SUPPLEMENTARY MATERIALS

MicroRNAs: Modulators of Cell Identity, and their Applications in Tissue Engineering

Amanda O. Ribeiro^{1,#}, Cláudia R. G. Schoof^{1,#}, Alberto Izzotti², Lygia V. Pereira¹ and Luciana R. Vasques^{1,*}

¹Department of Genetics and Evolutionary Biology, University of Sao Paulo, Sao Paulo, Brazil; ²Department of Health Sciences, University of Genoa, Italy/ Mutagenesis Unit, IRCCS San Martino Hospital-University–IST National Institute for Cancer Research, Genoa, Italy

Supplementary Table S1. A comprehensive list of the main microRNAs involved with the regulation of organ and tissue genesis and development in mammals.

microRNA	Validated Target(s)	Processes Regulated	Organism	Ref.
let-7e	Predicted targets only	Nephrogenesis (expression of early nephrogenic markers during embryoid bodies differentiation)	Mice	[1]
let-7f	TIMP-1	Osteogenesis (mesenchymal stem cell growth and osteogenic differentiation)	Human	[2]
	Hand2	Cardiogenesis (cardiomyocytes differentiation and ventricular cardiomyocyte proliferation)	Mice	[3]
	HDAC4	Skeletal muscle myogenesis (myogenic differentiation)	Xenopus sp. and mice	[4]
miR-1	Klf4	Smooth muscle myogenesis (myogenic differentiation of embryonic stem cells)	Mice	[5]
	kayak	Cardiogenesis (modulation of cardiac cell progenitors polarity)	Drosophila sp. and mice	[6]
	FZD7; FRS2	Cardiogenesis (cardiomyocyte differentiation of embryonic stem cell derived- multipotent cardiovascular progenitors)	Human	[7]
miR-7		Pancreatic function (potential role in the modulation of endocrine cell differentiation and/or function)	Human	[8]
	Pax6	Pancreatic development (modulation of endocrine cell differentiation)	Mice	[9]
miR-7a	Barx1	Stomach organogenesis (modulation of gastric epithelial differentiation)	Mice	[10]
miR-9*	Baf53a	Neurogenesis (dendritic development)	Mice	[11]
miD 10a	HOXA1	Megakaryocytopoiesis (megakaryocytic differentiation)	Human	[12]
miR-10a	HDAC4	Smooth muscle myogenesis (myogenic differentiation of embryonic stem cells)	Mice	[13]
miR-15a	Dlk1	Cell proliferation (balance between cell density and cell growth in preadipocytes)	Mice	[14]
:D 17	Mapk14; Stat3	Pulmonary morphogenesis (modulation of embryonic epithelial branching)	Mice	[15]
m1 K- 17	Predicted targets only	Osteogenesis (osteogenic differentiation of adipose-derived stem cells)	Human	[16]
miR-18b	FOXN1	Epithelial lineage development (epithelial lineage differentiation in embryonic stem cells and embryonal carcinoma pluripotent cells)	Human	[17]
miR-20a	Mapk14; Stat3	Pulmonary morphogenesis (modulation of embryonic epithelial branching)	Mice	[15]
	Predicted targets only	Osteogenesis (osteogenic differentiation of adipose-derived stem cells)	Human	[16]

microRNA	Validated Target(s)	Processes Regulated	Organism	Ref.
miR-20b	Predicted targets only	Osteogenesis (osteogenic differentiation of adipose-derived stem cells)	Human	[16]
miR-21	Predicted target only	Adipogenesis (adipocyte differentiation)	Mice	[18]
miR-22	HDAC6	Osteogenesis (osteogenic differentiation of mesenchymal stem cells)	Human	[19]
miR-23b	PKA	Chondrogenesis (chondrogenic differentiation of mesenchymal stem cells)	Human	[20]
miR-24	P16 ^{INK4a}	Inhibits chrondrogenesis in humans and mice	Human and mice	[21]
	SMAD1	Osteogenesis (osteogenic differentiation of human adipose tissue-derived stem cells)	Human	[22]
miR-26a	SMAD1; SMAD4	Vascular smooth muscle myogenesis and plasticity (modulation of smooth muscle cells proliferation, differentiation, migration, and apoptosis)	Human and mice	[23]
	TETs; TGD	Pancreatic development (pancreatic cell differentiation)	Mice	[24]
miR-27	Pax3	Skeletal muscle myogenesis (skeletal muscle stem cells differentiation)	Mice	[25]
	GCA	Osteogenesis (osteogenic differentiation of mesenchymal stem cells)	Human	[26]
	sFRP1	Promotes osteoblastic differentiation in humans	Human	[27]
miR-27a	Runx1	Hematopoiesis (megakaryocytic differentiation)	Human and mice	[28]
	ΡΡΑRγ	Adipogenesis (adipogenic differentiation of preadipocytes)	Mice	[29]
miR-27b	ΡΡΑRγ	Adipogenesis (adipogenic differentiation of multipotent adipose-derived stem cells)	Human	[30]
miR-29a	Osteonectin	Osteogenesis (osteoblastic differentiation)	Mice	[31]
miR-29b	HDAC4; TGFβ3; Acvr2a; Ctnnbip1; Dusp2	Osteogenesis (down-regulation of inhibitors of osteoblast differentiation)	Rat and mice	[32]
miR-29c	Osteonectin	Osteogenesis (osteoblastic differentiation)	Mice	[31]
miR-30a/c	Snail1	Chondrogenesis (tracheal chondrocytes differentiation)	Mice	[33]
	Predicted targets only	Adipogenesis (adipogenic differentiation of adipose-derived stem cells)	Rat	[34]
miR-31	Krt16; Krt17; Dlx3; Fgf10	Skin and appendages morphogenesis (anagen progression and hair shaft formation in the hair follicle)	Mice	[35]
	OSTERIX (SP7)	Osteogenesis (osteogenic differentiation of mesenchymal stem cells)	Human	[36]
	Predicted targets only	Osteogenesis (osteogenic differentiation of adipose-derived stem cells)	Human	[16]
miR-34 family	Cdk4; cyclin D1	Epithelial formation (keratinocytes proliferation)	Mice	[37]
miR-92a	Predicted targets only	Chondrogenesis (cartilage formation and chondrogenic differentiation of adipose- derived stem cells)	Human	[38]
miR-100	BMPR2	Osteogenesis (osteogenic differentiation of mesenchymal stem cells)	Human	[39]
miR-106	Predicted targets only	Osteogenesis (osteogenic differentiation of adipose-derived stem cells)	Human	[16]
miR-106b	Mapk14; Stat3	Pulmonary morphogenesis (modulation of embryonic epithelial branching)	Mice	[15]
miR-124	lamininγ1; integrinβ1	Neurogenesis (basal laminae integrity)	Human, mice and chicken	[40]
	Socs5	Promotes differentiation of CD4+ T cells	Human and mice	[41]
	Baf53a	Neurogenesis (dendritic development)	Mice	[11]

