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Supplementary Figure 1: Exemplary regular raw data curves. Displayed are four raw

data curves taken during two consecutive tip cycles while lifting and lowering TTCDA. The

inset shows the noise level and the reproducibility in a relevant region of the curve. The

offset of about 1.8 Hz originates from the tip-sample interaction that is still present in the

raw data.
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Supplementary Figure 2: Exemplary irregular raw data curves. Displayed are four raw

data curves taken during two consecutive tip cycles while lifting and lowering TTCDA.

The curves show a clear hysteresis between lifting and lowering of the molecules that

originates from instability of the tip-suspended TTCDA molecule or of the tip.
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Supplementary Figure 3: Exemplary regular and irregular raw data curves. Displayed

are four raw data curves taken during two consecutive tip cycles while lifting and lowering

NTCDA. The molecule has flipped to the tip in the last part of the first tip retraction. The

subsequently recorded curves show no sign of the molecule in the junction anymore.
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Supplementary Figure 4: Exemplary bare tip approach curve and fit. The fit to the

approach curve is made separately for each contacting experiment. It is then subtracted

from all Δf curves that have been measured within the respective contacting experiment.

In this way we completely eliminate the contribution from the tip-surface interaction without

introducing additional noise (from the approach curve) in the data.
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Supplementary Figure 5: Determination of the absolute experimental z tip-scale. Ex-

perimental and simulated Δf(ztip) curves for the complete single-molecule manipula-

tion process for all three molecules. The experimental data has been aligned to the

simulations1 in the part of the curve where molecule and surface are well separated.
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Supplementary Figure 6: Comparison of the goodness of fit criteria �2 and s. The

exemplary gof values that are shown here have been calculated for a fit to the TTCDA data

with a C3 value which is 1 kcal/molÅ3 higher than the optimal fit value. The normalized

plots show how �2 and s add up to the sum in Eq. 8. The �2 criterion reaches 90% of its

final value already after the first 10% of the fit interval, while the criterion s takes the full

fit interval into account.
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Supplementary Figure 7: Sketch of the forces and resulting torques acting on the

molecule. a Asymmetries in the mesoscopic tip apex can lead to lateral forces acting

on the tip-suspended molecule. b If the bond between molecule and tip apex has no

directionality (as in the present case), and if the molecule experiences attractive forces to

the tip only, the molecule will always end up sitting flat on the tip, because the equilibrium

of a molecule not sitting flat on the tip will always be unstable. c The molecule-surface

attraction introduces a restoring force strictly towards the vertical molecular orientation.
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Supplementary Figure 8: Schematic angle dependent potential. Sketch of the potential

energy of the molecule in Supplementary Figure 7
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Supplementary Figure 9: Static polarizabilities. Static per-atom polarizabilities of car-

bon (averaged over all atoms in the molecule) for NTCDA, PTCDA, TTCDA, QTCDA, and

PentTCDA (same as the zero-frequency data of panel a). The data labelled ”w/o HOMO-

LUMO” are obtained by excluding the HOMO-LUMO transition from the summation of

Supplementary Equation 6.

8



2 Supplementary Tables

CCmAu
3 CHmAu

3 COmAu
3 H O C

NTCDA 27.0 7.7 18.0 }
0.29 0.67 1.00PTCDA 27.3 7.9 18.4

TTCDA 27.3 8.0 18.3

Free atom 32.6 12.2 19.4 0.37 0.60 1.00

Supplementary Table 1: Interaction coefficients C3 given in
(
kcal mol−1 Å3

)
for Au with

each atomic species in the molecule and the weighting factors A (dimensionless) are

presented. The interaction coefficients of Au with each species A as a free atom are

included for reference. By definition, C is equal to 1.00.
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3 Supplementary Discussion

Discussion and exclusion of potential systematic errors

qPlus sensor stiffness The stiffness of commercially available qPlus sensors is 1800± 100 N/m.

This uncertainty introduces a systematic error in the determinedC3 coefficients of about 6%, which

does, however, not influence the observed superlinearity.

Electrostatic forces In principle, electrostatic forces between the tip (with the attached molecule)

and the surface could add to the experimentally measured frequency shifts and thus invalidate the

fitting of our data that is based on van der Waals forces only. Electrostatic forces could originate

from contact potential differences between the tip with attached molecule and the surface. Such

contact potential differences could arise from charge transfer between the tip and the molecule.

