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A.1. A detailed discussion on existing methods for differential expression

detection in multiple studies

Previously, Kendziorski and others (2003) proposed an Empirical Bayes approach (called “eb1”

in this article) for analyzing differential expression involving multiple biological conditions. This

approach requires users to specify all possible differential patterns, and the data are then modeled

accordingly. If a user applies this method to detect differential expression between two conditions

in multiple studies and wants to accommodate all possible differential patterns, the user has

to enumerate all 2D possible patterns, leading to the exponential complexity problem. Similar

to Kendziorski and others (2003), Jensen and others (2009) developed a hierarchical Bayesian
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model and a Markov Chain Monte Carlo (MCMC) algorithm to analyze multiple condition-

s, again with exponential complexity due to requirement of enumerating all possible patterns.

Ruan and Yuan (2011) generalizes Kendziorski and others (2003) to a model that can integrate

information from multiple studies where each study may involve comparisons of multiple con-

ditions. Within each study, this method enumerates all possible combinatorial patterns among

multiple conditions, again resulting in exponential complexity. Moreover, differential expression

patterns are assumed to be concordant across studies, that is, each gene is assumed to have the

same differential pattern in all studies. The concordance assumption does not allow study-specific

differential expression.

Scharpf and others (2009) proposed a fully Bayesian framework, XDE, for cross-study differ-

ential expression analysis. It offers two implementations. The “Single-Indicator” implementation

uses a concordance model by assuming that each gene’s differential state is the same across all

studies. The “Multiple-Indicator” implementation allows study-specific differential expression.

However, it assumes that all genes have the same prior probability to be differential within the

same study, and the differential states of each gene in different studies are a priori independent.

Conceptually, these assumptions are similar to a CorMotif model with a single cluster, which

often is insufficient to capture the heterogeneity among genes since the cross-study correlation

pattern may vary from one gene to another. XDE does not have the exponential complexity

problem, but it uses MCMC for posterior inference and is very slow computationally.

To capture the heterogeneity among genes, Yuan and Kendziorski (2006) developed a method

for simultaneous clustering and differential expression analysis. Similar to CorMotif , this method

also assumes that genes belong to multiple clusters, and different clusters have different propen-

sities to show differential expression. However, Yuan and Kendziorski (2006) only considered

detecting differential expression between two conditions in one study. Although one may concep-

tually extend this approach to handle multiple studies by combining it with the model developed
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by Kendziorski and others (2003), such a simple extension would lead to the model “eb10best”

in which genes are assumed to fall into multiple clusters and each cluster is a mixture of 2D

differential patterns. As a result, the complexity of the parameter space would become O(K ∗2D)

where K is the number of clusters.

Compared to these methods, CorMotif offers a unique data integration solution in that it ad-

dresses study-specificity, heterogeneity among genes, and exponential complexity simultaneously.

A.2. The choice of prior distributions

We chose the Dirichlet distribution Dir(2, ..., 2) instead of Dir(1, ..., 1) as the prior for π since the

mode of a Dirichlet distribution Dir(α1, ..., αK) for the mth component is (αm − 1)/(
∑K

k=1 αk −

K), which is zero when αm = 1 and not defined when all αks are equal to one. As a result,

in the EM iterations, when a motif is associated with very few genes such that
∑G

g=1 E(δ(bg =

m)|T , π̂, Q̂) is close to zero, the estimate of πm will become close to zero if we use Dir(1, ..., 1).

This will make the algorithm numerically unstable since the EM is implemented at logarithm scale

(i.e., ln(πm) instead of πm is used in the implementation to avoid underflow when multiplying

multiple probabilities). The same reason explains why B(2, 2) was chosen as the prior for qkd.

A.3. The em algorithm used in cormotif

This section presents the EM algorithm used to search for posterior mode of π̂ and Q̂ of the

distribution Pr(π,Q|T ) =
∑

A,B Pr(π,Q,A,B|T ). In the EM algorithm, A and B are missing

data. The algorithm iterates between an E-step and an M-step.

In the E-step, one evaluates the Q-functionQ(π,Q|π̂old, Q̂old), defined as Eold[lnPr(π,Q,A,B|T )].

