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C. Normalizations of NROs by different control genes are concordant. For NRO experiments 
the average of 2 technical replicates was normalized to the 4 controls RPS14, 7SK, KDSR 
and PIGB. For every siRNA knock-down the 4 different normalized NRO profiles are 
plotted. 
D. Whole RNA was extracted from HeLa-LTR-Luc cells transfected with the indicated 
siRNAs. Reverse transcription was primed with oligo dT primers. Values were normalized to 
the amount of RPS14 RNA in the same samples. Results are presented as fold change over 
control condition SCR. *= p-value < 0.05; **= p-value < 0.005;  ***= p-value < 0.0005, 
no*=no significant p-value as measured by student’s t-test. Error bars represent standard 
deviations. 
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Supplementary figure 5  
A. Genome-wide distribution of ChIP-Seq peaks of INTS3, INTS11, NELF-E and SPT5 with 
respect to the TSS, bodies or termination sites of transcription (‘terS’) of cellular, coding 
genes versus other genomic regions (‘other’). 
B. Venn diagram showing the intersection analysis of NELF-E-, Spt5- INTS3- and INTS11- 
binding sites as scored by ChIP-Seq using MACS2 for peak detection. The p-value of 
quadruple intersection is p~ 1e-300 as tested by Fisher exact test. Note that the intersection of 
NELF/Spt5 unique to INTS3 (without INTS11) is also significant (1644 genes; p~ 1e-291) by 
contrast to any combination of INTS11 with other factor in the absence of INTS3 (16 genes). 
C. Density plots representing the averaged distribution of the summits of ChIP-Seq peaks 
with respect to TSSs (x-axis, position ‘0’) for NELF, Spt5, INTS3/11/13, for RNAPII 
phosphorylated at Ser5 or total RNAPII and for the histone H3 tri-methylated on lysine 4 
(H3K4me3).  
D. Reproducibility of ChIP-seq experiments in biological replicates as visualized by plotting 
distances of ChIP-Seq peak summits to TSSs. 
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Supplementary figure 8  
A. Scatter plot showing the log p-values (as obtained by fisher exact tests) corresponding to 
intersections between the lists of genes that harbor one of the consensus motifs identified by 
systematic search of motifs near (+/- 100 bp) surrounding the center of ChIP-Seq peaks of 
INTS11/3/ or NELF -with the actual number of genes harboring a peak within their TSS 
together or not with that motif (see Methods). The red dot marks the ‘TAR’ motif (CUGGGA 
consensus). Only motifs showing significant intersections (fisher exact test < 1e-3) were 
further analyzed (see text). 
B. Intersection analysis (in Log p-values; as obtained by fisher exact test) between the lists of 
genes that harbor one of the consensus motifs (see panel A) with genes that were up- or 
down- regulated upon INTS11-KD and that were bound by NELF and/or INTS subunits. 
C. Western blotting analysis to verify the depletion/rescue of Flag- INTS11 catalytic mutant 
(or WT) corresponding to the experiment shown in Fig. 5D. 
D. Venn diagram showing the statistical enrichment (in Log p-values; as obtained by fisher 
exact test) by triple intersection analysis among INTScom binding (INTS11 and INTS3), 
group of genes with RNA processivity defects (or ‘termination defects’, scored as significant 
variations of processivity between INTS11-KD compared to control cells that were uniquely 
found for total RNAs but not polyA+ RNAs). DE genes, differentially expressed genes (as 
obtained by DESeq2; see Methods) 
E. Same as in panel C except that the group of genes harboring a TAR motif near their TSSs 
was considered instead of INTScom binding.  
F. Averaged RNA+ profiles (y axis; normalized (RPM) RNASeq+ read counts) for genes 
with significant RNA processivity defects upon INTS11-KD as compared to control cells and 
that were uniquely detected when scoring such defects from RNASeq performed with total 
RNAs but not polyA+ RNAs. The averaged RNA+ profiles are also shown for total and 
polyA+ RNAs isolated from cells depleted of NELF. 
G. Box plot showing the RNA processing index in INTS11-KD as compared to control cells 
(RNASeq reads over termination sites/reads in gene bodies) for the same set of genes 
corresponding to panel E. The purple color of the box represents the enrichment of such 
genes harboring RNA processing defects upon INTS11-KD in the lists of genes that are 
bound by INTScom and NELF (see Supplementary dataset 6). 
H. Venn diagram showing the intersection analysis between genes harboring RNA processing 
defects in INTS11-KD and those harboring RNA processing defects in NELF- KD (as scored 
for genes with RNA processing defects uniquely found with total RNAs (but not polyA+ 
RNAs).  
I. Box plot showing the RNAPII processivity index in INTS11-KD as compared to control 
cells for the group of down-regulated genes upon INTS11-KD (as obtained by DESeq2; see 
Methods). As a control set of genes (grey boxes), we took a group of genes with similar 
expression levels (as determined by RNASeq read counts) yet with no significant changes in 
expression (see Methods). 
J. RNASeq+ profiles corresponding to RNASeq performed after polyA+ selection in 
INTS11-KD, NELF-KD control cells (see also Fig. 5F for the corresponding RNASeq+ 
profile obtained without polyA+ selection) and for genes bound by INTScom subunits in the 
presence or not of a 3’ box near termination sites (-1000 to – from TES).  
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Supplementary Methods  