In particular, if there was a systematic variation in this charge transfer with the molecules in our

homologuous series, electrostatic forces could influence the observed superlinearity of theC3 coef-

ficients. It is important to realize that we only need to consider electrostatic effects that are related

to the tip-attached molecule, since all (bare) tip-surface interactions (van der Waals and electro-

static) are eliminated from the measured data by subtraction of the bare tip approach curve (see

Methods section).

To address this issue, we have carried out DFT calculations of the tip-molecule-surface junc-

tion, with and without van der Waals interactions (PBE and PBE + vdWsurf). DFT calculations

determine the charge distribution in the junction, including possible charge rearrangements be-

10



tween the tip (modeled by a 20 atom pyramidal cluster) and the molecule, and on this basis yield

the electrostatic interaction energy (electrostatic forces) between the molecule-decorated tip and

the surface. We note here that the DFT calculations are very expensive, because the system-size is

large and the sought-after interaction energies are very small, on the border of what is feasible.

Our DFT calculations show that there is no systematic change of the charge transfer between

tip and molecule in the homologous series NTCDA-PTCDA-TTCDA, and hence no systematic

change of the contact potential that could explain the superlinearity of our C3 coefficients. In fact,

the (molecule related; see above) electrostatic interaction energies between the molecule-decorated

tips and the surface are exceedingly small (at zmol = 7 Å −3.1 meV for NTCDA, −5.1 meV for

PTCDA and −2.1 meV for TTCDA) and, most importantly, do not increase in the sequence from

NTCDA to TTCDA, as would be necessary if systematic contact potential differences were to be

invoked to explain the superlinearity of the experimentally determined C3 coefficients. Moreover,

even at the relatively close distance of zmol = 7 Å, the DFT+vdWsurf calculated van der Waals

interaction energies are approximately one order of magnitude larger (26.6 to 33.5 meV) than

the electrostatic energies. Furthermore, there is strong experimental evidence (confirmed by DFT

calculations) that also for PTCDA on a flat Au(111) surface there is essentially no charge transfer

to the molecule12. Since no charge transfer is present in either of the two extreme cases (sharp Au

tip and flat Au(111) surface), we can conclude that charge transfer for our real experimental tip is

also negligible.

On the basis of the detailed DFT study, we can thus conclude that electrostatic interaction
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does not play a significant role in the present material system xTCDA/Au(111). This is in full

agreement with our experimental findings and the interpretation of our data.

Orientation of the molecule In our fitting of equation (2) to the experimental data we employ

a vertical orientation of the molecule (i.e. the diagonal of the molecule is perpendicular to the

surface). This orientation is obtained by minimizing the molecule-surface vdW potential for the

tip-suspended molecule. If there was in experiment a deviation from this orientation, this would

have an influence on the determined C3 coefficients (this is, in fact, obvious from equation 2).

However, we demonstrate below by means of an ab-initio DFT calculation and experimental evi-

dence that obtaining the molecular orientation by minimizing the molecule-surface vdW potential

(and thus the vertical orientation as defined above) is indeed justified.

In our DFT calculation (PBE functional) we start with a molecule that is suspended vertically

off the tip and tilt this molecule in the molecular plane and perpendicular to it. The incurred

energy cost is of the order of 10 meV in an angle range of ±20∘ (the tilting perpendicular to

the molecular plane incurs an even smaller energy cost of < 2 meV). Since these numbers are

at the significance threshold of DFT, the calculation confirms that for our molecules the gold-

oxygen bond has essentially no directionality. The orientation of the molecule hanging off the

tip will therefore be determined by van der Waals forces alone (electrostatic forces are negligible,

as discussed above). There are two sets of van der Waals forces of relevance here: (1) Fsurface

between the molecule and the surface and (2) Ftip between the molecule and the tip. For symmetry

reasons, Fsurface is always directed strictly normal to the surface, while Ftip can (and most probably
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will) deviate from this direction, depending on asymmetries of the tip shape (see Supplementary

Figure 7a). F ∣∣tip, the parallel component of Ftip, is related to the imbalance between the attractions to

opposite sides of the tip and produces a torque M on the molecule, as indicated in Supplementary

Figure 7a.