microRNA	Validated Target(s)	Processes Regulated	Organism	Ref.
	Dlx2; Sox9; Jag1	Neurogenesis (neuronal differentiation in the brain subventricular zone)	Mice	[42, 43]
	NFATc1	Osteoclastogenesis (osteoclast differentiation of bone marrow macrophages)	Mice	[44]
	Sox9	Gonadal development (modulation of ovarian development and sex determination)	Mice	[45]
miR-124a	Foxa2	Pancreatic development (modulation of signaling in beta-cells)	Rat and mice	[46]
	Lhx2	Neurogenesis (prevention of retinal cones apoptosis and development of hippocampal neurons axons)	Mice	[47]
miR-125a/b	Predicted targets only	Osteogenesis (osteogenic differentiation of adipose-derived stem cells)	Mice	[16]
	Snail1	Chondrogenesis (tracheal chondrocytes differentiation)	Mice	[33]
miR-125b	Osx (predicted)	Inhibits osteogenic differentiation	Human	[48]
	Cbfβ	Inhibits osteoblastic differentiation	Mice	[49]
miR-126	SPRED1; VCAM1; PIK3R2	Angiogenesis (vascular formation and blood vessels integrity; modulation of leuko- cyte adherence to endothelial cells, and potential role in vascular inflammation)	Mice, human and zebrafish	[50, 51]
miR-127		Pulmonary development (fetal lung branching morphogenesis)	Rat	[52]
	MAFB	Hematopoiesis (megakaryocytic differentiation, platelet physiology)	Human	[12]
miR-130a	GAX; HOXA5	Angiogenesis (modulation of angiogenesis in vascular endothelial cells)	Human	[53]
	Hoxa5	Pulmonary development (modulation of airway and vascular morphogenesis)	Mice	[54]
miB 122	p250GAP	Neurogenesis and neuroplasticity (neuronal morphogenesis; dendritic spine formation in hippocampal neurons)	Rat	[55, 56]
1111 X -132		Neuroplasticity (ocular dominance plasticity; dendritic spines maturation)	Mice	[57, 58]
	SRF	Skeletal muscle myogenesis (myoblast proliferation)	Mice and Xenopus sp.	[4]
IIIK-155	Sp1	Vascular muscle development and integrity (vascular smooth muscle cell phenotypic switch and vascular remodeling)	Rat	[59]
miR-133a	SRF; cyclin D2	Cardiogenesis (cardiomyocyte proliferation; suppression of smooth muscle genes)	Mice	[60]
miR-136		Chondrogenesis (cartilage formation and chondrogenic differentiation of adipose- derived stem cells)	Human	[38]
miR-137	CDC42	Regulates differentiation adipose tissue-derived mesenchymal stem cells	Human	[61]
	APT1	Neurogenesis and neuroplasticity (dendritic spine morphogenesis)	Rat, mice and human	[62]
miR-138	EID-1	Adipogenesis (adipocyte differentiation of mesenchymal stem cells)	Human	[63]
	FAK	Osteogenesis (osteogenic differentiation of mesenchymal stem cells)	Human	[64]
miR-140	Predicted targets only	Chondrogenesis (chondrogenic differentiation of mesenchymal stem cells; cartilage homeostasis)	Human	[65]
	Dnpep	Chondrogenesis (endochondral bone development)	Mice	[66]
	RALA	Chondrogenesis (chondrogenic differentiation of mesenchymal stem cells)	Human	[67]
miR-140-3p miR-140-5p		Gonadal development (modulation of Leydig cell numbers in developing testis)	Mice	[68]
miR-143	Predicted targets only	Adipogenesis (adipocyte differentiation of preadipocytes)	Human	[69]

