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1. Asymptotic theory for complete-case analysis

Let γ = (α,βT )T and ϑi = (1,
∂m(β;Gi)

∂β

T

)T . Let γ0 and β0 be the true parameter values of

γ and β under the null model, respectively.

Assumption 1 : Let f and f
′

be the derivative and second-order derivative of F assuming that

f
′

is continuous. There exists M <∞ s.t. 0< F (x) < 1 and f(x) > 0 for |x| 6M .

Assumption 2 : γ0 is contained in an open bounded parameter space Γ ∈ Rp+1.

Assumption 3 : maxi |{ϑi}| 6 C for some C <∞. limn→∞
1
n

∑n
i=1 ϑiϑ

T
i is a finite nonsingular

matrix. The empirical distribution of {ϑi} converges to a (non-degenerate) distribution function.

Assumption 4: m(.) is continuously differentiable.

Proposition 1 Under the assumptions 1, 2, 3, and 4,

n−
1
2 (Tn,c − nc)⇒ N(0, σ2

n,c)

where Tn,c =
∑n
i=1

(Di−π̂i)
2

π̂i×(1−π̂i)
I(π̂i ∈ Rc), nc =

∑n
i=1 I(π̂i ∈ Rc),
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σ2
n,c = 1

n

∑n
i=1

(1−2πi0)
2

πi0(1−πi0)
I(πi0 ∈ Rc)− vTn,cΩ

−1vn,c, vn,c = 1
n

∑n
i=1

(1−2πi0)
πi0(1−πi0)

fi0ϑiI(πi0 ∈ Rc)

, and Ω = limn
√
n V ar (γ̂n).

Proof. Note that

n−
1
2 (Tn,c − nc) = n−

1
2

n∑
i=1

(Di − π̂i)(1− 2π̂i)

π̂i(1− π̂i)
I(π̂i ∈ Rc). (1.1)

Define

Sn,c(γ) =
n∑
i=1

(Di − πi)(1− 2πi)

πi(1− πi)
I(πi ∈ Rc) =

n∑
i=1

(
Di

πi
+

1−Di

1− πi
− 2)I(πi ∈ Rc).

To obtain the asymptotic distribution of Tn,c, we shall first prove that

n−
1
2Sn,c(γ̂n)⇒ N(0, σ2

n,c) (1.2)

and then show that

Sn,c(γ̂n)− [Tn,c − nc] = oP(n1/2). (1.3)

To prove (1.2), note that local expansion of Sn,c(γ) around γ0 gives

n−
1
2Sn,c(γ̂n) = n−

1
2Sn,c(γ0) + n−1

∂Sn,c(γ)

∂γ
|γ0

n
1
2 (γ̂n − γ0) + op(1).

Meanwhile,

n−1
∂Sn,c(γ)

∂γ
|γ0

= n−1
n∑
i=1

(
(1−Di)

(1− πi0)2
− Di

π2
i0

)fi0ϑiI(πi0 ∈ Rc) = Un,c − vn,c

with

Un,c = −n−1
n∑
i=1

(Di − πi0)(1− 2πi0 + 2π2
i0)

π2
i0(1− πi0)2

fi0ϑiI(πi0 ∈ Rc)

and

vn,c = n−1
n∑
i=1

1− 2πi0
πi0(1− πi0)

fi0ϑiI(πi0 ∈ Rc).

Under the assumptions 1-4, limn→∞Un,c = 0 and it follows that the limiting distribution of

n−
1
2Sn,c(γ̂n) is the same as the limiting distribution of

n−
1
2Sn,c(γ0)− vTn,cn

1
2 (γ̂n − γ0).
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Since γ̂n − γ0 = −[ ∂2ln
∂γ∂γT |γ∗n ]−1 ∂ln∂γ |γ0

where ln is the log likelihood for obtaining γ̂n and γ∗n

lies between γ̂n and γ0,

vTn,cn
1
2 (γ̂n − γ0) = vTn,c(A

∗
n)−1n−

1
2
∂l

∂γ
|γ0

,

where A∗n = −n−1 ∂2l
∂γ∂γT |γ∗n . Since limnA

∗
n = Ω, the limiting distribution of n−

1
2 (Tn,c − nc) is

the same as the limiting distribution of

n−
1
2Sn,c(γ0)−n− 1

2vTn,cΩ
−1 ∂l

∂γ
|γ0

= n−
1
2

n∑
i=1

Di − πi0
πi0(1− πi0)

{(1−2πi0)I(πi0 ∈ Rc)−vTn,cΩ−1fi0ϑi}.