If for the moment we disregard Fsurface, we see in Supplementary Figure 7b that on an asym-

metric tip the molecule will assume an equilibrium position (M = 0) that is tilted away from the

more massive side of the tip. In this way the presence of more tip matter on the right hand side

is balanced by the closer vicinity of the molecule to the left hand side of the tip (Supplementary

Figure 7b). What is also immediately obvious from Supplementary Figure 7b is the fact that the

equilibrium of a molecule that experiences only attractive forces to the tip is always unstable: Any

tilt to one side will produce a torque that will turn the molecule further to that same side, until

the molecule sits flat on the tip. This is shown schematically by the curve marked with Etip in

Supplementary Figure 8, where the potential energy E is plotted against the tilt angle �. We can

thus conclude: If the bond between molecule and tip apex has no directionality (as in the present

case), and if the molecule experiences attractive forces to the tip only, the molecule will always

end up sitting flat on the tip. Evidently, such a molecule is undetectable in our experiments (see

Supplementary Figure 3).

The facts that (i) in many cases we still detect the molecule in the junction when we return

the tip towards the surface from far away, and that (ii) the corresponding frequency shift curves

fall on top of the Δf curves measured on retraction of the tip with the hanging molecule from the
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surface (i.e. no hysteresis), thus mean that there must be additional forces acting on the molecule

which turn the unstable equilibrium of the hanging molecule into a stable one, such that no flip to

the tip can occur. These forces can only originate from the surface (since the tip-molecule bond is

not directional, see above). Indeed, Supplementary Figure 7c shows that van der Waals attraction

to the surface generates torques that turn the molecule towards the vertical orientation. The cor-

responding potential energy curve is also shown in Supplementary Figure 8, labelled Esurface. The

total potential energy is given by the sum of the two curves (not drawn).

Now Supplementary Figure 8 shows very clearly: In order for the molecule to survive the

whole manipulation cycle in the hanging configuration (with maximum tip-surface distances of

45 Å at the upper turning point), the total potential energy curve must be opening upwards through-

out the complete cycle (otherwise the molecule would flip to the tip). Therefore the potential curve

Etip must always be shallower than Esurface in this cycle. Since the van der Waals attraction to the

surface at the upper turning point of the manipulation cycle is very weak and therefore Esurface is

very shallow, the potential energy curve Etip must be even shallower. Note that Etip itself does not

depend on the tip-surface distance. In other words, the restoring force constant k∣∣surface due to the

minimal van der Waals attraction to the surface constitute an upper bound for the parallel force

constant k∣∣tip due to the tip throughout the complete manipulation cycle (i.e. k∣∣surface > k
∣∣
tip always,

with k∣∣surface >> k
∣∣
tip for most of the manipulation cycle since Fsurface ∝ z−4

mol increases rapidly with

decreasing zmol).

In conclusion, this means that in all those manipulation cycles in which the molecule survives
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in the hanging configuration, the molecule must reside very close to the vertical configuration for

most of the fitting range, because in most the fitting range k∣∣surface >> k
∣∣
tip. We note here that the

improvement of the fit due to allowing for superlinearity is achieved in a distance range quite close

to the sample (see Fig. 3a of the manuscript) where the surface-derived torque on the molecule

is strong, leading to a vertical orientation. Hence, we can positively exclude that our finding

of superlinearity is influenced in any way by a deviation of the molecular orientation from the

vertical.

According to Supplementary Figures. 7a and 7b, a tip with a small k∣∣tip is a nearly symmetric

tip. One may ask why we have succeeded in preparing a relatively large number of symmetric tips.

The answer is clear: Only symmetric tips allow complete, non-hysteretic manipulation cycles. By

eliminating hysteric curves form our data set, we automatically eliminate asymmetric tips which

would lead to significantly tilted molecules. This means in summary: While it is true that tilts

of the molecule will influence the obtained C3 values, we can exclude such tilts on experimental

grounds and thus obtain C3 coefficients that are not influenced by tilts.