Here the expectation is taken with respect to distribution Pr(A,B|T , π̂old, Q̂old), abbreviated as

Prold(A,B), where π̂old and Q̂old are the parameter estimates obtained from the last iteration.
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We have

lnPr(π,Q,A,B|T ) =
G∑

g=1

K∑
k=1

δ(bg = k) lnπk

+
G∑

g=1

K∑
k=1

δ(bg = k)

{
D∑

d=1

agd[ln qkd + ln fd1(xgd)] +
D∑

d=1

(1− agd)[ln(1− qkd) + ln fd0(xgd)]

}

+

K∑
k=1

lnπk +

K∑
k=1

D∑
d=1

[ln qkd + ln(1− qkd)] + constant (A.1)

Therefore,

Q(π,Q|π̂old, Q̂old) = Eold[lnPr(π,Q,A,B|T )]

=
G∑

g=1

K∑
k=1

lnπkEold(δ(bg = k))

+

G∑
g=1

K∑
k=1

D∑
d=1

[ln qkd + ln fd1(xgd)]Eold(δ(bg = k)agd)

+
G∑

g=1

K∑
k=1

D∑
d=1

[ln(1− qkd) + ln fd0(xgd)]Eold(δ(bg = k)(1− agd))

+
K∑

k=1

lnπk +
K∑

k=1

D∑
d=1

[ln qkd + ln(1− qkd)] + constant

(A.2)

In the M-step, one finds π and Q that maximize the Q-function Q(π,Q|π̂old, Q̂old). Denote

them as π̂new and Q̂new. They will be used in the next iteration.

By solving

∂Q(π,Q|π̂old, Q̂old)

∂πk
= 0 (A.3)

∂Q(π,Q|π̂old, Q̂old)

∂qkd
= 0 (A.4)

We have

π̂new
k =

∑G
g=1 Prold(bg = k) + 1

G+K
(A.5)
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q̂newkd =

∑G
g=1 Prold(bg = k, agd = 1) + 1∑G

g=1 Prold(bg = k) + 2
(A.6)

In the formulae above, Prold(bg = k) and Prold(bg = k, agd = 1) can be computed as below

Prold(bg = k) =
π̂
(old)
k

∏D
d=1[q̂

(old)
kd fd1(tgd) + (1− q̂

(old)
kd )fd0(tgd)]∑K

l=1 π̂
(old)
l

∏D
d=1[q̂

(old)
ld fd1(tgd) + (1− q̂

(old)
ld )fd0(tgd)]

(A.7)

Prold(bg = k, agd = 1) = Prold(agd = 1|bg = k) ∗ Prold(bg = k)

=
q̂
(old)
kd fd1(tgd)

q̂
(old)
kd fd1(tgd) + (1− q̂

(old)
kd )fd0(tgd)

Prold(bg = k)

(A.8)

The E-step and M-step will iterate until convergence. The algorithm stops when none of the

parameters in π and Q changes by more than 0.1% compared to their values in the previous

iteration. Using this algorithm, we can obtain estimates for π and Q.

A.4. Bayesian information criterion (bic) and algorithm for choosing k

BIC is computed as

BIC(K) = −2 ∗ lnPr(T |π,Q) + (K − 1 +K ∗D) ∗ lnG

= −2 ∗
G∑

g=1

ln

[
K∑

k=1

{πk

D∏
d=1

[qkdfd1(tgd) + (1− qkd)fd0(tgd)]}

]
+ (K − 1 +K ∗D) ∗ lnG

(A.9)

Here K is the number of motifs in the data. K − 1 is the number of parameters for π. KD is the

number of parameters involved in Q. G is the gene number.

In order to choose K, BIC for different values of K are calculated. The K corresponding to the

smallest BIC is chosen. Intuitively, to implement this, one can start with K = 1. After evaluating

BIC at K = 1, one will increase K by one and evaluates the BIC again. This procedure will be
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repeated until one finds a K such that BIC(K) < BIC(K+1) and BIC(K) < BIC(K+2) and

BIC(K) < BIC(K ′) for all K ′ < K, at which point the algorithm will stop and the K will be

reported as the final motif number.

The algorithm above does not impose any upper limit on K. If the optimal K is big, it may

require one to compute BIC for many different Ks which could make the computation slow. In

order to make the computation faster, CorMotif actually uses a modified algorithm as follows.

1. Set a start point K0 ← 1 and a step size s. The initial step size can be relatively big (e.g.,

s = 10) and is set by users.

2. Start with K = K0. After evaluating BIC at K = K0, increase K by s (i.e., K ← K + s)

and evaluate the BIC again. This procedure will be repeated until one finds a K such that

BIC(K) < BIC(K + s) and BIC(K) < BIC(K + 2s) and BIC(K) < BIC(K ′) for all

K ′ < K (note: here K −K ′ is a multiple of the step size s). This K will be recorded and

denoted as Km.