Define

Zn,c,i =
Di − πi0

πi0(1− πi0)
{(1− 2πi0)I(πi0 ∈ Rc)− vTn,cΩ

−1ϑifi0}.

Then Zn,c,1, ..., Zn,c,n are independent random variables such that

E(Zn,c,i) = 0

V ar(Zn,c,i) =
((1− 2πi0)I(πi0 ∈ Rc)− vTn,cΩ

−1ϑifi0)2

πi0(1− πi0)
= σ2

n,c,i

E(|Zn,c,i|3) =
(1− 2πi0 + 2π2

i0)

π2
i0(1− π2

i0)
|(1− 2πi0)I(πi0 ∈ Rc)− vTn,cΩ

−1ϑifi0|3 = mn,c,i.

Under the assumptions 1-4, we have that

lim
n→∞

(

n∑
i=1

σ2
n,c,i)

− 1
2 (

n∑
i=1

mn,c,i)
1
3 = 0,

so by Liapounov’s Central Limit Theorem, for large n,

n−
1
2

n∑
i=1

(Di − πi0){(1− 2πi0)I(πi0 ∈ Rc)− vTn,cΩ
−1fi0ϑi}

πi0(1− πi0)
∼N(0,

1

n

n∑
i=1

σ2
n,c,i)

where 1
n

∑n
i=1 σ

2
n,c,i can be written as follows 1

n

∑n
i=1

(1−2π2
i0)

2

πi0(1−πi0)
I(πi0 ∈ Rc)− vTn,cΩ

−1vn,c.

We now prove (1.3). Observe that

Sn,c(γ̂n)− [Tn,c − nc] =

n∑
i=1

(Di − π̂i)(1− 2π̂i)

π̂i(1− π̂i)
[I(πi0 ∈ Rc)− I(π̂i ∈ Rc)] :=

n∑
i=1

Ξiτi.
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Let Υi = 1/
√
n
∑i
j=1 Ξj . Then standard arguments show that {Υi}ni=1 converges weakly to

a centered Gaussian process on D[0, 1] with the Skorohod topology. Meanwhile, it is easy to see

that

max
16i6n

|τi| = oP(1) for continuously differentiable m(·).

Hence by a classic random change of time argument (see for instance Billingsley 1999, p.151 or

Lemma 4.1 of Moore and Spruill, 1975), we have (1.3) follows.

Note : Covariance between a pair of thresholds c and d has an analytical form as

σ2
n,c,d := Cov(n−

1
2Tn,c, n

− 1
2Tn,d) =

1

n

n∑
i=1

(1− 2πi0)2

πi0(1− πi0)
I(πi0 ∈ Rc

⋂
Rd)− v

′

n,cΩ
−1vn,d.

2. Additive model

The additive model for the risk of the disease in the underlying population given the SNP genotype

data for p loci is given by

pr(D = 1|G) = b0 +

p∑
j=1

bjGj , (2.4)

where G and G−j denotes the vector of genotypes across p SNPs and the vector of genotypes

across p−1 SNPs except SNP j, respectively,

b0 = pr(D = 1|G = 0),

and

bj = pr(D = 1|Gj = 1,G−j = 0)− pr(D = 1|G = 0)

= pr(D = 1|Gj = 2,G−j = 0)− pr(D = 1|Gj = 1,G−j = 0).

