SUPPORTING INFORMATION

Supporting Figure Legends

Figure S1: Cell morphology of suppressor mutants was analyzed by electron microscopy. *A. oris* cells of various strains (**A-P**) were immobilized on nickel-coated carbon grids and stained with 1% uranyl acetated prior to microscopic examination. Scale bars indicate 0.5 μm.

Figure S2: Transposon insertion at ANA_1289 caused a polar effect on downstream genes *acaC* and *lcp.* Expression levels of ANA_1289 (**A**), *acaC* (ANA_1291) (**B**), *lcp* (ANA_1292) (**C**) and *srtC2* (**D**) in wild-type MG-1 and two suppressor mutants Tn5-2 and Tn5-12 were analyzed by real-time PCR (RT-PCR). The data were presented here as average of three independent experiments and expressed relative to the transcript abundance of MG1, which was arbitrarily assigned a value of 1. All measured transcripts were normalized by using the 16S rRNA gene as a housekeeping control. Asterisk (*) indicates significance with P <0.001 by Student's *t* test.

Figure S3: Expression of AcaC in representative strains in each suppressor group was analyzed by immunoblotting. Cells of various strains grown to mid-log phase were normalized by optical density. Culture supernatant (S), cell wall (W), membrane (M), and cytoplasmic (C) fractions were obtained by cell fractionation. Equivalent protein samples were separated on 4-12% Tris-Glycine gradient gels and detected by immunoblotting with antibodies against AcaC (α -AcaC) and SrtC2 (α -SrtC2). Molecular mass markers are shown in kDa.

Strain & Plasmid	Description	Reference
Strain		
<i>A. oris</i> MG-1 <i>A. oris</i> CW1 <i>A. oris</i> AR4 <i>A.oris</i> WU36	Parental strain $\Delta galK$; an isogenic derivative of MG-1 $\Delta fimA$; an isogenic derivative of CW1 Conditional <i>srtA</i> deletion mutant ($\Delta srtA$), containing pTatP O SrtA	(Mishra <i>et al.</i> , 2007) (Mishra <i>et al.</i> , 2010) (Mishra et al., 2010) This study
A.oris WU19 A.oris WU51	Δ <i>srtA</i> containing Prenc-22-SitA Deletion of <i>1291</i> (Δ <i>acaC</i>); an isogenic derivative of CW1	This study This study
A.oris WU70 A.oris WU72 A.oris WU73 A.oris WU74 A.oris WU51c S. oralis 34 S. oralis OC1	Deletion of <i>1289;</i> an isogenic derivative of CW1 Deletion of <i>1292;</i> an isogenic derivative of CW1 Deletion of <i>acaC</i> and <i>srtA</i> ; $\triangle acaC \triangle srtA$ Deletion of <i>1292</i> and <i>srtA;</i> $\triangle 1292 \triangle srtA$ WU51 containing pAcaC _{H6-TEV} RPS positive RPS negative	This study This study This study This study This study (Yoshida <i>et al.</i> , 2006) (Yoshida et al., 2006)
Plasmid		
pJRD215	Actinomyces/E. coli shuttle vector, Kan ^R , Str ^R	(Yeung & Kozelsky, 1994)
pRMC2	a tetracycline-inducible expression vector	(Corrigan & Foster, 2009)
pJRD-Sm	pJRD215 lacking the kanamycin-resistance cassette	This study
pTetR-SrtA	pJRD-Sm expressing SrtA under the control of the tetracycline-inducible system	This study
pTetR-R*-SrtA	A derivative of pTetR-SrtA with a riboswitch element incorporated upstream of the start codon ATG	This study
pTetR-Ω-SrtA	a derivative of pTetR-R*-SrtA with the fimQ promoter inserted upstream of the P _{xyIR} promoter	This study
P <i>rpsJ</i> -SrtA	pJRD215 expressing SrtA under the control of the <i>rpsJ</i> promoter	This study
P <i>rpsJ</i> -SrtA- C216A	PrpsJ-SrtA with C216A mutation in SrtA	This study
Pribo-SrtA-C216A	a riboswitch element incorporated into P <i>rpsJ</i> - SrtA-C216A	This study
pAcaC pAcaC _{∆LPXTG}	pJRD215 expressing AcaC pJRD215 expressing AcaC lacking the LPXTG motif	This study This study
$pAcaC_{\Delta cws}$	pJRD215 expressing AcaC lacking the cell wall sorting signal (CWS)	This study
pAcaC _{H6-TEV}	pJRD215 expressing AcaC with a TEV cleavage site, followed by a 6xHis-tag and the CWS	This study