microRNA	Validated Target(s)	Processes Regulated	Organism	Ref.
miR-143		Smooth muscle myogenesis (smooth muscle differentiation		
miR-145	Elk-1; Kfl4; Myocd	and proliferation)	Mice	[70]
miR-145	Sox9	Chondrogenesis (chondrogenic differentiation of mesenchymal stem cells)	Mice	[71]
miR-146a	CXCR4	Hematopoiesis (megakaryocytic proliferation, differentiation and maturation)	Human	[72]
miR-148a	Rock1	Skeletal muscle myogenesis (myogenic differentiation of C2C12 myoblasts)	Mice	[73]
miR-148b	Predicted targets only	Osteogenesis (osteogenic differentiation of mesenchymal stem cells)	Human	[26]
miR-150	c-Myb	Hematopoiesis (modulation of megakaryocytes progenitor cell growth and differen- tiation)	Human and mice	[74, 75]
miR-153 miR- 181a/a* miR-324- 3p/5p		Induce neuronal differentiation of humans	Human	[76]
		Hematopoiesis and immune response (B-lymphoid lineage differentiation)	Mice	[77]
miR-181	Hox-A11	Skeletal muscle myogenesis (myoblast differentiation)	Mice	[78]
	NLK	Hematopoiesis and immune response (NK cells development)	Human	[79]
miR-181b	Six2	Nephrogenesis (modulation of metanephric mesenchymal cells proliferation)	Mice	[80]
miR-193a	Predicted targets only	Osteogenesis (osteogenic differentiation of adipose-derived stem cells)	Human	[16]
miR-193b	Predicted targets only	Chondrogenesis (cartilage formation and chondrogenic differentiation of adipose- derived stem cells)	Human	[38]
miR-196a	HOXC8	Osteogenesis (osteogenic differentiation and proliferation of mesenchymal stem cells)	Human	[81]
miR-199a- 3p miR-199b- 3p	Predicted targets only	Chondrogenesis (cartilage formation and chondrogenic differentiation of adipose- derived stem cells)	Human	[38]
miR-199a-	VEGF	Cell proliferation and differentiation (fine-tuning of human adipose tissue-derived stem cells multipotency)	Human	[82]
эр	c-Kit	Promotes erythroid differentiation	Human	[83]
miR-202-3p miR-202-5p		Gonadal development (modulation of testis development and sex determination)	Mice	[84]
	Ρ63 (ΔΝρ63α)	Epithelial lineage development (epithelial differentiation and stratification, and keratinocyte differentiation)	Human and mice	[85, 86]
miR-203	Barx1	Stomach organogenesis (modulation of gastric epithelial differentiation)	Mice	[10]
		Skin and appendages morphogenesis (sebaceous lipogenesis)	Human	[87]
miR-204 miR-211	Runx2	Osteogenesis/adipogenesis (modulation of alternative fates of mesenchymal progeni- tor cells)	Human and mice	[88]
miR-206	Fstl1; Utrn	Skeletal muscle myogenesis (myoblast differentiation)	Mice	[89]
	Pola1; Bind1; Cx43; Mmd	Skeletal muscle myogenesis (myoblast differentiation)	Mice	[90]
	Cx43	Skeletal muscle myogenesis (regulation of muscular gap junctions)	Mice and human	[91]
	Cx43	Osteogenesis (modulation of osteoblast differentiation)	Mice	[92]