3. If the step size s = 1, then report Km as the optimal K and exit the algorithm. Otherwise,

the optimal K should be between Km− s and Km + s. One can search it within this range

using a smaller step size. To do so, reset the start point K0 ← max(Km − s, 1), and reset

the step size s ← ⌊s/2⌋. Here ⌊.⌋ returns the largest integer that does not exceed s/2. Go

back to step 2.

Again, this algorithm does not impose any upper limit for the motif number K. We note,

however, that in real applications, we seldom see cases where the optimal K is big. Based on our

own experience, the optimal K often is smaller than 10.

In all simulations and real data analyses in this article, CorMotif was run using s = 1, and

the optimal K with the minimal BIC was all achieved below 10.
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A.5. Data for real data based simulations

Simulations 5-10 were based on real data characteristics. Each simulation contained multiple

studies, and each study was composed of six samples from the same GEO experiment with

the same biological condition as detailed in Table A.4. The six samples were further split into

three pseudo cases and three pseudo controls. They were used as the simulated background since

one does not expect any real differential signals between replicate samples. We then spiked in

differential signals by adding random N(0, 1) numbers to the three cases according to the patterns

shown in Figures A.2 (a,d,g) and A.4(a-b,e-f,i-j,m-n). Data simulated in this way were able to

keep the background characteristics in real data.

A.6. Discussion on the two-stage design

Currently, CorMotif is based on modeling the moderated t-statistics tgd. Instead of using this

two-stage approach, a potential future extension is to introduce a single coherent Bayesian model

that fully integrates the correlation motifs with a model directly describing the raw expression

values xgdlj . In the present study, we chose to use the two-stage approach for several reasons.

First, it allows us to better present the core idea of this paper, that is, how to use correlation

motifs to integrate multiple studies. By taking advantage of the well-documented limma approach,

the two-stage approach allows us to simplify the presentation of some of the model details (i.e.,

those related to the moderated t-statistics) and use the limited amount of available space in the

main article to focus on discussing the core idea of correlation motifs. Although a more coherent

and sophisticated model for xgdlj may bring some additional performance gain, the burden for us

to present and for readers to digest additional notations and model details may distract one from

focusing on the core part of our approach. The space limit forces us to find a trade-off between

these two. We believe that it is more important for one to understand the correlation motif idea.

Once one gets this idea, one can easily improve it by extending the data models. Moreover, the
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two-stage approach as presented now also represents a very general framework. Conceptually, one

can modify fd0 and fd1 to accommodate other data types. Because of the two-stage design, this

will not change the correlation motif model and the corresponding EM algorithm.

Second, using the two-stage framework, one can develop a simple EM algorithm to fit the

model. This approach is computationally more efficient than running a Markov Chain Monte

Carlo (MCMC) algorithm on a fully Bayesian model with many levels of unknown parameters

(e.g., mean and variances of xgdljs and parameters in their prior distributions, missing indicators

A and B, and motif parameters π and Q).

Third, the present design also allowed us to perform a well-controlled comparison with the

state-of-the-art approach limma. In our two-stage design, the first stage of CorMotif uses the same

model as limma to compute the moderated t-statistics. The only difference between CorMotif and

limma is in the second stage, that is, the correlation motif part. For this reason, the comparison

between CorMotif and limma can unambiguously demonstrate the gain of using correlation motifs

to integrate multiple studies. This gain is not confounded with other factors such as differences

in the data distributions fd0 and fd1. By contrast, differences in performance between CorMotif

and other methods such as SAM and eb1 , etc., can be caused by a number of different factors

such as differences in models for data xgdlj . The two-stage design therefore has helped us to

perform a clean comparison to show the effectiveness of correlation motifs. As a result, we were

able to contribute a general tool with proven effectiveness (i.e., the correlation motif framework

for data integration) to the toolbox other people can use to build future data analysis methods.

A.7. Discussion on computational time

We compared the computation time of different algorithms. We used real data based simulations

5-7 (with study number D = 4, 8 and 20 respectively) as well as the real SHH data to do this

comparison in order to provide a realistic picture. All algorithms were run in a single 2.7GHz
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CPU with 4Gb RAM. The results are shown in Table A.9. The computation time shown for

CorMotif and eb10best includes the time used for searching the optimal motif number K (see

Section A.4 for the algorithm used by CorMotif to search for K). For these two algorithms, the

model was fitted at multiple different K values, and the average computation time for each K

(i.e., the mean time required for a single K, also called “per K time”) is also shown as “CorMotif

(mean)” and “eb10best (mean)”. The other methods do not need to search for K.