In words, for any SNP j, bj denotes risk differences associated with the genotype status for the

SNP j while holding the genotype status for all the other SNPs at the reference level 0.
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Then, the additive model corresponds to

pr(D = 1|G) = pr(D = 1|G = 0) +

p∑
j=1

{pr(D = 1|Gj = 1,G−j = 0)− pr(D = 1|G = 0)}Gj

=

p∑
j=1

pr(D = 1|Gj = 1,G−j = 0)Gj − (

p∑
j=1

Gj − 1)pr(D = 1|G = 0)

If we define RR(G) = pr(D = 1|G)/pr(D = 1|G = 0) to be relative risk for the groups compared

to the reference group with G = 0, then the constraint can be expressed as

RR(G) =

p∑
j=1

RR(Gj = 1,G−j = 0)×Gj − (

p∑
j=1

Gj − 1).

Under the assumption of rare diseases, that allows us to approximate odds-ratios by relative

risks, the above constraint can be written in the form

exp(m(β;G)) = OR(G) =

p∑
j=1

OR(Gj = 1,G−j = 0)Gj − (

p∑
j=1

Gj − 1). (2.5)

Thus the additive model corresponds to a logistic model with m(β;G) = log(
∑p
j=1 βj ×Gj + 1).

where OR(Gj = 1,G−j = 0) = 1 + βj where βj =
bj
b0

.

3. computation of π̂∗i (Gi,obs) for subjects with Missing genotype data

We propose incorporating individuals with missing genotype data using a modification of the

test-statistics in the form

Tn,c =

n∑
i=1

(Di − π̂∗i (Gi,obs))
2

π̂∗i (Gi,obs)(1− π̂∗i (Gi,obs))
I(π̂∗i (Gi,obs) ∈ Rc)

where Gi,obs denotes the observed genotype data for the i-th subject and

π̂∗i (Gi,obs) = π̂∗i = pr(Di = 1|Gi,obs, Ri = 1).
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We note that if we write Gi = (Gi,obs,Gi,miss), i.e. the total genotype vector into the observed

and unobserved genotypes, then we can write

pr(Di = 1|Gi,obs) =
∑

Gi,miss

pr(Di = 1|Gi,miss,Gi,obs)pr(Gi,miss|Gi,obs).

If the original model for probability of the disease given all SNPs has logistic form, then, under

the assumption that the disease under study is rare in the general population, the probability

model for the disease given the observable genotypes can be also written in the multiplicative

form

pr(Di = 1|Gi,obs) = exp(α+m∗(β,q;Gi,obs))

where m∗(β,q;Gobs) = log(
∑

Gmiss
exp(m(β;Gmiss,Gobs))pr(Gmiss|Gobs), q = (q1,, ..., qKmiss

)

denotes pr(Gmiss|Gobs) and Kmiss denotes the number of SNPs with missing genotype data.

Finally, following arguments similar as before, under the case-control sampling, the probability

of the disease given observable genotype can be approximated as

pr(D|Gobs, R = 1) ≈ exp(α∗ +m∗(β,q;Gobs))

1 + exp(α∗ +m∗(β,q;Gobs))
.

For our application, since breast cancer patients were incident cases arising in retrospective

underlying cohorts, the assumption of rare disease is quite reasonable for simplification of the

calculations. Further, since the 19 SNPs we are studying represent independent susceptibility

loci, we can write

m∗(β,q;Gobs) = log(
∑

Gmiss

exp(m(β;Gmiss,Gobs))pr(Gmiss,1)× ...× pr(Gmiss,Kmiss
)).

However, when Kmiss is large, computation of m∗(β,q;Gobs) can still be quite complex due to

the large number of possible configuration for Gmiss. One solution is that one could estimate

the sum by stochastic simulation where one simulates a relatively large number of samples by

simulating the joint genotype data for missing SNPs. Thus one can estimate the sum by summing

over only such ”imputed” value of genotype instead of many theoretical combinations. For the
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multiplicative model, however, the computation can be remarkably simplified as we can write

m∗(β,q;Gobs) = log(
∏

j:observed Gj

exp(βjGobs,j)
∏

j:missing Gj

∑
Gmiss,j

exp(βjGmiss,j)pr(Gmiss,j).