Deviations from the asymptotic dispersion interaction at short range

We found in the paper that below ≈ 4.8 Å the asymptotic form Eq. 5 of the dispersion interaction

is not fulfilled any more (Fig. 3b). This is to be expected, because Eqs. 5 and 6 only constitute

the long-range limit of the more general expression for the interaction part (Va−s) of the entire

correlation energy EC (see Methods section). In the random phase approximation (RPA) to the

adiabatic-connection fluctuation-dissipation theorem (ACFDT)15, 17–19 the correlation energy EC is
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given by

EC = − 1

2�

∫ ∞
0

duTr
(
1− �(iu) + ln(�(iu))

)
(1)

with �(!) being the space-dependent dielectric function (or, equivalently, its Fourier-transform

matrix as discussed above in the Supplementary Methods) of the entire system of surface plus

atom/molecule.

The RPA total energy, being an approximation, might suffer from slight inaccuracies on an

absolute energy scale. Nonetheless, RPA is perfectly suitable as a basis on which the deviation

of van der Waals attraction from its long-range asymptotic behaviour at close distances can be

discussed.

At large distances the charge densities of substrate and atom/molecule do not overlap, and

�(!) can be simplified into individual contributions from surface and atom/adsorbate, finally lead-

ing to the expressions of Eqs. 5 and 6. At closer distances, however, the charge densities and

polarizabilities of surface and of atom/molecule overlap and influence each other in a way which

prohibits separation. The evaluation of Supplementary Equation 1 for physisorption of PTCDA on

Ag(111) shows that Va−s(z) becomes weaker than Eq. 5 for z smaller than about 4-5 Å [15], and

does not diverge at z0. This makes the use of Eq. 5 questionable at typical physisorption distances,

as is indeed found in our fits if the fitting region starts at too low values of zmol.
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Superlinearity

In the paper we found a clear trend of increasing experimental C3 coefficients with molecular

size, i.e. the per-atom molecule-surface interaction rises in the sequence NTCDA→ PTCDA→

TTCDA. Slight inaccuracies of the RPA total energy on an absolute energy scale notwithstanding,

the RPA (see discussion above and Supplementary Methods) is perfectly suitable as a basis to dis-

cuss the connection between the microscopic electronic states and the macroscopic polarizability

of the molecule that finally leads to the superlinear increase of the C3 coefficients.

Supplementary Equations 6 to 10 indicate two important issues regarding the macroscopic

polarizability �macr and its separation into contributions from individual atoms. On the one hand,

the microscopic charge-density response � in Supplementary Equation 6 can often be discussed in

terms of local, atom-wise polarizability effects (simply because the various wave functions have

local contributions at the various atoms). However, after the transformation � → � → �−1 →

�−1
macr → �macr, which shuffles information around in real space (in terms of the so-called local-

field effects), atom-wise additivity is questionable. This is in principal contrast to the idea of the

additivity of atom-to-atom contributions to the van der Waals interaction. Fortunately, such effects

are often of secondary importance. In the present case of NTCDA, PTCDA, TTCDA and beyond,

our calculations indicate that the molecular polarizabilities before and after the � → � → �−1 →

�−1
macr → �macr transformation differ by a factor that is the same for all molecules discussed here.

This would re-establish the additivity, if it were not for the second issue to which we now turn.

Supplementary Equation 6 indicates that even at the level of the microscopic density response
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function �, the polarizability of an atom is drastically influenced by its environment, because the

latter affects the wave functions and the energy levels. This influence can be quite long-ranged if

delocalized quantum mechanical states dominate the polarizability. We discuss this issue in more

detail below for the case of NTCDA, PTCDA, and TTCDA. In short, the delocalized nature of

quantum mechanical states makes it impossible to accurately predict the polarizability of an atom

from just considering its nearest neighbours.

As an example, we show in Supplementary Figure 9a the per-atom polarizability of the car-

bon atoms (averaged over all carbon atoms in each molecule) for NTCDA, PTCDA, and TTCDA

for imaginary frequencies iu that are relevant for Eq. 6 and Supplementary Equation 1. The data

result from Supplementary Equation 6 by partitioning the wave functions into contributions at each

atom (for details, see Ref. 21). We also evaluate the anisotropy of the charge-density response of

Supplementary Equation 6, which is particularly important for the current case of flat �-conjugated

systems. Note that all discussion here are on the level of � (more precisely (�(!))Q=0,Q′=0), i.e.