Based on the results, the total computation time required by CorMotif was between eb1

and eb10best when the study number D is relatively small (i.e., simulation 5 and SHH data).

However, both eb1 and eb10best became very slow or failed to run when D became big (i.e.,

simulations 6 and 7). CorMotif , eb1 and eb10best were all slower than SAM and all concord .

SAM analyzes each study separately and does not involve computation-intensive iterations. All

concord assumes concordant signals and usually converges in a few iterations. These explain why

they were fast. Separate limma also analyzes each study separately. However, recall that in this

article an iterative EM algorithm was added to separate limma to call differential expression

in order to match with CorMotif to better evaluate the gain in statistical power brought by

correlation motifs. For this reason, separate limma was much slower than SAM in some datasets

(e.g., simulation 7 and the real SHH data) because the EM algorithm took more iterations to

converge in those datasets. In fact, when we used the original limma without adding the EM

algorithm, the computation time was reduced to the same level as SAM (see “limma (original)” in

Table A.9). When the study number D is small, the number of unknown parameters for CorMotif

is comparable to or may even be bigger than that of full motif . For instance, if the study number

D = 4 and the motif number K = 4, the number of parameters in π and Q in CorMotif is

K − 1 + K ∗ D = 4 − 1 + 4 ∗ 4 = 19, whereas the number of equivalent parameters in full

motif is 2D = 24 = 16 < 19. This and many other factors including the number of iterations

to convergence and implementation details may all affect the computation time. Consistent with
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this, the average computation time required by CorMotif for a single K (i.e., the per K time)

was longer than that for full motif in simulation 5. In simulation 6 and real SHH data, their

per K computation time became comparable. However, in simulation 7 where D was big, full

motif failed to run. One additional thing to note is that the computation time is also affected

by the signal-to-noise ratio. For example, the per K time for CorMotif in simulation 7 which

involved more studies is slightly smaller than that in simulation 6 which involved fewer studies.

This was because with signals integrated from 20 studies, the signal-to-noise ratio in simulation

7 was stronger, leading to a faster convergence. Together, our results show that CorMotif is

computationally tractable and it is able to handle a large number of studies without having the

exponential complexity problem. We also note that CorMotif has a parameter that allows users

to fit the model using a fixed and user-specified motif number K. Therefore, if one has multiple

processors, the computation could be accelerated by running the model fitting jobs for different

Ks in parallel in different CPUs.
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Fig. A.1. Results for the model assumption based simulations 2 and 3. (a) and (g) Motif patterns for
simulations 2 and 3. The Q of the true motifs is shown. Each row indicates a motif pattern and each
column represents a study. The actual number of genes belonging to each motif (i.e., π ∗G) is displayed
at the right end of each row. The gray scale of the cell (k, d) demonstrates the probability of differential
expression in study d for pattern k. Black means 1 and white means 0. (b) and (h) The estimated Q̂
from the learned motifs with π̂ ∗ G annotated at the end of each row. (c) and (i) BIC plots. It can be
seen that motif patterns reported by CorMotif under the minimal BIC are similar to the true underlying
motif patterns. (d)-(f) and (j)-(l) Gene ranking performance of different methods in simulations 2 and 3.
TPd(r), the number of genes that are truly differentially expressed in study d among the top r ranked
genes by a given method, is plotted against the rank cutoff r. For each simulation, results for a few
representative studies are shown. Each plot is for one study.
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Fig. A.2. Motif patterns for simulations 5, 6 and 7. (a)(d)(g) The Q of the true motifs is shown. Each
row indicates a motif pattern and each column represents a study. The actual number of genes belonging
to each motif (i.e., π ∗ G) is displayed at the right end of each row. The gray scale of the cell (k, d)
demonstrates the probability of differential expression in study d for pattern k. Black means 1 and white
means 0. (b)(e)(h) The estimated Q̂ from the learned motifs with π̂ ∗ G annotated at the end of each
row. (c)(f)(i) BIC plots.
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Fig. A.3. Gene ranking performance for simulations 5, 6 and 7. TPd(r), the number of genes that are truly
differentially expressed in study d among the top r ranked genes by a given method, is plotted against
the rank cutoff r. For each simulation, results for a few representative studies are shown. Each plot is
for one study. (a)-(c) Gene ranking performance for simulation 5. (d)-(f) Gene ranking performance for
simulation 6. (g)-(i) Gene ranking performance for simulation 7.
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Fig. A.4. Motif patterns for simulations 5, 8, 9 and 10. (a),(e),(i),(m) The Q for the true underlying motifs
in the simulated data. (b),(f),(j),(n) The true number of genes belonging to each motif in the simulated
data (i.e., π ∗ G). (c),(g),(k),(o) The estimated Q̂ for the learned motifs. (d),(h),(l),(p) The estimated
number of genes belonging to each learned motif (i.e., π̂ ∗G). In the Q pattern graph (columns 1 and 3),
each row indicates a motif pattern and each column represents a study. The gray scale of the cell (k, d)
demonstrates the probability of differential expression in study d for pattern k. Each row of the bar chart
for (π ∗G) corresponds to the motif pattern in the same row of the Q graph. The motif patterns learned
by CorMotif are similar to the true underlying motif patterns. It can be seen that complementary block
motifs, such as [1,1,0,0] and [0,0,1,1], are not likely to be absorbed into merged motifs if their relative
proportions are not low.
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Fig. A.5. Gene ranking performance for simulations 5, 8, 9 and 10. TPd(r), the number of genes that are
truly differentially expressed in study d among the top r ranked genes by a given method, is plotted against
the rank cutoff r. (a)-(d) Simulation 5. (e)-(h) Simulation 8. (i)-(l) Simulation 9. (m)-(p) Simulation 10.
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Table A.1. Confusion matrix for simulation 2. The column labels indicate the true underlying patterns
and the row labels represent the learned configurations.