Supporting Table S1: Bacterial strains and plasmids used

pCWU2	Derivative of pHTT177, expressing GalK under the control of the <i>rpsJ</i> promoter	(Mishra et al., 2010)
pCWU3	Derivative of pHTT177, expressing mCherry under the control of the <i>rpsJ</i> promoter	(Wu & Ton-That, 2010)
pCWU2-∆ <i>srtA</i>	An allelic replacement vector of <i>srtA</i> using pCWU2	This study
pCWU3-∆ <i>srtA</i>	An allelic replacement vector of <i>srtA</i> using pCWU3	This study
pCWU2-∆ <i>1289</i>	An allelic replacement vector of 1289 using pCWU2	This study
pCWU2-∆ <i>129</i> 2	An allelic replacement vector of 1292 using pCWU2	This study
pCWU2-∆ <i>acaC</i>	An allelic replacement vector of <i>acaC</i> using pCWU2	This study

Primer	Sequence ^(a)	Used for
srtA-up-F	GGCG <u>GAATTC</u> ATCGTCTCGGCGATCTACGC	pCWU2-∆ <i>srtA</i>
srtA-up-R	GGCG <u>GGTACC</u> TCGCACAAGACCTCCTCTAGTCA	pCWU2-∆ <i>srtA</i>
srtA-dn-F	GGCG <u>GGTACCGGGGG</u> TCAACTGATGTACGGCTT CA	pCWU2-∆ <i>srtA</i>
srtA-dn-R	GGCGTCTAGATAGGACTGGCGCAGCCACTTCT	pCWU2-∆s <i>rtA</i>
prpsJ-F	GGCGGGATCCCGCCCGAGCGCGGGGACCAGT	P <i>rpsJ</i> -SrtA
prpsJ-R	GGCG <u>CATATG</u> GGCGCCTAACCTCTCTTGTACTTG	P <i>rpsJ</i> -SrtA
com-SrtA-F	GGCG <u>GATATG</u> ATGACTAGAGGAGGTCTTGTGCG AC GGCGGA	PrpsJ-SrtA
com-SrtA-R	GGCG <u>GAATTC</u> GCCGGAGGCGCCGTCGGGGAAG	P <i>rpsJ</i> -SrtA
kpnl-tetR-R	GGCG <u>GGTACC</u> TTTAAGACCCACTTTCACATTTAA G	pTetR-SrtA
EcoRI-tetR-F	GGCG <u>GAATTC</u> TCAAGCTTATTTTAATTATACTCTA TC	pTetR-SrtA
EcoRI-srtA-F(rbs)	GGCGGAATTCGAGGAGGGGGCGATGACTAGAG	pTetR-SrtA
HindIII-srtA-R	GGCGAAGCTTCCGGCAGGTGCCGCCAGATGAAG	pTetR-SrtA
Ribo-srtA-F	ATGCCCTTGGCAGCACCCTGCTAAGGAGGCAAC	pTetR-R*-SrtA
	AAGATGACTAGAGGAGGTCTTGTGCGA	
Ribo-tet-R	CAAGACGATGCTGGTATCACCGGTACCTATAGTG	pTetR-R*-SrtA
	AGTCGTATAGAATTGGACATCATCAGGCTAG	•
PfimQ-tetR-R	GGCGGAATTCGCCGATGGATTCCGATCATGAG	pTetR-Ω-SrtA
PfimQ-tetR-F	GGCGAGATCTGATTCCTGCGCCCAGGAAAGTG	pTetR-Ω-SrtA
pJRD215-str-F	GTGCTTGCGGCAGCGTGAAGCTAGCTTGG	pJRD-Sm
pJRD215-str-R	CGAGTT CTTCTGAGCG GGACTCTGG	pJRD-Sm
srtA(C216A)-F	GCTCACGGATCGACCGCCGGTG	PrpsJ-SrtA-C216A
srtA(C216A)-R	GGTGGTCAGCGTGATGTACCGGTC	PrpsJ-SrtA-C216A
Ribo-srtA-F	ATGCCCTTGGCAGCACCCTGCTAAGGAGGCAAC	PrpsJ-SrtA-C216A
	AAGATGACTAGAGGAGGTCTTGTGCGA	
Ribo-srtA-R	CAAGACGATGCTGGTATCACCGGTACCTATAGTG	P <i>rpsJ</i> -SrtA-C216A
	AGTCGTATTTGTACTTGCTTCTGGCCGGTCCAC	
AcaC-up-F	GGCG <u>GAATTC</u> CCTGGGACTGCCGGACGAGTCCT A	pCWU2-∆ <i>acaC</i>
AcaC-up-R	GGCG <u>GGTACC</u> TCCAAGACGCATGAGTGCTCCTA G	pCWU2-∆ <i>acaC</i>
AcaC-dn-F	GGCG <u>GGTACC</u> ACCGACGCCACCCCGGCGGCCT CCA	pCWU2-∆ <i>acaC</i>
AcaC-dn-R	GGCGTCTAGATTCTCCTGGGTGATCTTGAAGCTG	pCWU2-∆ <i>acaC</i>
1289upF	GGCG <u>GAATTC</u> TCTCACGGGCGTAGACGGTGATG	pCWU2-∆ <i>1289</i>
1289upR	GGCG <u>GGTACC</u> CGGTGGCGAGCCACTGGCCGTTG	pCWU2-∆ <i>1289</i>
1289dnF	GGCG <u>GGTACC</u> ATCGTGCGCAATGTGGACGCCTT	pCWU2-∆ <i>1289</i>
1289dnR	GGCG <u>TCTAGA</u> TCCAGCTCCATGCCCTTGCTGTTG AT	pCWU2-∆ <i>1289</i>