microRNA	Validated Target(s)	Processes Regulated	Organism	Ref.
miR-210	Predicted targets only	Chondrogenesis (cartilage formation and chondrogenic differentiation of adipose- derived stem cells)	Human	[38]
	Hif1a	Inhibits differentiation of immune system cells	Human	[93]
miR-214	Ezh2	Skeletal muscle myogenesis (myogenic differentiation of embryonic stem cells)	Mice	[94]
miR-218	RUNX2	Osteogenesis (osteogenic induction and differentiation of dental stem cells)	Human	[95]
	SFRP2; DKK2	Osteogenesis (osteogenic differentiation of adipose tissue-derived stem cells)	Human	[96]
miR-219	PDGFRα; Sox6; FoxJ3; ZFP238	Neurogenesis (oligodendrocyte differentiation and myelination)	Mice	[97]
	Kit	Hematopoiesis and erythropoiesis (erythroid differentiation of cord blood hema- topoietic progenitor cells)	Human	[98]
miR-221	p27	Skeletal muscle myogenesis (myoblast differentiation and assembly of sarcomeres in myotubes)	Mice	[99]
	Predicted targets only	Osteogenesis (osteogenic differentiation)	Human	[100]
	Hoxb5	Pulmonary development (modulation of airway and vascular morphogenesis)	Mice	[54]
	Kit	Hematopoiesis and erythropoiesis (erythroid differentiation of cord blood hema- topoietic progenitor cells)	Human	[98]
miR-222		Articular cartilage homeostasis (potential regulator of the cartilage mechanotransduc- tion pathway)	Bovine	[101]
	p27	Skeletal muscle myogenesis (myoblast differentiation and assembly of sarcomeres in myotubes)	Mice	[99]
	NFI-A	Hematopoiesis (granulocytic differentiation of progenitor cells)	Human	[102]
miR-223	Mef2c	Hematopoiesis (granulocytic differentiation of progenitor cells and modulation of inflammatory response via neutrophil sensitivity)	Mice	[103]
	LMO2	Hematopoiesis and erythropoiesis (erythroid differentiation of cord blood hema- topoietic progenitor cells)	Human	[104]
miR-224	Egr2; ACSL4	Adipogenesis (adipocyte differentiation of 3T3-L1 cells)	Mice	[105]
miR-320c		Chondrogenesis (cartilage formation and chondrogenic differentiation of adipose- derived stem cells)	Human	[38]
miR-326	Predicted targets only	Adipogenesis (adipogenic differentiation of adipose-derived stem cells)	Rat	[34]
miR-329	CD146	Angiogenesis (modulation of endothelial cell migration and tube formation)	Mice and human	[106]
'D 075		Pancreatic development (modulation of pancreatic islet morphology and develop- ment)	Human	[107, 108]
miR-375	HuD	Neurogenesis and neuronal plasticity (modulation of dendrite formation)	Rat, mice and human	[109]
miR-379- 410 cluster	N-cadherin	Promotes neural stem cell differentiation in mice	Mice	[110]
miR-381	Predicted targets only	Chondrogenesis (cartilage formation and chondrogenic differentiation of adipose- derived stem cells)	Human	[38]
miR-432	NES, RCOR1/COREST, MECP2	Neurogenesis (enhances the formation of neurites)	Human	[111]
miR-455-3p	Predicted targets only	Chondrogenesis (cartilage formation and chondrogenic differentiation of adipose-derived stem cells)	Human	[38]

microRNA	Validated Target(s)	Processes Regulated	Organism	Ref.
miR-489	GCA	Osteogenesis (osteogenic differentiation of mesenchymal stem cells)	Human	[26]
miR-495	Sox9	Inhibition of chondrogenic differentiation of mesenchymal stem cells	Human	[112]
	Dnmt3a	Inhibition of mesendoderm differentiation	Mice	[113]
miR-499	Predicted targets only	Cardiogenesis (cardiac differentiation of embryonic stem cells)	Human	[114]
miR-518b	FOXN1	Epithelial lineage development (epithelial lineage differentiation in embryonic stem cells and embryonal carcinoma pluripotent cells)	Human	[17]
miR-574-3p	RXRα	Chondrogenesis (chondrogenic differentiation of mesenchymal stem cells)	Human	[115]
		Skin and appendages morphogenesis (sebaceous lipogenesis)	Human	[87]
miR-675		Chondrogenesis (chondrogenic differentiation and cartilage matrix production)	Human	[116]
miR-2861	HDAC5	Osteogenesis (osteoblast differentiation)	Mice	[117]
miR-3960	Hoxa2	Osteogenesis (osteoblast differentiation)	Mice	[118]
miR-4448 miR-4708	Prediction of SMAD1 and SMAD4	Inhibits osteoblast differentiation	Human	[119]
miR-4773				