Method Differential configuration c(0, 0, 0, 0) c(0, 0, 1, 1) c(1, 1, 0, 0) c(1, 1, 1, 1)
Cormotif c(0, 0, 0, 0) 9069 122 99 54

c(0, 0, 1, 1) 7 127 0 30
c(1, 1, 0, 0) 3 0 153 29
c(1, 1, 1, 1) 0 1 1 89

other 21 50 47 98
separate limma c(0, 0, 0, 0) 9024 112 89 58

c(0, 0, 1, 1) 1 44 0 13
c(1, 1, 0, 0) 0 0 57 17
c(1, 1, 1, 1) 0 0 0 8

other 75 144 154 204
all concord c(0, 0, 0, 0) 9094 180 166 76

c(0, 0, 1, 1) 0 0 0 0
c(1, 1, 0, 0) 0 0 0 0
c(1, 1, 1, 1) 6 120 134 224

other 0 0 0 0
full motif c(0, 0, 0, 0) 9069 122 99 54

c(0, 0, 1, 1) 7 130 0 33
c(1, 1, 0, 0) 5 0 160 29
c(1, 1, 1, 1) 0 1 1 99

other 19 47 40 85
eb1 c(0, 0, 0, 0) 4693 20 8 5

c(0, 0, 1, 1) 376 65 1 8
c(1, 1, 0, 0) 474 1 74 10
c(1, 1, 1, 1) 365 131 132 238

other 3192 83 85 39
eb10best c(0, 0, 0, 0) 0 0 0 0

c(0, 0, 1, 1) 79 188 1 30
c(1, 1, 0, 0) 68 0 202 31
c(1, 1, 1, 1) 7793 105 87 223

other 1160 7 10 16
SAM c(0, 0, 0, 0) 9095 209 236 193

c(0, 0, 1, 1) 0 7 0 6
c(1, 1, 0, 0) 0 0 0 0
c(1, 1, 1, 1) 0 0 0 0

other 5 84 64 101
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Table A.2. Confusion matrix for simulation 3. The column labels indicate the true underlying patterns
and the row labels represent the learned configurations.