List of primers 

HIV1LTR5'-Forward 5’_TCCACTGACCTTTGGATGGT_3’ 

HIV1LTR5'-Reverse 5’_CTCAGGGTCATCCATTCCAT_3’ 

HIV1TAR-Forward 5’_GGGTCTCTCTGGTTAGA_3’ 

HIV1TAR-Reverse 5’_GGGTTCCCTAGTTAGCC_3’ 

lucMid-Forward 5’_TTCCATTCCATCACGGTTTT_3’ 

lucMid-Reverse 5’_AGTGCTTTTGGCGAAGAATG_3’ 

luc3’-Forward 5’_TGGCAGGTCTTCCCGACGAT_3’ 

luc3’-Reverse 5’_GGCGACGTAATCCACGATCTCT_3’ 

U2 region 1-Forward 5’_GAGCGGAGCGTTCTCTGTC_3’ 

U2 region 1-Reverse 5’_CTCCTTGGCCTAGCGGTAAT_3’ 

U2 region 2-Forward 5’_GATGAGAGTGGGACGGTGAC_3’ 

U2 region 2-Reverse 5’_CACTTGATCTTAGCCAAAAGG_3’ 

U2 region 3-Forward 5’_TTCCCTGAAGTACCGTGAGG_3’ 

U2 region 3-Reverse 5’_CTAAGGACCTCCCCAAAGGA_3’ 

U2 region 5-Forward 5’_CTCCCTCGCTCTCTCTTTTG_3’ 

U2 region 5-Reverse 5’_CAAACCTAGACGACTGGTGGA_3’ 

RPS14-Forward 5’_GGCAGACCGAGATGAATCCTCA_3’ 

RPS14-Reverse 5’_CAGGTCCAGGGGTCTTGGTCC_3’ 

KDSR-Forward 5’_AGATGAGTTGGACCCATTGC _3’ 

KDSR-Reverse 5’_ AAGCCATGAGTTTCCACCAG _3’ 

PIGB-Forward 5’_ CCAAGCACTTCTGTCTGCTG _3’ 

PIGB-Reverse 5’_ AACACCCATCTTGCCACTTC _3’ 

7SK-Forward 5’_CCCTGCTAGAACCTCCAAAC _3’ 

7SK-Reverse 5’_AAGAAAGGCAGACTGCCAC _3’ 
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List of primary antibodies 

Anti-NELF-A A301-910A, Bethyl Laboratories 

Anti-NELF-B A301-911A, Bethyl Laboratories 

Anti-NELF-C/D 11226-1-AP, Proteintech 

Anti-NELF-E ABE48, Millipore 

Anti-Spt5 611106, BD Transduction Laboratories 

Anti- INTS1 A300-361A, Bethyl Laboratories 

Anti- INTS3 16620-1-AP, Proteintech 

Anti- INTS3 A302-051A, Bethyl Laboratories 

Anti- INTS3 ab70451, Abcam 

Anti- INTS9 11657-1-AP, Proteintech 

Anti- INTS11 A301-274A, Bethyl Laboratories 

Anti- INTS13 19892-1-AP, Proteintech 

Anti- INTS13 A303-575A, Bethyl Laboratories 

Anti-RNAPII total sc-899, Santa Cruz 

Anti-RNAPII Ser2 04-1571, Millipore 

Anti-RNAPII Ser5 04-1572, Millipore 

Anti-RNAPII Ser7 04-1570, Millipore 

Anti-Hexim1 ab25388, Abcam 

Anti-Cdk9 sc-13130, Santa Cruz 

Anti-cyclinT1 sc-10750, Santa Cruz 

Anti-FLAG A2220, Sigma 

HA sc-805, Santa Cruz 

BrdU sc-32323 AC, Santa Cruz 
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