Supplementary Table S2: Bacterial strains and plasmids used

1292upF	AAA <u>GGTACC</u> GGTCAACGCCTACTACAACCCGACC	pCWU2-∆ <i>1292</i>
1292upR	AAA <u>GAATTC</u> CGCTGTGCTCGTCGTGGGAGGTGG A	pCWU2-∆ <i>1292</i>
1292dnF	AAA <u>GAATTC</u> TAGTCACTCGCCGGAGAGACCCCGA	pCWU2-∆ <i>129</i> 2
1292dnR	AAA <u>TCTAGA</u> ACACGTCATGTGTCGTCCCCCGGAG C	pCWU2-∆ <i>129</i> 2
com-AcaC-F	GGCG <u>CATATG</u> CAAGCACCGGGACGCGGGTACGG AGC	pAcaC
com-AcaC-R	GGCG <u>GAATTC</u> AGTGTTTCCAGTCAGACTGGAAGG A	pAcaC
AcaC _{ALPXTG} -F	GCCAACGGCCTGCTCTTCGGCG	pAcaCALPXTG
AcaC _{ALPXTG} -R	GGGCTTGCCGGAGGTGGAGGCCGC	pAcaC _{ALPXTG}
AcaC _{∆cws} -F	GGGCTTGCCGGAGGTGGAGGCCGCCGG	pAcaC _{∆CWS}
AcaC _{∆cws} -R	TGATGATCGCCTCCTTCCAGT	pAcaC _{∆CWS}
$AcaC_{6H-TEV}$ -F	CACCACCACCACCACGGCAAGCCCCTGGCC CAGACCG	pAcaC _{H6-TEV}
$AcaC_{6H-TEV}$ -R	CGATTGGAAGTAGAGGTTCTCGGAGGTGGAGGC CGCCGGGGTGGCGTC	pAcaC _{H6-TEV}
RT-16s-F	GTCGCTAGTAATCGCAGATCAG	16S rRNA, RT-PCR
RT-16s-R	GGTGTTGCCGACTTTCATG	16S rRNA RT-PCR
RT-srtC2-F	CCAGTACAACCAGTCGAAGG	srtC2, RT-PCR
RT-srtC2-R	GAGAGCGCGTCATTGTAGG	srtC2, RT-PCR
RT-1289F	GAGATCCCGCACGTCAAC	ANA_1289, RT-PCR
RT-1289R	CTTGAGAGCGATGCCCAG	ANA_1289, RT-PCR
RT-1291F	GACGGCACCTACAAGATCAC	<i>acaC</i> , RT-PCR
RT-1291R	AGGAGTCGGTCTTGCTGA	acaC, RT-PCR
RT-1292F	GCTCAGTTCGCCACTATCAT	<i>lcp</i> , RT-PCR
RT-1292R	AGAGGTTCAGTCCGGTGTAG	<i>lcp</i> , RT-PCR