In other words, under the multiplicative model, the multivariate sum over all possible combi-

nations of different missing SNPs can be simply computed as the product over terms that only

involve univariate sum of possible genotype configuration for individual missing SNPs .

4. Asymptotic theory in Missing genotype data

For missing genotype data, we have more additional parameters, which are allele frequencies for

controls, q = (q1, ..., qp). We denote E be the samples who have no missing genotype data in G

and E0 be the subset of E and be from controls. Let γ = (α,βT )T , ηi = (
∂m(β,q;Gi,obs)

∂q

T

)T ,

and ϑi = (1,
∂m(β,q;Gi,obs)

∂β

T

)T . Let γ0 and β0 be the true parameter values of γ and β under

the null model, respectively. Let nco be the number of samples who have complete genotype data

and nco,0 be the number of samples who have complete genotype data and are from controls.

q̂nco,0
= (q̂1, ..., q̂p) denotes the estimators for q based on samples as many as nco,0 and β̂nco

denotes the estimator for β using samples as many as nco. Let π̂∗i = π∗i (β̂nco
, q̂nco,0

;Gi,obs).

Lemma 1 Under the regularity conditions similar to the assumptions in the Section 1,

n−
1
2 (Tn,c − nc)⇒ N(0, σ2

n,c)

where Tn,c = n−1/2
∑n
i=1

(Di−π̂∗i )(1−2π̂
∗
i )

π̂∗i (1−π̂∗i )
I(π̂∗i ∈ Rc), nc =

∑n
i=1 I(π̂∗i ∈ Rc),

Zn,c,i,1 =
(Di − π̂∗i0)(1− 2π̂∗i0)

π̂∗i0(1− π̂∗i0)
I(π̂∗i0 ∈ Rc), Zn,c,i,2 =

n

nco

(Di − π̂∗i0)

π̂∗i0(1− π̂∗i0)
vTn,cΩ

−1fiϑiI(i ∈ E),

Zn,c,i,3 =
n

2nco,0
(Gi−2qi0)εTn,cΩ

−1I(i ∈ E0), Zn,c,i = Zn,c,i,1+Zn,c,i,2+Zn,c,i,3, σ
2
n,c = V ar(Zn,c,i,),

vn,c =
1

n

n∑
i=1

(1− 2πi0)

πi0(1− πi0)
fi0ϑiI(π∗i0 ∈ Rc), εn,c =

1

n

n∑
i=1

(1− 2πi0)

πi0(1− πi0)
fi0ηiI(π∗i0 ∈ Rc),

and Ω = limn
√
n V ar (γ̂n).
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Proof. Note that

n−
1
2 (Tn,c − nc) = n−

1
2

n∑
i=1

(Di − π̂∗i )(1− 2π̂∗i )

π̂∗i (1− π̂∗i )
I(π̂∗i ∈ Rc). (4.6)

Define

Sn,c(γ,q) =

n∑
i=1

(Di − π∗i )(1− 2π∗i )

π∗i (1− π∗i )
I(π∗i0 ∈ Rc) =

n∑
i=1

(
Di

π∗i
+

1−Di

1− π∗i
− 2)I(π∗i0 ∈ Rc).

To obtain the asymptotic distribution of Tn,c, we shall first prove that

n−
1
2Sn,c(γ̂nco

, q̂nco,0
)⇒ N(0, σ2

n,c) (4.7)

and then show that

Sn,c(γ̂nco
, q̂nco,0

)− [Tn,c − nc] = oP(n1/2). (4.8)

To prove (4.7), note that local expansion of Sn,c(γ,q) around γ0 and q0 gives

n−
1
2Sn,c(γ̂nco

, q̂nco,0) = n−
1
2Sn,c(γ0,q0)+n−1

∂Sn,c(γ,q)

∂γ
|γ0

n
1
2 (γ̂nco

−γ0)+n−1
∂Sn,c(γ,q)

∂q
|q0n

1
2 (q̂nco,0−q0)+op(1).

