Shape matters for a new colloidal self-assembly mechanism for synthetic microtubules

Supplementary Fig. 1 | Microscopy of composite ellipsoidal microgels synthesized with different aspect ratios. Microscopic characterization of the composite microgel morphologies obtained at different uniaxial deformation (γ). CLSM (a) and TEM micrographs (b) of the core-shell particles at the water/glass interface and in air on carbon-coated copper grids, respectively. The evolution of the aspect ratio (ρ) determined from the analysis of the different micrographs with the two different techniques is indicated as a function of the deformation.

Supplementary Fig. 2 | **Frequency dependence of the self-assembly.** CLSM *xy*-images showing the assemblies formed by a 1 wt% ellipsoidal composite microgel dispersion ($\rho = 3.3$) in response to an applied AC electric field *E* = 125 kV m⁻¹ as a function of frequency. The applied range of frequencies varied from f = 1.6 kHz to 1.6 MHz. Representative images show the formation of (**a**) solid worm-like lattices formed in the vicinity of the electrodes at f = 1.6 kHz, (**b**) "dynamic" worm-like lattices which extend over 10 µm in the z-plane at f = 16 kHz, (**c**) tubular structures at f = 160 kHz, and (**d**) a partially aligned fluid at f = 1.6 MHz. All structures formed are fully reversible, and the colloidal dispersions relax to their initial fluid-like disordered state after the field is turned off.

Supplementary Fig. 3 | **Salt effect on the dipolar association**. The experiment was performed on a 1 wt% ellipsoidal dispersion ($\rho = 3.3$) containing 1 mM KCl under an AC electric field E = 125 kV m⁻¹ with a frequency, f = 160 kHz. The CLSM *xy*-images correspond to (**a**) randomly orientated ellipsoids (disordered particle fluid), (**b**) oriented ellipsoids with their major axes aligned in the field direction (aligned particle fluid).

Supplementary Table 1

γ	0%	50%	75%	100%	400%
2a [nm] CLSM	824 ± 47	1276 ± 81	1528 ± 88	1770 ± 117	3308 ± 176
2b [nm] CLSM	824 ± 47	614 ± 50	591 ± 38	542 ± 42	381 ± 26
ρ (CLSM)	1	2.1 ± 0.1	2.6 ± 0.2	3.3 ± 0.2	8.8 ± 0.7
2a [nm] TEM	623 ± 31	1149 ± 58	1401 ± 71	1634 ± 90	3408 ± 267
<i>2b</i> [nm] TEM	623 ± 31	459 ± 28	424 ± 22	392 ± 28	270 ± 32
ρ (TEM)	1	2.5 ± 0.1	3.3 ± 0.2	4.2 ± 0.3	12.8 ± 1.6
$2a_c$ [nm] TEM	534	986	1184	1388	2920
$2b_c$ [nm] TEM	534	393	359	331	228
ρ (TEM)	1	2.5	3.3	4.2	12.8
<i>t</i> _{<i>a</i>} [nm]	145	145	172	191	194
<i>t</i> _{<i>b</i>} [nm]	145	111	116	105	76
R_h at 20°C [nm] (DLS)	537	499	501	527	670
R_h at 50°C [nm] (DLS)	348	333	-	428	493
Q_{eff} at 20°C [e^{-}]	2104	1779	1601	1767	2148

Supplementary Table 1 | Summary of the main characterization results. Average dimensions and aspect ratios of the composite microgel particles stretched at a deformation of $\gamma = 0\%$, 50%, 75%, 100% and 400% determined from statistical analysis of CLSM and TEM micrographs. The notations 2a, 2b refer to the long and short full axis of the particles and $2a_c$, $2b_c$ to the long and short full axis of the PS core. t_a and t_b indicate the PNIPMAm shell thickness along the long and short axis, and ρ the determined aspect ratio. This table further includes the apparent hydrodynamic radius R_h measured by DLS at 20°C and 50°C and the effective charge of the different particles Q_{eff} estimated at 20°C from the combination of DLS and electrophoretic measurements of the different core-shell particles.