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APPENDIX

For all inference using large sample approximations, we employ perturbation-resampling proce-

dures using 1000 realizations from the standard exponential distribution. Details are provided

below.
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Appendix A: Construction of Confidence Intervals for Two-Sample Inference

Let {Bij : i = 1, 2; j = 1, . . . , ni} be independent random samples from a strictly positive

distribution with mean and variance equal to one. The cumulative cell probability γik can be

estimated by

γ̂ik =

ni∑
j=1

WijI(εij 6 k)/

ni∑
j=1

Wij or

ni∑
j=1

W̃ijkI(εij 6 k)/

ni∑
j=1

W̃ijk.

Let γ∗ik be the corresponding perturbed version of γ̂ik with

γ∗ik =

ni∑
j=1

W∗ijI(εij 6 k)/

ni∑
j=1

W∗ij or

ni∑
j=1

W̃∗ijkI(εij 6 k)/

ni∑
j=1

W̃∗ijk, (A.1)

where

W∗ij = Bij
I(Tij ∧ t0 6 Cij)

Ĝ∗i (Tij ∧ t0)
and W̃∗ijk = Bij

I(Tijk 6 Cij)

Ĝ∗ik(Tijk)
.

Here, both Ĝ∗i (·) and Ĝ∗ik(·) are the perturbed estimators for the survival function Gi(·) :

Ĝ∗i (t) = exp

− ni∑
j=1

∫ t

0

Bijd{I(u 6 Tij < Cij)}∑ni

l=1BilI(Xil > u)

 (A.2)

and

Ĝ∗ik(t) = exp

− ni∑
j=1

∫ t

0

Bijd{I(u 6 Tijk < Cij)}∑ni

l=1BilI(Tijk ∧ Cij > u)

 (A.3)

Furthermore, let β∗ be the maximizer of the perturbed version of the weighted log-likelihood

function (2.4):

K−1∑
k=1

∑
ij

W̃∗ijk[I(εij 6 k)log{g−1(αk − βτij)}+ I(εij > k) log{1− g−1(αk − βτij)}]. (A.4)

The limiting distribution, conditional on the data, of

(n1 + n2)1/2(β∗ − β̂), (A.5)

is normal with mean 0 and variance σ̂2
b , which is a consistent estimator of σ2

b , the variance

associated with the distribution (n1+n2)1/2(β̂−β). Thus, the empirical variance of the perturbed
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estimates β∗ can be used to estimate the standard error associated with β̂ (Zheng and others,

2006; Uno and others, 2007; Li and others, 2011).

Denote Γ∗ = γ∗2 − γ∗1 , where γ∗i = {γ∗i1, · · · , γ∗iK}′. Using the arguments by Cai and others

(2010), the limiting distribution, conditional on the target data set, of

(n1 + n2)1/2(Γ∗ − Γ̂), (A.6)

is multivariate normal with mean zero and covariance matrix Σ̂ which is a consistent estimator of

Σ, the covariance matrix associated with the distribution (n1+n2)1/2(Γ̂−Γ). Thus, the resulting

sample covariance matrix based on those perturbed estimates Γ∗, say, Σ̃, is a valid estimator of

Σ. A two-sided confidence interval for the two-sample risk difference Γk is then given by

Γ̂k ± z(1−α/2)(n1 + n2)−1/2σ̃k, (A.7)

where σ̃2
k is the kth diagonal element of Σ̃. Furthermore, one may use a similar approach for

making inference on D̂ by perturbed D∗ =
∑K
k=2 π

∗
1kγ
∗
2(k−1) − π

∗
2kγ
∗
1(k−1), where π∗ik = γ∗ik −

γ∗i(k−1).