^(a) Underlined are the restriction sites in the primers.

Supporting Experimental Procedures

Plasmid construction

PrpsJ-SrtA, PrpsJ-SrtA-C216A, and Pribo-SrtA-C216A – The promoter region of the rpsJ gene and the *srtA* coding region were amplified from the MG-1 chromosome by PCR with the primer pairs rpsL-F/R and com-srtA-F/R, respectively (Table S2). PCR products were digested with appropriate restriction enzymes and ligated into the BamHI and EcoRI sites of *E. coli/Actinomyces* shuttle vector pJRD215 (Yeung & Kozelsky, 1994) to yield PrpsJ-SrtA.

To generate P*rpsJ*-SrtA-C216A, the BamHI and EcoRI fragment above was subcloned into pUC19. The generated plasmid was used as a template for site-directed mutagenesis by inverse PCR using primers srtA(C216A)-F/R as previously described (Wu *et al.*, 2012). The resulting mutagenized *srtA* fragment was cloned into pJRD215 between BamHI and EcoRI sites. The desired mutation was confirmed by DNA sequencing.

To construct Pribo-SrtA-C216A, the pUC19 vector harboring the *rpsJ*-SrtA-C216A fragment was used as a template for introduction of the riboswitch E* sequence(Topp *et al.*, 2010) upstream of the *srtA* coding sequence by inverse PCR using the primer pair Ribo-srtA-F and Ribo-PrpsJ-R. The generated plasmid was confirmed by DNA sequencing before it was digested with BamHI and EcoRI to release the *srtA*-containing fragment, which was then cloned into pJRD215.

pCWU2- Δ srtA and pCWU3- Δ srtA – One-kb fragments upstream and downstream of srtA were amplified from the MG-1 chromosome by PCR with primer sets srtAupF/srtAupR and srtAdnF/srtAdnR, respectively (Table S2). Generated fragments were digested with EcoRI/KpnI and KpnI/XbaI, respectively, and ligated into the *Actinomyces* deletion vector pCWU2 (Mishra et

6

al., 2010) or pCWU3 (Wu & Ton-That, 2010) precut with EcoRI and Xbal. The resulting plasmids were confirmed by colony PCR and restrictive enzyme digestion.

pAcaC, pAcaC_{Δ LPXTG} and pAcaC_{Δ CWS} – A fragment encompassing the promoter region of the *acaC* gene and its open reading frame was PCR-amplified with primers com-AcaC-F/R. The PCR product treated with NdeI and EcoRI was cloned into pJRD215 pre-treated with the same enzymes to create pAcaC. To generate pAcaC_{Δ LPXTG} *and pAcaC_{\DeltaCWS}*, the treated *acaC* fragment above was cloned into pCWU2. The generated plasmid was used as a template for inverse PCR amplification using primers AcaC_{Δ LPXTG}-F/R and AcaC_{Δ cws}-F/R, respectively (Table S2). The resulting mutations were verified by DNA sequencing.