Method Differential configuration Motif1 Motif2 Motif3 Motif4 Motif5
CorMotif Motif1 9189 28 48 50 4

Motif2 0 68 0 0 4
Motif3 0 1 65 0 5
Motif4 0 2 0 97 6
Motif5 0 0 0 0 27

other 11 101 87 53 154
separate limma Motif1 9076 24 36 43 3

Motif2 0 2 0 0 0
Motif3 0 0 2 0 0
Motif4 0 0 0 3 1
Motif5 0 0 0 0 0

other 124 174 162 154 196
all concord Motif1 9200 96 117 94 5

Motif2 0 0 0 0 0
Motif3 0 0 0 0 0
Motif4 0 0 0 0 0
Motif5 0 104 83 106 195

other 0 0 0 0 0
full motif Motif1 9185 28 46 49 4

Motif2 0 63 0 0 3
Motif3 0 0 51 0 4
Motif4 0 2 0 89 3
Motif5 0 0 0 0 14

other 15 107 103 62 172
eb1 Motif1 748 0 1 1 0

Motif2 273 2 0 0 0
Motif3 4 0 1 0 0
Motif4 47 0 0 0 0
Motif5 1239 157 149 170 183

other 6889 41 49 29 17
SAM Motif1 9200 139 170 165 134

Motif2 0 0 0 0 0
Motif3 0 0 0 0 0
Motif4 0 0 0 0 0
Motif5 0 0 0 0 0

other 0 61 30 35 66
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Table A.3. Confusion matrix for simulation 4. The column labels indicate the true underlying patterns
and the row labels represent the learned configurations.

Method Differential configuration Motif1 Motif2 Motif3 Motif4 Motif5
CorMotif Motif1 9198 4 5 2 0

Motif2 0 29 0 0 0
Motif3 0 0 20 0 0
Motif4 0 0 0 22 0
Motif5 0 0 0 0 4
other 2 167 175 176 196

separate limma Motif1 8907 1 3 1 0
Motif2 0 0 0 0 0
Motif3 0 0 0 0 0
Motif4 0 0 0 0 0
Motif5 0 0 0 0 0
other 293 199 197 199 200

all concord Motif1 9200 58 69 69 0
Motif2 0 0 0 0 0
Motif3 0 0 0 0 0
Motif4 0 0 0 0 0
Motif5 0 142 131 131 200
other 0 0 0 0 0

SAM Motif1 9197 64 66 92 23
Motif2 0 0 0 0 0
Motif3 0 0 0 0 0
Motif4 0 0 0 0 0
Motif5 0 0 0 0 0
other 3 136 134 108 177

Table A.4. GEO data used for real data based simulations.

Simulation ID Study ID GEO Sample Id GEO series number Sample No. Sample type
Simulations 5-10 1 GSM366065.CEL - GSM366070.CEL GSE14668 6 Liver tissue of liver donor
Simulations 5-10 2 GSM550623.CEL - GSM550628.CEL GSE22138 6 Uveal Melanoma primary tumor tissue
Simulations 5-10 3 GSM553482.CEL - GSM553487.CEL GSE22224 6 Peripheral blood mononuclear cells of healthy volunteer
Simulations 5-10 4 GSM494634.CEL - GSM494639.CEL GSE33356 6 Normal lung tissue
Simulations 6-7 5 GSM909644.CEL - GSM909649.CEL GSE37069 6 Blood samples from controls
Simulations 6-7 6 GSM909650.CEL - GSM909655.CEL GSE37069 6 Blood samples from controls
Simulations 6-7 7 GSM909656.CEL - GSM909661.CEL GSE37069 6 Blood samples from controls
Simulations 6-7 8 GSM909662.CEL - GSM909667.CEL GSE37069 6 Blood samples from controls
Simulations 6-7 9 GSM90968.CEL - GSM909673.CEL GSE37069 6 Blood samples from controls
Simulations 6-7 10 GSM909674.CEL - GSM909679.CEL GSE37069 6 Blood samples from controls
Simulation 7 11 GSM376428.CEL - GSM376433.CEL GSE15061 6 Non-leukemia bone marrow samples
Simulation 7 12 GSM376434.CEL - GSM376439.CEL GSE15061 6 Non-leukemia bone marrow samples
Simulation 7 13 GSM376440.CEL - GSM376445.CEL GSE15061 6 Non-leukemia bone marrow samples
Simulation 7 14 GSM376446.CEL - GSM376451.CEL GSE15061 6 Non-leukemia bone marrow samples
Simulation 7 15 GSM376452.CEL - GSM376457.CEL GSE15061 6 Non-leukemia bone marrow samples
Simulation 7 16 GSM376458.CEL - GSM376463.CEL GSE15061 6 Non-leukemia bone marrow samples
Simulation 7 17 GSM376464.CEL - GSM376469.CEL GSE15061 6 Non-leukemia bone marrow samples
Simulation 7 18 GSM376470.CEL - GSM376475.CEL GSE15061 6 Non-leukemia bone marrow samples
Simulation 7 19 GSM376476.CEL - GSM376481.CEL GSE15061 6 Non-leukemia bone marrow samples
Simulation 7 20 GSM376482.CEL - GSM376487.CEL GSE15061 6 Non-leukemia bone marrow samples



A.20 REFERENCES

Table A.5. Confusion matrix for simulation 5. The column labels indicate the true underlying patterns
and the row labels represent the learned configurations.