Meanwhile,

n−1
∂Sn,c(γ,q)

∂q
|q0

= n−1
n∑
i=1

(
(1−Di)

(1− π∗i0)2
− Di

π2
i0

)fi0ηiI(π∗i0 ∈ Rc) = δn,c − εn,c

with

δn,c = −n−1
n∑
i=1

(Di − π∗i0)(1− 2π∗i0 + 2π∗i0
2)

π∗i0
2(1− π∗i0)2

fi0ηiI(π∗i0 ∈ Rc)

and

εn,c = n−1
n∑
i=1

1− 2π∗i0
π∗i0(1− π∗i0)

fi0ηiI(π∗i0 ∈ Rc).

It can be shown that we have limn→∞ δn,c = 0.

In the proof of Proposition 1, we show that asymptotically, n−1
∂Sn,c(γ,q)

∂γ |γ0
≈ −vn,c. Thus

the limiting distribution of n−
1
2Sn,c(γ̂nco

, q̂nco,0) is the same as the limiting distribution of

n−
1
2Sn,c(γ0,q0)− vTn,cn

1
2 (γ̂nco

− γ0)− εTn,cn
1
2 (q̂nco,0

− q̂0).
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Since γ̂nco
− γ0 = −[

∂2lnco

∂γ∂γT |γ∗nco
]−1

∂lnco

∂γ |γ0
where γ∗nco

lies between γ̂nco
and γ0,

vTn,cn
1
2 (γ̂nco

− γ0) = vTn,c(B
∗
nco

)−1
n

1
2

nco

∂lnco

∂γ
|γ0

,

whereB∗nco
= −n−1co

∂2lnco

∂γ∂γT |γ∗nco
. Since limnco B

∗
nco

= Ω, the limiting distribution of n−
1
2 (Tn,c−nc)

is the same as the limiting distribution of

n−
1
2Sn,c(γ0,q0)−

√
n

nco
vTn,cΩ

−1 ∂lnco

∂γ
|γ0
−εTn,cn

1
2 (q̂nco,0

−q̂0) = n−
1
2

n∑
i=1

(Zn,c,i,1+Zn,c,i,2+Zn,c,i,3)

where

Zn,c,i,1 =
(Di − π∗i0)

π∗i0(1− π∗i0)
(1− 2π∗i0)I(π∗i0 ∈ Rc)

Zn,c,i,2 =
n

nco

(Di − π∗i0)

π∗i0(1− π∗i0)
vTn,cΩ

−1fiϑiI(i ∈ E)

Zn,c,i,3 =
n

2nco,0
(Gi − 2qi0)εTn,cI(i ∈ E0).

Define Zn,c,i = Zn,c,i,1+Zn,c,i,2+Zn,c,i,3. Then Zn,c,1, ..., Zn,c,n are independent random variables.

Thus with the similar arguments shown in the proof of Proposition 1, Liapounouv’s Central Limit

Theorem is applied. Thus, the asymptotic distribution of n−
1
2 (Tn,c − nc) is N(0, 1

n

∑n
i=1 σ

2
n,c,i)

where σ2
n,c,i = V ar(Zn,c,i).

We now prove (4.8). Observe that

Sn,c(γ̂nco
, q̂nco,0

)− [Tn,c − nc] =

n∑
i=1

(Di − π̂∗i )(1− 2π̂∗i )

π̂∗i (1− π̂∗i )
[I(π∗i0 ∈ Rc)− I(π̂∗i ∈ Rc)] :=

n∑
i=1

Ξiτi.

Let Υi = 1/
√
n
∑i
j=1 Ξj . Then standard arguments show that {Υi}ni=1 converges weakly to

a centered Gaussian process on D[0, 1] with the Skorohod topology. Meanwhile, it is easy to see

that

max
16i6n

|τi| = oP(1) for continuously differentiable m(·).

Hence by a classic random change of time argument (see for instance Billingsley 1999, p.151 or

Lemma 4.1 of Moore and Spruill, 1975), we have (4.8) follows.
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Note : It is expected that Cov(Zn,c,i,2, Zn,c,i,3) is non-zero since the samples for estimating

q are the subset of samples for estimating β. Thus we use the sandwich estimator to estimate

V ar(Zn,c,i).