TABLE S1 REFERENCES

- Viñas JL, Ventayol M, Brune B, et al. miRNA let-7e modulates the Wnt pathway and early nephrogenic markers in mouse embryonic stem cell differentiation. PLoS One 2013; 8: e60937.
- [2] Egea V, Zahler S, Rieth N, et al. Tissue inhibitor of metalloproteinase-1 (TIMP-1) regulates mesenchymal stem cells through let-7f microRNA and Wnt/beta-catenin signaling. Proc Natl Acad Sci U S A 2012; 109: E309-16.
- Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 2005; 436: 214-20.
- [4] Chen JF, Mandel EM, Thomson JM, *et al.* The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 2006; 38: 228-33.
- [5] Xie C, Huang H, Sun X, et al. MicroRNA-1 regulates smooth muscle cell differentiation by repressing Kruppel-like factor 4. Stem Cells Dev 2011; 20: 205-10.
- [6] King IN, Qian L, Liang J, et al. A genome-wide screen reveals a role for microRNA-1 in modulating cardiac cell polarity. Dev Cell 2011; 20: 497-510.
- [7] Lu TY, Lin B, Li Y, et al. Overexpression of microRNA-1 promotes cardiomyocyte commitment from human cardiovascular progenitors via suppressing WNT and FGF signaling pathways. J Mol Cell Cardiol 2013; 63: 146-54.
- [8] Correa-Medina M, Bravo-Egana V, Rosero S, et al. MicroRNA miR-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas. Gene Expr Patterns 2009; 9: 193-9.
- [9] Kredo-Russo S, Mandelbaum AD, Ness A, et al. Pancreas-enriched miRNA refines endocrine cell differentiation. Development 2012; 139: 3021-31.
- [10] Kim BM, Woo J, Kanellopoulou C, Shivdasani RA. Regulation of mouse stomach development and Barx1 expression by specific microRNAs. Development 2011; 138: 1081-6.
- [11] Yoo AS, Staahl BT, Chen L, Crabtree GR. MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature 2009; 460: 642-6.
- [12] Garzon R, Pichiorri F, Palumbo T, et al. MicroRNA fingerprints during human megakaryocytopoiesis. Proc Natl Acad Sci U S A 2006; 103: 5078-83.
- [13] Huang H, Xie C, Sun X, Chen YE. miR-10a contributes to retinoid acid-induced smooth muscle cell differentiation. J Biol Chem 2010; 285: 9383-9.
- [14] Andersen DC, Jensen CH, Schneider M, et al. MicroRNA-15a fine-tunes the level of Delta-like 1 homolog (DLK1) in proliferating 3T3-L1 preadipocytes. Exp Cell Res 2010; 316: 1681-91.
- [15] Carraro G, El-Hashash A, Guidolin D, *et al.* miR-17 family of microRNAs controls FGF10-mediated embryonic lung epithelial branching morphogenesis through MAPK14 and STAT3 regulation of E-Cadherin distribution. Dev Biol 2009; 333: 238-50.
- [16] Zhang ZJ, Zhang H, Kang Y, et al. miRNA expression profile during osteogenic differentiation of human adipose-derived stem cells. J Cell Biochem 2012; 113: 888-98.
- [17] Kushwaha R, Thodima V, Tomishima MJ, Bosl GJ, Chaganti R. Mir-18 and mir-518b target FOXN1 during epithelial lineage differentiation in pluripotent cells. Stem Cells Dev 2014.
- [18] Kang M, Yan LM, Zhang WY, Li YM, Tang AZ, Ou HS. Role of microRNA-21 in regulating 3T3-L1 adipocyte differentiation and adiponectin expression. Mol Biol Rep 2013; 40: 5027-34.
- [19] Huang S, Wang S, Bian C, et al. Upregulation of miR-22 promotes osteogenic differentiation and inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells by repressing HDAC6 protein expression. Stem Cells Dev 2012; 21: 2531-40.
- [20] Ham O, Song BW, Lee SY, et al. The role of microRNA-23b in the differentiation of MSC into chondrocyte by targeting protein kinase A signaling. Biomaterials 2012; 33: 4500-7.
- [21] Philipot D, Guerit D, Platano D, et al. p16INK4a and its regulator miR-24 link senescence and chondrocyte terminal differentiation-associated matrix remodelling in osteoarthritis. Arthritis Res Ther 2014; 16: R58.