Method Differential configuration c(0, 0, 0, 0) c(0, 0, 1, 1) c(1, 1, 0, 0) c(1, 1, 1, 1)
CorMotif c(0, 0, 0, 0) 53670 108 164 20

c(0, 0, 1, 1) 6 286 0 18
c(1, 1, 0, 0) 29 0 200 6
c(1, 1, 1, 1) 0 0 0 31

other 70 6 36 25
separate limma c(0, 0, 0, 0) 53615 121 171 24

c(0, 0, 1, 1) 0 79 0 8
c(1, 1, 0, 0) 0 0 46 3
c(1, 1, 1, 1) 0 0 0 1

other 160 200 183 64
all concord c(0, 0, 0, 0) 53748 187 255 26

c(0, 0, 1, 1) 0 0 0 0
c(1, 1, 0, 0) 0 0 0 0
c(1, 1, 1, 1) 27 213 145 74

other 0 0 0 0
full motif c(0, 0, 0, 0) 53671 108 165 20

c(0, 0, 1, 1) 5 286 0 18
c(1, 1, 0, 0) 30 0 201 6
c(1, 1, 1, 1) 0 0 1 36

other 69 6 33 20
eb1 c(0, 0, 0, 0) 49817 190 188 23

c(0, 0, 1, 1) 161 103 0 12
c(1, 1, 0, 0) 244 0 66 8
c(1, 1, 1, 1) 11 0 0 7

other 3542 107 146 50
eb10best c(0, 0, 0, 0) 51731 109 125 36

c(0, 0, 1, 1) 5 232 0 6
c(1, 1, 0, 0) 12 0 169 4
c(1, 1, 1, 1) 0 0 0 16

other 2027 59 106 38
SAM c(0, 0, 0, 0) 53773 283 398 83

c(0, 0, 1, 1) 0 0 0 0
c(1, 1, 0, 0) 0 0 0 0
c(1, 1, 1, 1) 0 0 0 0

other 2 117 2 17
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Table A.6. Confusion matrix for simulation 6. The column labels indicate the true underlying patterns
and the row labels represent the learned configurations.

Method Differential configuration Motif1 Motif2 Motif3 Motif4 Motif5
CorMotif Motif1 53600 15 11 15 1

Motif2 0 169 0 1 4
Motif3 4 1 147 0 2
Motif4 1 3 0 178 7
Motif5 0 1 0 1 170
other 270 11 42 5 16

separate limma Motif1 53340 21 12 22 5
Motif2 0 16 0 0 4
Motif3 0 0 14 0 2
Motif4 0 0 0 17 1
Motif5 0 0 0 0 0
other 535 163 174 161 188

all concord Motif1 43 36 49 4
Motif2 0 0 0 0 0
Motif3 0 0 0 0 0
Motif4 0 0 0 0 0
Motif5 17 157 164 151 196
other 0 0 0 0 0

full motif Motif1 53578 15 11 13 1
Motif2 0 156 0 0 2
Motif3 3 0 146 0 1
Motif4 1 2 0 166 4
Motif5 0 0 0 0 136
other 293 27 43 21 56

eb1 Motif1 47986 24 14 18 0
Motif2 3 47 0 0 5
Motif3 23 1 42 0 1
Motif4 10 0 0 69 1
Motif5 3 0 0 0 38
other 5850 128 144 113 155

SAM Motif1 53851 120 138 116 89
Motif2 0 0 0 0 0
Motif3 0 0 0 0 0
Motif4 0 0 0 0 0
Motif5 0 0 0 0 0
other 24 80 62 84 111
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Table A.7. Confusion matrix for simulation 7. The column labels indicate the true underlying patterns
and the row labels represent the learned configurations.