Supplementary Equation 6, without considering local-field effects.

Three important observations can be made in Supplementary Figure 9a:

∙ At large iu, the per-atom polarizability behaves as � ∝ u−2. This is expected from Supple-

mentary Equation 6 if u ≫ En − Em. Moreover, at large iu the per-atom polarizability is

essentially the same for all molecules.

∙ There is a strong anisotropy of the per-atom polarizability. This is coupled to the linear ex-
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tensions of the molecule in the three space directions. The larger the extension in a given

direction, the larger the respective polarizability. Note that NTCDA, which is of similar

extension in x and y directions, also has similar per-atom polarizabilities in these two direc-

tions.

∙ As iu → 0, we observe a strong difference in �xx between NTCDA, PTCDA, and TTCDA.

Looking at Supplementary Equation 6, we would expect such a behaviour if En − Em was

decreasing in the same sequence. Since the HOMO-LUMO transition is by definition the

lowest energy transition in each molecule that therefore contributes strongest to the atomic

polarizability � ∝ (En−Em)−1 in Supplementary Equation 6, this suggests that the HOMO-

LUMO gap drops in the sequence NTCDA → PTCDA → TTCDA. This is indeed true. It

is remarkable that �yy and �zz are apparently not affected by the changing HOMO-LUMO

gap, with the consequence that the per-atom polarizabilities along y and z are nearly the

same for all molecules. This is also found for all per atom polarizabilities of the oxygen and

hydrogen atoms.

The strong increase of the per-atom polarizability along x (the long axis of the molecule) for

increasing length of the molecule (NTCDA→PTCDA→TTCDA) is the origin of the superlinearity

of the C3 coefficients as discussed in the paper.

A more detailed analysis confirms the role of the HOMO-LUMO transition as conjectured

above. In Supplementary Figure 9b the same data as in panel a is displayed, but for zero frequency

only (static case). For the data labelled ”w/o HOMO-LUMO” the HOMO-LUMO transition has
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been left out of the summation in Supplementary Equation 6. Evidently, the per-atom polarizability

along the x axis is strongly affected, in particular for the larger molecules where this transition

dominates the polarizability in x direction. Without this transition only a very small superlinearity

persists (from 2.37 Å3 to 2.98 Å3 when going from NTCDA to PentTCDA). This shows that more

than 90 % of the superlinearity results from the HOMO-LUMO transition of the molecules.

Due to the particular symmetry of the HOMO and LUMO wave functions, the polarizabilities

in the y and z directions are not affected at all by the HOMO-LUMO transition. Apparently, this

transition shuffles � electrons exclusively in the direction of the long axis of the molecule. In

this context, it is interesting to note that in going from the HOMO to the LUMO, the number

of nodal planes perpendicular to the long axis of the molecule increases from 5 to 6, with the

consequence that the superposition of these two orbitals can shift charge along the long molecular

axis effectively, as required for a polarization in this direction.

For an infinitely long molecule, i.e. a (C10H4)n polymer, electrons would form a metal-

lic band and the static polarizability in x direction would diverge. Our five data points of Sup-

plementary Figure 9b constitute the onset of this divergence. For finite molecules, the band

breaks up into confined states, which are the molecular orbitals22, e.g. HOMO and LUMO. The

longer the molecule, the more closely spaced are these confined states on the energy axis, i.e., the

HOMO-LUMO gap reduces from NTCDA to PentTCDA. According to Supplementary Equation 6

(� ∝ (En − Em)−1), this leads to increasing contributions of corresponding electronic transitions

to the low-frequency molecular polarizability. Note that the C3 coefficients follow this trend, but

20



they would not diverge at infinite molecular size.

It is well-known that the conjugation in aromatic systems can lead to a superlinear in-

crease of the polarizability with molecular size, most prominently in elongated species such as

oligomers23–25. The influence of this effect on the optical properties of molecules in solution is

subject of intense research26, 27. Here, we observe superlinearity for the first time directly in force

experiments. One has to keep in mind that the superlinear rise of the dispersion interaction is

smaller than the one in optical experiments, because the latter probe the polarizability at optical

frequencies, while the dispersion potential is obtained by integration over imaginary frequencies

up to 100 eV.