Appendix B: Construction of Confidence Intervals and Bands for Stratified Inference

For personalized medicine, we let γ∗ik(s) be the perturbed version of γ̂ik(s) with

γ∗ik(s) =


n∗
i∑

j=1

W̃ijkI(εij 6 k)Khi(Vij − s)


/

n∗
i∑

j=1

W̃ijkKhi(Vij − s)

 . (A.8)

and π∗ik(s) = γ∗ik(s) − γ∗i(k−1)(s). Using identical arguments to those above, we denote Γ∗(s) =

γ∗2 (s)− γ∗1 (s), where γ∗i (s) = {γ∗i1(s), · · · , γ∗iK(s)}′, and can show that the distribution for

(n∗1h1 + n∗2h2)1/2{Γ∗(s)− Γ̂(s)}, (A.9)

conditional on the observed data, is multivariate normal and asymptotically equivalent to that

of (n∗1h1 + n∗2h2)1/2{Γ̂(s) − Γ(s)}. Therefore, the point-wise confidence interval for Γ(s) can be

constructed using generated Γ∗(s) as in (A.5).
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To construct a (1− α) simultaneous confidence band for Γk(s) over the pre-specified interval

S, we cannot use the conventional method based on the sup-statistic,

sup
s∈S

σ̃−1k (s)|(n∗1h1 + n∗2h2)1/2{Γ̂k(s)− Γk(s)}| (A.10)

due to the fact that as a process in s, (n∗1h1 +n∗2h2)1/2{Γ̂k(s)−Γk(s)} does not converge weakly

to a tight process. On the other hand, one may utilize the strong approximation argument given

in Bickel and Rosenblatt (1973) to show that an appropriately transformed sup of Γ̂k(s)− Γk(s)

converges to a proper random variable. In practice, to construct a confidence band, we can first

find a critical value bα such that

pr

(
sup
s∈S
|Γ∗k(s)− Γ̂k(s)|/{(n∗1h1 + n∗2h2)−1/2σ̃k(s)} > bα

∣∣∣∣ observed data

)
≈ α. (A.11)

Then the confidence band for Γk(s) : s ∈ S is given by

Γ̂k(s)± bα(n∗1h1 + n∗2h2)−1/2σ̃k(s). (A.12)

Similar arguments can be used for the construction of the confidence band for E(s) : s ∈ S.

Appendix C: BEST treatment differences with respect to specific outcome thresholds

In Figure A.3, we show the smoothed treatment effect estimates with respect to each definition of

treatment success, i.e. (ε 6 k), in the part B data set, conditional on the model-based treatment

effect score d̂(u) derived from the part A data. Treatment responses appear to be most predictable

with respect to k = 1, 2, and 3.
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Fig. A.1. BEST target treatment differences (active minus placebo) using treatment selection score derive
from the model in Table ??. Solid curve represents point estimates, with 0.95 pointwise and simultaneous
confidence intervals denoted by dashed lines and shaded region, respectively.

Appendix D: Results of 36-month analysis

Using patient outcomes evaluated at t0 = 36 months, the overall treatment effect is estimated

to be D̂ = 0.077 with standard error estimate of 0.032. The estimated distributions of patient
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Table A.1. Estimated distribution functions for control and treated groups with BEST data with t0 = 36
months

Control (γ̂1) Treated (γ̂2) Contrast (Γ̂)
Outcome Category n pr(ε 6 k) n pr(ε 6 k) Est SE

1 94 0.19 112 0.23 +0.04 0.02
2 80 0.36 101 0.44 +0.08 0.03
3 53 0.46 43 0.54 +0.08 0.03
4 67 0.60 48 0.64 +0.03 0.02
5 31 0.64 41 0.68 +0.04 0.02
6 205 0.86 171 0.87 +0.01 0.01
7 24 0.88 22 0.88 +0.01 0.01
8 163 1.00 153 1.00 - -

(censored) 636 - 663 - - -

outcomes and associated contrast measures are shown in Table A.1. The patient-specific treatment

differences are shown in Figure A.2.
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Fig. A.2. Estimated BEST treatment effect Ê(s) using treatment selection score presented in Table ??
with outcomes obtained at t0 = 36 months. Solid curve represents point estimates, with 0.95 pointwise
and simultaneous confidence intervals denoted by dashed lines and shaded region, respectively.
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Appendix E: Simulation Details: Comparison of ordinal vs binomial models and model fit

information

In Figure A.3, we provide the average curves, {D̂∗(q)−D̂}, resulting from the ordinal and binomial

logistic regression models, using the complementary log-log link and “partial information” weights