Method Differential configuration Motif1 Motif2 Motif3 Motif4 Motif5
CorMotif Motif1 52442 3 5 4 1

Motif2 6 188 0 0 1
Motif3 10 0 156 0 0
Motif4 5 0 0 187 10
Motif5 0 0 0 0 165

other 1412 9 39 9 23
separate limma Motif1 51999 7 24 5 4

Motif2 0 0 0 0 0
Motif3 0 0 0 0 0
Motif4 0 0 0 0 0
Motif5 0 0 0 0 0

other 1876 193 176 195 196
all concord Motif1 53859 27 49 18 3

Motif2 0 0 0 0 0
Motif3 0 0 0 0 0
Motif4 0 0 0 0 0
Motif5 16 173 151 182 197

other 0 0 0 0 0
SAM Motif1 53812 108 145 110 100

Motif2 0 0 0 0 0
Motif3 0 0 0 0 0
Motif4 0 0 0 0 0
Motif5 0 0 0 0 0

other 63 92 55 90 100
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Table A.8. Ranks of known SHH target genes by each method in the SHH analysis.

Gene name Analysis Method Study 1 Study 2 Study 3 Study 4 Study 5 Study 6 Study 7
Gli1 separate limma 6 7 16 9 7 1369 515

CorMotif 5 6 7 7 6 930 324
all concord 9 9 9 9 9 9 9
full motif 5 7 7 4 5 809 308

SAM 7 6 17 9 10 1627 583
eb1 33396 25 36 24 24 1828 720

Ptch1 separate limma 7 19 4 4 2 783 19
CorMotif 6 20 8 4 3 495 12

all concord 5 5 5 5 5 5 5
full motif 7 16 4 3 2 409 14

SAM 6 18 5 4 2 964 25
eb1 13455 8 6 9 4 1464 289

Ptch2 separate limma 273 607 9996 1527 458 2530 117
CorMotif 140 437 462 356 264 1848 69

all concord 40 40 40 40 40 40 40
full motif 145 450 482 285 256 1686 70

SAM 303 630 9066 1431 468 2488 95
eb1 7331 579 838 727 433 418 161

Hhip separate limma 105 25 31 580 2964 13452 6
CorMotif 61 19 27 264 652 9259 2

all concord 22 22 22 22 22 22 22
full motif 58 22 28 249 632 8529 2

SAM 107 24 20 597 2903 16223 7
eb1 6111 32 10 353 326 7462 131

Rab34 separate limma 927 553 299 577 396 15782 241
CorMotif 324 401 164 176 261 10418 150

all concord 160 160 160 160 160 160 160
full motif 386 372 139 194 274 9546 151

SAM 953 613 450 619 430 15923 171
eb1 1371 1333 1042 1130 1074 12564 1019

Hand2 separate limma 34351 11862 6647 6061 196 20672 44939
CorMotif 3601 3394 2794 1036 544 13371 17909

all concord 4987 4987 4987 4987 4987 4987 4987
full motif 3327 3021 2460 917 550 12585 14457

SAM 34455 12375 8381 6582 207 22592 44945
eb1 28270 2191 3040 1650 571 23269 33457

Hoxd13 separate limma 6805 7572 1893 10644 12 26047 9676
CorMotif 1990 2371 1746 1223 93 15204 5734

all concord 933 933 933 933 933 933 933
full motif 1943 2490 1246 1064 88 14041 4722

SAM 6724 7763 2684 10553 12 27578 8579
eb1 6919 804 696 641 14 26742 12464
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Table A.9. Comparison of computation time. The time is shown in the unit of seconds. In some cases,
the time is also converted to hours (hr) and the converted time is shown in parentheses. For CorMotif
and eb10best , the displayed number includes the time used to search for the optimal motif number K.
For these two algorithms, the average computation time per K (i.e., the mean time required for a single
K) is also shown as “CorMotif (mean)” and “eb10best (mean)”. “limma (original)” corresponds to the
original limma without using the EM algorithm to declare differential expression.

Analysis Method Simulation 5 Simulation 6 Simulation 7 SHH
CorMotif 2038.81 5037.39 5552.32 8760.06

(0.57hr) (1.40hr) (1.54hr) (2.43hr)
CorMotif (mean) 339.80 719.63 694.04 1251.44

all concord 3.27 3.27 3.52 7.58
separate limma 28.33 44.36 532.70 1025.77
limma (original) 6.37 7.65 20.65 21.57

full motif 80.87 508.47 fail to run 1844.07
SAM 9.27 23.24 48.86 20.48
eb1 196.29 25034.95 fail to run 311.49

(6.95hr)
eb10best 53329.04 fail to run fail to run fail to run

(14.81hr)
eb10best (mean) 5332.90 fail to run fail to run fail to run