pAcaC_{H6-TEV} – pAcaC was used as a template for inverse PCR amplification using primers Rev-AcaC(H6)-F (5'-CACCACCACCACCACCACGGCAAGCCCCTGGCCCAGACCG-3') and Rev-AcaC(TEV)-R(5'-CGATTGGAAGTAGAGGTTCTCGGAGGTGGAGGCCGCCGGGGGTGGCGTC-3'). This strategy allows insertion of a TEV-protease cleavage site (ENLYFQS), followed by a 6xHis-Tag upstream of the AcaC LPXTG motif. The obtained PCR product was circulated to generate pAacC_{H6-TEV}, which was further verified by DNA sequencing.

Generation of antibodies against AcaC

For antibody production, an expression vector for a recombinant AcaC protein lacking its signal peptide and cell wall sorting signal was generated as the following. The primers $AcaC_{Ecoli}$ -F (5'-aaaggatccaagatcgccgatgaccagc-3') and $AcaC_{Ecoli}$ -R (5'-aaactgcagttacttgccggaggtggagg-3') were used for PCR amplification of the *acaC* coding sequence from the chromosomal MG-1 DNA. The generated amplicon was treated with BamHI and BgIII and cloned into the expression vector pQE30 (QIAGEN). The recombinant plasmid was transformed into *E. coli* XL1-Blue. Purification of the recombinant AcaC protein was carried out by affinity chromatography and the purified protein was used for antibody production accordingly (Mishra et al., 2007).

7

Supporting References

- Corrigan, R. M. & T. J. Foster, (2009) An improved tetracycline-inducible expression vector for *Staphylococcus aureus*. *Plasmid* **61**: 126-129.
- Mishra, A., A. Das, J. O. Cisar & H. Ton-That, (2007) Sortase-Catalyzed Assembly of Distinct Heteromeric Fimbriae in *Actinomyces naeslundii*. *J Bacteriol* **189**: 3156-3165.
- Mishra, A., C. Wu, J. Yang, J. O. Cisar, A. Das & H. Ton-That, (2010) The *Actinomyces oris* type 2 fimbrial shaft FimA mediates co-aggregation with oral streptococci, adherence to red blood cells and biofilm development. *Mol Microbiol* **77** 841–854.
- Topp, S., C. M. Reynoso, J. C. Seeliger, I. S. Goldlust, S. K. Desai, D. Murat, A. Shen, A. W. Puri, A. Komeili, C. R. Bertozzi, J. R. Scott & J. P. Gallivan, (2010) Synthetic riboswitches that induce gene expression in diverse bacterial species. *Appl Environ Microbiol* **76**: 7881-7884.
- Wu, C., A. Mishra, M. E. Reardon, I. H. Huang, S. C. Counts, A. Das & H. Ton-That, (2012)
 Structural Determinants of *Actinomyces* sortase SrtC2 Required for Membrane
 Localization and Assembly of Type 2 Fimbriae for Interbacterial Coaggregation and Oral
 Biofilm Formation. *J Bacteriol* 194: 2531-2539.
- Wu, C. & H. Ton-That, (2010) Allelic exchange in Actinomyces oris with mCherry fluorescence counterselection. Appl Environ Microbiol 76: 5987-5989.
- Yeung, M. K. & C. S. Kozelsky, (1994) Transformation of *Actinomyces* spp. by a gram-negative broad-host-range plasmid. *J Bacteriol* **176**: 4173-4176.
- Yoshida, Y., S. Ganguly, C. A. Bush & J. O. Cisar, (2006) Molecular basis of L-rhamnose branch formation in streptococcal coaggregation receptor polysaccharides. *J Bacteriol* 188: 4125-4130.

Figure S1: Wu et al.

Figure S2: Wu et al.

Figure S3: Wu et al.