W̃ijk, applied to 200 simulated data sets generated under simulation scenario #1. Ten-fold cross-

validation was performed within each data set, and the concordance statistics Ĉ are calculated

as Ĉ =
∫ 1

0
(1− q){D̂∗(q)− D̂}dq, as described in Section 3.
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Fig. A.3. Comparison of ordinal vs binomial models (simulation scenario #1) for the purpose of stratifying

patients according to predicted treatment response. D̂(q): Overall treatment difference among patients
with top 100(1 − q)% of scores.

Although we cannot obtain the explicit expression of D(u) as a function of u, we can obtain

D(u) for each patient through Monte Carlo simulation. For any given patient with U , we can

then compare his/her D(u) and the approximate E(s). We note that with a continuous scoring
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system, no two patients will necessarily have identical values of s. However, we can approximate

E(s) by estimating the true treatment effect over all patients who belong to the same decile of

the working model score, s. For illustration, we choose three patients from the data set of BEST,

representing patients with negative, neutral, and positive values of D(u), where D represents

the net probability of treatment benefit (i.e. probability of benefit from active therapy minus

probability of benefit from placebo). The patients’ covariate profiles are listed in the following

table. On the bottom of the table, we include D(u) and E(s).

Table A.2. Representative patient profiles from Simulation Setting #1

Example Patient # 1 2 3
Age 56 72 30
Gender Female Male Male
LVEF 22 34 24
eGFR Category <45 60-75 > 75
SBP 148 100 128
NYHA class 3 3 3
Obesity No Yes No
Ever smoked Yes Yes Yes
Heart Rate 68 88 110
Hypertension Yes Yes Yes
Diabetes Yes No No
Ischemic HF No Yes No
Atrial Fibrillation No No No
Race Black White White
D0(U) -0.07 0 0.08
E(s) -0.06 0 0.06

We further evaluated the model performance in simulation setting #1. Using this approxima-

tion, we find overall coverage of 91% of the true E(s) across replications. To assess classification

accuracy, we compare the observed MSE [Ê(s) vs E(s)] against that from a null model [Ē(s)

vs E(s)]. We estimate the MSE based on stratification of patients via the working models to

be 0.0034, compared to 0.0051 for the MSE from the null model. The ratio of these values is

approximately 0.67, suggesting a “pseudo-R2 ” value of 0.33.
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In terms of classification accuracy, we may utilize the standard AUC metric to quantify the

accuracy with which the working model in a given data set can identify patients who would truly

benefit from treatment (i.e. D(U) > 0). We find that the median AUC within a single replicate

data set is 0.73 [IQR: 0.69-0.77], while the usage of each patient’s limiting score (averaged over

all replications) yielded a much higher AUC = 0.88. This difference in AUC is expected, as the

former reflects both the uncertainty in fitting the working model and the quality of the working

model, the latter is determined only by the quality of the working model.

References

Bickel, P.J. and Rosenblatt, M. (1973). On some global measures of the deviations of

density function estimates. The Annals of Statistics, 1071–1095.

Cai, T., Tian, L., Uno, H., Solomon, S.D. and Wei, LJ. (2010). Calibrating parametric

subject-specific risk estimation. Biometrika 97(2), 389–404.

Li, Y., Tian, L. and Wei, L.J. (2011). Estimating subject-specific dependent competing risk

profile with censored event time observations. Biometrics 67(2), 427–435.

Uno, H., Cai, T., Tian, L. and Wei, L. J. (2007). Evaluating prediction rules for t-year

survivors with censored regression models. JASA 102, 527–537.

Zheng, Y., Cai, T. and Feng, Z. (2006). Application of the time-dependent roc curves for

prognostic accuracy with multiple biomarkers. Biometrics 62(1), 279–287.


