: Of =1.0 (i.e. Q =0). should move out from the interface or at values >0.44 could also1G.8.Stresstrajecories.move around the edge from the direction of P. Again, the rigidity
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of the lenticel would probably ensure that failure is actually
initiated at the maximum, in line with the direction of P, and
displaced from the edge ofthe lenticel. This argument is supported
by observations made on failure patterns around lenticels of fruits
of the grape (1). In all instances observed, the failure occurred at
some distance from the lenticel and was either concentric with it
or was in the form of an arc which extended perpendicular to P
(cf. Figure 7).
The results of this investigation indicate that lenticels or other

rigid bodies embedded in the surface tissues act as stress concen-
trators with the intensity of the stress being dependent on the
magnitude of the principal loads, P and Q but not upon the size
of the inclusion. This general conclusion is in accord with previ-
ously published observations on fracture formation in fruits of the
grape vine Vitis vinifera, (1, 6).
The magnitude of the stress concentrating effect achieved is

predicted to be greatest (K = 1.63) if one of the principal stresses
is twice the magnitude of the other (Q = 0.5P). This condition
would be met on fruits with either an oblate or prolate form or
near the pedicel on fruits with a relatively stiff core (2). However,
a stress concentration exists even if the skin around the lenticel is
loaded equally in all directions (P = Q) or only in one direction
(Q = 0). These conditions result in stress concentration factors of
about 1.4 and 1.5, respectively.
The conclusions reached through this study reinforce those of

the previous study (2) which demonstrated the potential disadvan-
tages of nonspherical fruit, because the presence of lenticels may
further multiply the high stresses produced by certain geometries.
A particular advantage may be achieved by selecting for fruit
without lenticels, though this may be difficult to achieve in practice
because the presence or absence of lenticels may be a species
characteristic.

Lenticels have been reported to be absent from the fruits of
tomatoes (Lycopersicum esculentum), blueberries (Vaccinium spp.)
and persimmon (Diospyros kaki), but present in fruits of the grape
(Vitis spp.) and apple (Malus spp.) (8, 11).

In conclusion, this analysis has demonstrated that the presence
of lenticels or other rigid bodies such as sclereid masses or heavily
cutinized areas of damaged tissue may in particular circumstances
cause initiation or rupturing of the protective cuticular membrane
and allow entry of plant pathogens.
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APPENDIX

AN OUTLINE OF THE CONCEPTS OF STRESS ANALYSIS

A number of concepts, probably unfamiliar to most biologists
but essential to any work on stress analysis, have been used in this
study. Principally, the concepts involved are elaborations on the

notion of stress, viz. normal, shear, principal, and equivalent
stresses. In the following we have attempted to provide a brief
outline of the logical development of these concepts, just sufficient
to give the unfamiliar reader some idea of what the technical
terms used mean. Further information is available from any of
the numerous good texts on "Strength of Materials," the "Theory
of Elasticity," or the "Mechanics of Solids."
The force applied to any plane area can be conveniently re-

solved into two components, one normal (perpendicular) to and
one tangent to the plane. The normal stress on the plane is then
defined as the normal component of the force divided by the area,
and the shear stress is defined as the tangential component of the
force divided by the area. It is important to notice that each of
these two components of stress has associated with it two direc-
tions: the direction ofthe component offorce and also the direction
of the plane on which it acts (usually the direction of a plane
surface on a solid body is considered to be outward along the
normal to the surface). Consequently, stress is not scalar or vector
in character but is a member of a more general class of quantities
called tensors. The notation for stress components reflects this, the
first subscript being used to indicate the direction of the plane and
the second subscript being used to indicate the direction of the
force component.
Almost all calculation methods find the stress components on

planes which are normal to the coordinate directions. When the
arbitrary choice of the coordinate system to be used is made, that
choice determines the planes on which the stress components will
be found. In this work, the problem is two-dimensional and the
coordinate system chosen is polar. The stress components are
therefore found on two mutually perpendicular planes, one normal
to the radius (components arr and uae) and one normal to the
tangent (components aGe and ae,.). However, examination of the
equilibrium of a small element in rotation (10, p 4) shows that,
whatever the material, ,.e = ae, and it is not necessary to consider
aGr in the analysis.
A different choice of coordinate system (say Cartesian x, y

instead of polar) would produce answers representing the stress
components on different planes (normal to the x and y axis).
Numerically, the results would be different, yet they must repre-
sent the same state of stress-the choice of coordinates cannot
affect the facts, only our representation of the facts. Mohr's circle
is a simple method by which the stress components on any pair of
mutually perpendicular planes can be calculated if the stress
components on any other pair of mutually perpendicular planes
are known. Using Mohr's circle it can be shown (9, Vol 1, p 49;
10, p 14) that at any point in the material there always exist two
perpendicular planes on which the shear stresses are zero. The
normal stresses on these planes are called principal stresses (aG,
c2) and the forces and normals to the planes are said to be in the
principal directions. Thus, there is agreement with the heuristic
concept that no matter what the applied loading might be, the
material at any point in a sheet is being 'stretched' in two perpen-
dicular directions-the principal directions.

Apart from this physical interpretation, the principal stresses
have particular significance because they contain all of the nec-
essary information about the stress state of the material but, unlike
the stress components such as a,., etc., they cannot depend upon
the coordinate system chosen to solve the problem. These are the
very characteristics required if one wishes to predict 'failure' of
the material, and any viable failure or yield criterion must be
expressible in terms of these principal stresses. Many such criteria
have been proposed and it is sometimes difficult to find one which
adequately predicts failure of a particular material. Clearly differ-
ent materials fail by different mechanisms and require different
failure criteria. The one used herein is based on the premise that
the strain energy (the energy contained in the material due to its
deformation and recoverable as work when the loads are removed)
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can be separated into two parts, one due to dilatation (expansion
without change of shape) and one due to distortion (change of
shape without change of volume), and that the material begins to
deform permanently when the strain energy of distortion reaches
a limit characteristic of the material (9, Vol 2, p 451). The limit is
almost invariably found using a tensile test. The straightforward
approach then would be to determine the strain energy due to

Plant Physiol. Vol. 69, 1982

distortion at "failure" in a tensile test. That however is not the
usual approach. Instead it is more convenient to use the failure
criterion to convert the distortion strain energy found from the
principal stresses into an 'equivalent stress' which can be compared
directly with tensile test results. Thus, the material 'fails' when the
equivalent stress reaches the stress at which a tensile test specimen
fails.
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