- [22] Luzi E, Marini F, Sala SC, et al. Osteogenic differentiation of human adipose tissue-derived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor. J Bone Miner Res 2008; 23: 287-95.
- [23] Leeper NJ, Raiesdana A, Kojima Y, et al. MicroRNA-26a is a novel regulator of vascular smooth muscle cell function. J Cell Physiol 2011; 226: 1035-43.
- [24] Fu X, Jin L, Wang X, *et al.* MicroRNA-26a targets ten eleven translocation enzymes and is regulated during pancreatic cell differentiation. Proc Natl Acad Sci U S A 2013; 110: 17892-7.
- [25] Crist CG, Montarras D, Pallafacchina G, et al. Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression. Proc Natl Acad Sci U S A 2009; 106: 13383-7.
- [26] Schoolmeesters A, Eklund T, Leake D, et al. Functional profiling reveals critical role for miRNA in differentiation of human mesenchymal stem cells. PLoS One 2009; 4: e5605.
- [27] Guo D, Li Q, Lv Q, Wei Q, Cao S, Gu J. MiR-27a targets sFRP1 in hFOB cells to regulate proliferation, apoptosis and differentiation. PLoS One 2014; 9: e91354.
- [28] Ben-Ami O, Pencovich N, Lotem J, Levanon D, Groner Y. A regulatory interplay between miR-27a and Runx1 during megakaryopoiesis. Proc Natl Acad Sci U S A 2009; 106: 238-43.
- [29] Kim SY, Kim AY, Lee HW, *et al.* MiR-27a is a negative regulator of adipocyte differentiation via suppressing PPARgamma expression. Biochem Biophys Res Commun 2010; 392: 323-8.
- [30] Karbiener M, Fischer C, Nowitsch S, et al. MicroRNA miR-27b impairs human adipocyte differentiation and targets PPARgamma. Biochem Biophys Res Commun 2009; 390: 247-51.
- [31] Kapinas K, Kessler CB, Delany AM. miR-29 suppression of osteonectin in osteoblasts: regulation during differentiation and by canonical Wnt signaling. J Cell Biochem 2009; 108: 216-24.
- [32] Li Z, Hassan MQ, Jafferji M, et al. Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J Biol Chem 2009; 284: 15676-84.
- [33] Gradus B, Alon I, Hornstein E. miRNAs control tracheal chondrocyte differentiation. Dev Biol 2011; 360: 58-65.
- [34] Tang YF, Zhang Y, Li XY, Li C, Tian W, Liu L. Expression of miR-31, miR-125b-5p, and miR-326 in the adipogenic differentiation process of adipose-derived stem cells. OMICS 2009; 13: 331-6.
- [35] Mardaryev AN, Ahmed MI, Vlahov NV, et al. Micro-RNA-31 controls hair cycle-associated changes in gene expression programs of the skin and hair follicle. FASEB J 2010; 24: 3869-81.
- [36] Baglio SR, Devescovi V, Granchi D, Baldini N. MicroRNA expression profiling of human bone marrow mesenchymal stem cells during osteogenic differentiation reveals Osterix regulation by miR-31. Gene 2013; 527: 321-31.
- [37] Antonini D, Russo MT, De Rosa L, Gorrese M, Del Vecchio L, Missero C. Transcriptional repression of miR-34 family contributes to p63-mediated cell cycle progression in epidermal cells. J Invest Dermatol 2010; 130: 1249-57.
- [38] Zhang Z, Kang Y, Zhang H, et al. Expression of microRNAs during chondrogenesis of human adipose-derived stem cells. Osteoarthr Cartilage 2012; 20: 1638-46.
- [39] Zeng Y, Qu X, Li H, et al. MicroRNA-100 regulates osteogenic differentiation of human adipose-derived mesenchymal stem cells by targeting BMPR2. FEBS Lett 2012; 586: 2375-81.
- [40] Cao X, Pfaff SL, Gage FH. A functional study of miR-124 in the developing neural tube. Genes Dev 2007; 21: 531-6.
- [41] Jiang S, Li C, McRae G, *et al.* MeCP2 reinforces STAT3 signaling and the generation of effector CD4+ T cells by promoting miR-124-mediated suppression of SOCS5. Sci Signal 2014; 7: ra25.
- [42] Akerblom M, Sachdeva R, Barde I, et al. MicroRNA-124 is a subventricular zone neuronal fate determinant. J Neurosci 2012; 32: 8879-89.
- [43] Cheng LC, Pastrana E, Tavazoie M, Doetsch F. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 2009; 12: 399-408.
- [44] Lee Y, Kim HJ, Park CK, et al. MicroRNA-124 regulates osteoclast differentiation. Bone 2013; 56: 383-9.
- [45] Real FM, Sekido R, Lupianez DG, Lovell-Badge R, Jimenez R, Burgos M. A microRNA (mmu-miR-124) prevents Sox9 expression in developing mouse ovarian cells. Biol Reprod 2013; 89: 78.
- [46] Baroukh N, Ravier MA, Loder MK, et al. MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines. J Biol Chem 2007; 282: 19575-88.
- [47] Sanuki R, Onishi A, Koike C, et al. miR-124a is required for hippocampal axogenesis and retinal cone survival through Lhx2 suppression. Nat Neurosci 2011; 14: 1125-34.
- [48] Chen S, Yang L, Jie Q, et al. MicroRNA-125b suppresses the proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Mol Med Rep 2014; 9: 1820-6.
- [49] Huang K, Fu J, Zhou W, et al. MicroRNA-125b regulates osteogenic differentiation of mesenchymal stem cells by targeting Cbfbeta in vitro. Biochimie 2014.
- [50] Fish JE, Santoro MM, Morton SU, et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 2008; 15: 272-84.
- [51] Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci U S A 2008; 105: 1516-21.
- [52] Bhaskaran M, Wang Y, Zhang H, et al. MicroRNA-127 modulates fetal lung development. Physiol Genomics 2009; 37: 268-78.
- [53] Chen Y, Gorski DH. Regulation of angiogenesis through a microRNA (miR-130a) that down-regulates antiangiogenic homeobox genes GAX and HOXA5. Blood 2008; 111: 1217-26.
- [54] Mujahid S, Nielsen HC, Volpe MV. MiR-221 and miR-130a regulate lung airway and vascular development. PLoS One 2013; 8: e55911.
- [55] Vo N, Klein ME, Varlamova O, et al. A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci U S A 2005; 102: 16426-31.
- [56] Impey S, Davare M, Lesiak A, al. An activity-induced microRNA controls dendritic spine formation by regulating Rac1-PAK signaling. Mol Cell Neurosci 2010; 43: 146-56.
- [57] Mellios N, Sugihara H, Castro J, et al. miR-132, an experience-dependent microRNA, is essential for visual cortex plasticity. Nat Neurosci 2011; 14: 1240-2.
- [58] Tognini P, Putignano E, Coatti A, Pizzorusso T. Experience-dependent expression of miR-132 regulates ocular dominance plasticity. Nat Neurosci 2011; 14: 1237-9.
- [59] Torella D, Iaconetti C, Catalucci D, et al. MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo. Circ Res 2011; 109: 880-93.
- [60] Liu N, Bezprozvannaya S, Williams AH, et al. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 2008; 22: 3242-54.
- [61] Shin KK, Kim YS, Kim JY, Bae YC, Jung JS. MiR-137 controls proliferation and differentiation of human adipose tissue stromal cells. Cell Physiol Biochem 2014; 33: 758-68.
- [62] Siegel G, Obernosterer G, Fiore R, et al. A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. Nat Cell Biol 2009; 11: 705-16.