5. Adjusting covariates

When there are covariates X which affect disease risk but are not used for constructing a risk

prediction model, we are interested in testing adequacy of a risk model of G adjusting X. Let

X be categorical covariate having K patterns. First, we could model that the odds ratio of G is

homogeneous across the configurations of covariate X. Then we modify model (1) in the main

document as follows

π = pr(D = 1|G) = F (αk +m(β;G))

for k = 1, ...,K and apply our proposed procedures.

Second, we could model that the odds ratios of G are heterogeneous across the configurations

of covariate X. For samples such that X = xk, we fit model (1) in the main document, obtain

Tn(k),c from β̂n(k) , n
(k)
c , and σn(k),c for c = 1, ..., C where n(k) is the sample size for which X = xk.

Then Tn could be modified as

Tn = max
c
|
∑K
k=1 n

(k)−
1
2 (Tn(k),c − n

(k)
c )∑K

k=1 σn(k),c

|

where Tn(k),c =
∑
i s.t. xi=xk

(Di−π̂i)
2

π̂i×(1−π̂i)
I(m(β̂n(k) ;Gi) ∈ Rc). Note that we construct risk region

based on m(.) function rather than π̂ since we want to construct risk regions such that for given

c, the distribution of samples which fall in the risk region is as uniform as possible across the

values of X.
∑K

k=1 n
(k)− 1

2 (T
n(k),c

−n(k)
c )∑K

k=1 σn(k),c

is a Gaussian stochastic process. Therefore, we can evaluate

p-value using the similar way.
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6. Parametric bootstrap

We describe how to analyze BPC3 dataset using parametric bootstrap.

1. Form estimates β̂nco
and q̂nco,0 and therefore π̂∗ by fitting a null model on Gobs and D

where β̂nco
and q̂nco,0 denote the estimators for β using samples as many as nco which is the size

of the samples who have complete genotype data and q using samples as many as nco,0, the size

of samples who have complete genotype data and are from controls, respectively.

2. For each c, calculate Tn,c =
∑n
i=1

(Di−π̂∗i )
2

π̂∗i×(1−π̂∗i )
I(π̂∗i ∈ Rc) and normalize Tn,c such that mean

is zero and variance is one.

3. Let T̃n,c be the normalized Tn,c and set the observed statistic to be

Tn = max
c
|T̃n,c|.

4. Generate disease-status variable D∗ = (D∗1 , ..., D
∗
n) from Bernoulli distribution with success

probabilities as the fitted values π̂∗ = (π̂∗1 , ..., π̂
∗
n).

5. Form a test statistic

T ∗n,c =

n∑
i=1

(D∗i − π̂∗i )2

π̂∗i × (1− π̂∗i )
I(π̂∗i ∈ Rc)

as above.

6. Normalize T ∗n,c such that T̃ ∗n,c =
n−

1
2 (T∗n,c−nc)

σ∗2n,c
where nc =

∑n
i=1 I(π̂∗i ∈ Rc) and σ∗2n,c =

V ar(Zn,c,i,1) where Zn,c,i,1 =
(D∗i−π

∗
i0)

π∗i0(1−π∗i0)
(1− 2π∗i0)I(π∗i0 ∈ Rc). Note that we do not need to take

into account the uncertainty of the estimation of β and q since they are estimated using D.

7. Form a statistic

T ∗n = max
c
|T̃ ∗n,c|.

8. Repeat steps 4-7 a total of B times to obtain null statistics T ∗bn for b = 1, ..., B.

9. Compute the p-value as

p− value =
#{T ∗bn > Tn; b = 1, ..., B}

B
.
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Table 1. Distribution of cases and controls by cohorts in BPC3 study

Cases Controls

Cohort CPS2 EPIC MEC NHS All CPS2 EPIC MEC NHS All

Complete data 245 1690 422 1811 4168 257 1570 431 2672 4930

Complete and missing
data

786 4155 553 2561 10525 870 5238 574 3843 8035
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