- [63] Yang Z, Bian C, Zhou H, et al. MicroRNA hsa-miR-138 inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells through adenovirus EID-1. Stem Cells Dev 2011; 20: 259-67.
- [64] Eskildsen T, Taipaleenmaki H, Stenvang J, Abdallah BM, Ditzel N, Nossent AY, et al. MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo. Proc Natl Acad Sci U S A 2011; 108: 6139-44.
- [65] Miyaki S, Nakasa T, Otsuki S, et al. MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses. Arthritis Rheum 2009; 60: 2723-30.
- [66] Nakamura Y, Inloes JB, Katagiri T, Kobayashi T. Chondrocyte-specific microRNA-140 regulates endochondral bone development and targets Dnpep to modulate bone morphogenetic protein signaling. Mol Cell Biol 2011; 31: 3019-28.
- [67] Karlsen TA, Jakobsen RB, Mikkelsen TS, Brinchmann JE. microRNA-140 Targets RALA and Regulates Chondrogenic Differentiation of Human Mesenchymal Stem Cells by Translational Enhancement of SOX9 and ACAN. Stem Cells Dev 2014; 23: 290-304.
- [68] Rakoczy J, Fernandez-Valverde SL, Glazov EA, et al. MicroRNAs-140-5p/140-3p modulate Leydig cell numbers in the developing mouse testis. Biol Reprod 2013; 88: 143.
- [69] Esau C, Kang X, Peralta E, et al. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 2004; 279: 52361-5.
- [70] Cordes KR, Sheehy NT, White MP, et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 2009; 460: 705-10.
- [71] Yang B, Guo H, Zhang Y, Chen L, Ying D, Dong S. MicroRNA-145 regulates chondrogenic differentiation of mesenchymal stem cells by targeting Sox9. PLoS One 2011; 6: e21679.
- [72] Labbaye C, Spinello I, Quaranta MT, et al. A three-step pathway comprising PLZF/miR-146a/CXCR4 controls megakaryopoiesis. Nat Cell Biol 2008; 10: 788-801.
- [73] Zhang J, Ying ZZ, Tang ZL, Long LQ, Li K. MicroRNA-148a promotes myogenic differentiation by targeting the ROCK1 gene. J Biol Chem 2012; 287: 21093-101.
- [74] Barroga CF, Pham H, Kaushansky K. Thrombopoietin regulates c-Myb expression by modulating micro RNA 150 expression. Exp Hematol 2008; 36: 1585-92.
- [75] Lu J, Guo S, Ebert BL, et al. MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Dev Cell 2008; 14: 843-53.
- [76] Stappert L, Borghese L, Roese-Koerner B, *et al.* MicroRNA-based promotion of human neuronal differentiation and subtype specification. PLoS One 2013; 8: e59011.
- [77] Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science 2004; 303: 83-6.
- [78] Naguibneva I, Ameyar-Zazoua M, Polesskaya A, et al. The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol 2006; 8: 278-84.
- [79] Cichocki F, Felices M, McCullar V, et al. Cutting edge: microRNA-181 promotes human NK cell development by regulating Notch signaling. J Immunol 2011; 187: 6171-5.
- [80] lyu Z, Mao Z, Wang H, et al. MiR-181b targets Six2 and inhibits the proliferation of metanephric mesenchymal cells in vitro. Biochem Biophys Res Commun 2013; 440: 495-501.
- [81] Kim YJ, Bae SW, Yu SS, Bae YC, Jung JS. miR-196a regulates proliferation and osteogenic differentiation in mesenchymal stem cells derived from human adipose tissue. J Bone Miner Res 2009; 24: 816-25.
- [82] Chen G, Shi X, Sun C, et al. VEGF-mediated proliferation of human adipose tissue-derived stem cells. PLoS One 2013; 8: e73673.
- [83] Li Y, Bai H, Zhang Z, *et al.* The up-regulation of miR-199b-5p in erythroid differentiation is associated with GATA-1 and NF-E2. Mol Cells 2014; 37: 213-9.
- [84] Wainwright EN, Jorgensen JS, Kim Y, et al. SOX9 regulates microRNA miR-202-5p/3p expression during mouse testis differentiation. Biol Reprod 2013; 89: 34.
- [85] Yi R, Poy MN, Stoffel M, Fuchs E. A skin microRNA promotes differentiation by repressing 'stemness'. Nature 2008; 452: 225-9.
- [86] Lena AM, Shalom-Feuerstein R, Cervo PRV, et al. miR-203 represses 'stemness' by repressing ΔNp63. Cell Death Differ 2008; 15: 1187-95.
- [87] Schneider MR, Samborski A, Bauersachs S, Zouboulis CC. Differentially regulated microRNAs during human sebaceous lipogenesis. J Dermatol Sci 2013; 70: 88-93.
- [88] Huang J, Zhao L, Xing L, Chen D. MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells 2010; 28: 357-64.
- [89] Rosenberg MI, Georges SA, Asawachaicharn A, Analau E, Tapscott SJ. MyoD inhibits Fstl1 and Utrn expression by inducing transcription of miR-206. J Cell Biol 2006; 175: 77-85.
- [90] Kim HK, Lee YS, Sivaprasad U, Malhotra A, Dutta A. Muscle-specific microRNA miR-206 promotes muscle differentiation. J Cell Biol 2006; 174: 677-87.
- [91] Anderson C, Catoe H, Werner R. miR-206 regulates connexin43 expression during skeletal muscle development. Nucleic Acids Res 2006; 34: 5863-71.
- [92] Inose H, Ochi H, Kimura A, et al. A microRNA regulatory mechanism of osteoblast differentiation. Proc Natl Acad Sci U S A 2009; 106: 20794-9.
- [93] Wang H, Flach H, Onizawa M, Wei L, McManus MT, Weiss A. Negative regulation of *Hifla* expression and TH17 differentiation by the hypoxiaregulated microRNA miR-210. Nat Immunol 2014; 15: 393-401.
- [94] Juan AH, Kumar RM, Marx JG, Young RA, Sartorelli V. Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells. Mol Cell 2009; 36: 61-74.
- [95] Gay I, Cavender A, Peto D, et al. Differentiation of human dental stem cells reveals a role for microRNA-218. J Periodontal Res 2014; 49: 110-20.
- [96] Zhang WB, Zhong WJ, Wang L. A signal-amplification circuit between miR-218 and Wnt/beta-catenin signal promotes human adipose tissue-derived stem cells osteogenic differentiation. Bone 2014; 58: 59-66.
- [97] Dugas JC, Cuellar TL, Scholze A, et al. Dicer1 and miR-219 are required for normal oligodendrocyte differentiation and myelination. Neuron 2010; 65: 597-611.
- [98] Felli N, Fontana L, Pelosi E, et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor downmodulation. Proc Natl Acad Sci U S A 2005; 102: 18081-6.
- [99] Cardinali B, Castellani L, Fasanaro P, et al. Microrna-221 and microrna-222 modulate differentiation and maturation of skeletal muscle cells. PLoS One 2009; 4: e7607.
- [100] Bakhshandeh B, Hafizi M, Ghaemi N, Soleimani M. Down-regulation of miRNA-221 triggers osteogenic differentiation in human stem cells. Biotechnol Lett 2012; 34: 1579-87.
- [101] Dunn W, DuRaine G, Reddi AH. Profiling microRNA expression in bovine articular cartilage and implications for mechanotransduction. Arthritis Rheum 2009; 60: 2333-9.
- [102] Fazi F, Rosa A, Fatica A, et al. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 2005; 123: 819-31.
- [103] Johnnidis JB, Harris MH, Wheeler RT, *et al.* Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 2008; 451: 1125-9.
- [104] Felli N, Pedini F, Romania P, et al. MicroRNA 223-dependent expression of LMO2 regulates normal erythropoiesis. Haematologica 2009; 94: 479-86.
- [105] Peng Y, Xiang H, Chen C, et al. MiR-224 impairs adipocyte early differentiation and regulates fatty acid metabolism. Int J Biochem Cell Biol 2013; 45: 1585-93.

- [106] Wang P, Luo Y, Duan H, Xing S, Zhang J, Lu D, et al. MicroRNA 329 suppresses angiogenesis by targeting CD146. Mol Cell Biol 2013; 33: 3689-99
- [107] Kloosterman WP, Lagendijk AK, Ketting RF, Moulton JD, Plasterk RH. Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol 2007; 5: e203.
- [108] Joglekar MV, Joglekar VM, Hardikar AA. Expression of islet-specific microRNAs during human pancreatic development. Gene Expr Patterns 2009; 9: 109-13.
- [109] Abdelmohsen K, Hutchison ER, Lee EK, et al. miR-375 inhibits differentiation of neurites by lowering HuD levels. Mol Cell Biol 2010; 30: 4197-210.
- [110] Rago L, Beattie R, Taylor V, Winter J. miR379-410 cluster miRNAs regulate neurogenesis and neuronal migration by fine-tuning N-cadherin. EMBO J 2014.
- [111] Das E, Bhattacharyya NP. MicroRNA-432 contributes to dopamine cocktail and retinoic acid induced differentiation of human neuroblastoma cells by targeting *NESTIN* and *RCOR1* genes. FEBS Lett 2014.
- [112] Lee S, Yoon DS, Paik S, Lee KM, Jang Y, Lee JW. MicroRNA-495 inhibits chondrogenic differentiation in human mesenchymal stem cells by targeting Sox9. Stem Cells Dev 2014.
- [113] Yang D, Wang G, Zhu S, et al. MiR-495 suppresses mesendoderm differentiation of mouse embryonic stem cells via the direct targeting of Dnmt3a. Stem Cell Res 2014; 12: 550-61.
- [114] Wilson KD, Hu S, Venkatasubrahmanyam S, *et al.* Dynamic microRNA expression programs during cardiac differentiation of human embryonic stem cells: role for miR-499. Circ Cardiovasc Genet 2010; 3: 426-35.
- [115] Guerit D, Philipot D, Chuchana P, *et al.* Sox9-regulated miRNA-574-3p inhibits chondrogenic differentiation of mesenchymal stem cells. PLoS One 2013; 8: e62582.
- [116] Dudek KA, Lafont JE, Martinez-Sanchez A, Murphy CL. Type II collagen expression is regulated by tissue-specific miR-675 in human articular chondrocytes. J Biol Chem 2010; 285: 24381-7.
- [117] Li H, Xie H, Liu W, et al. A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J Clin Invest 2009; 119: 3666-77.
- [118] Hu R, Liu W, Li H, et al. A Runx2/miR-3960/miR-2861 regulatory feedback loop during mouse osteoblast differentiation. J Biol Chem 2011; 286: 12328-39.
- [119] Kato RB, Roy B, De Oliveira FS, et al. Nanotopography directs mesenchymal stem cells to osteoblast lineage through regulation of microRNA-SMAD-BMP-2 circuit. J Cell Physiol 2014.