Full potential profile between PTCDA and Au(111)

Fig. 4b contains two separate interaction potentials for PTCDA with Au(111), one for the near-

distance region, the other for the asymptotic region. Between them, they fully map out the potential

profile.

The asymptotic potential is based on the data of this paper. In Fig. 4b we follow common

practice and plot the potential for the flat molecule (molecular plane parallel to the surface). Since

for a flat molecule all atoms in the molecule have identical z, we can sum over the C3 coefficients

of all atoms in the molecule. The total potential thus becomes

Vflat mol−s = −Meff
C3

(z − z0)3
, (2)

with the effective number of carbon atoms Meff (Eq. 7).
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The orange potential profile is based on C3 = 70 kcal/molÅ
3

with z0 = 0 Å, as determined

in Ref. 1 by fitting the range from 8 to 14.7Å and from 16.9 to 23.6Å in Fig. 2a (blue curve) with an

expression based on the asymptotic potential Eq. 5. It is clear that applying this expression outside

its range of validity, z0 will decrease while C3 will increase when approaching the surface, thus

emulating the more shallow slope of the true potential for z < 4.8 Å and avoiding the singularity

at z0 (see Ref. 15 and Supplementary Discussion above). This behaviour can clearly be seen in

Fig. 3b. We note here that although the C3 = 70 kcal/molÅ
3

and z0 = 0 Å are ‘unphysical’ in

the sense that they have been derived outside the asymptotic region, they do parameterize the true

potential sufficiently well to yield a reasonable adsorption energy1. For clarity, the repulsive branch

of the short-range potential (Ref. 1) has been omitted in Fig. 4b.
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4 Supplementary Methods

The DFT+vdWsurf methodology

The DFT+vdWsurf method consists in the combination of the DFT+vdW method2 for treating inter-

molecular interactions in density-functional theory (DFT) and the Lifshitz-Zaremba-Kohn (LZK)

theory3, 4 for the nonlocal many-body response of the substrate surface. The inclusion of these col-

lective many-body effects, present within the substrate, in the determination of the vdW interaction

effectively goes beyond an atom-based pairwise description.

Based on the LZK theory, the interaction coefficient CAmS
3 between atomic species Am and

substrate S is given by

CAmS
3 =

ℎ̄

4�

∫ ∞
0

d!
"S(i!)− 1

"S(i!) + 1
�Am(i!), (3)

where �S(i!) is the dielectric function of solid S (Au in the present case) calculated from reflection

energy–loss spectroscopy experiments5 and �Am(i!) corresponds to the dipole polarizability of

atomic species A in molecule m, where m = {N,P,T} as defined in the main text for [N]TCDA,

[P]TCDA, and [T]TCDA. For the element-specific dipole polarizabilities �Am(i!), we rely on a

Padé approximant model2, 6 as in the DFT+vdW method, given by the leading term of the Padé

series as:

�Am(i!) =
�0

Am
[n(r)]

1 + (!/�eff)
, (4)

where �eff is an effective characteristic excitation frequency and �0
Am

(i!) corresponds to an element-

specific isotropic static dipole polarizability. The latter is a functional of the ground-state electron
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density n(r) of the atom in the molecule given as �0
Am

[n(r)] = vAm
eff [n(r)]�0

Afree
, where �0

Afree

corresponds to the static dipole polarizability of the free atom obtained from high level quan-

tum chemical calculations, and vAm
eff [n(r)] is the definition of a dimensionless effective volume for

species Am referenced to the free atom in terms of the Hirshfeld partitioning of the electron density

(see Refs. 2, 7–9).

In order to compute the effective volumes vAm
eff for each species A in molecule m, we per-

formed DFT calculations for the case of a single [N,P,T]TCDA molecule on a Au(111) surface

using the PBE exchange-correlation functional10. The effective volumes are given by

vAm
eff =

(∫
r3wA(r)nm(r)d3r∫
r3nfree

A (r)d3r

)
, (5)

where wA(r) is the Hirshfeld atomic partitioning weight of the species A, r3 is the cube of the

distance from the nucleus of an atom A, nm(r) is the total electron density of molecule m, and

nfree
A (r) is the reference electron density corresponding to the free atom A.

All calculations were performed with the FHI-AIMS code11. The repeated-slab method was

used to model all three systems, with three metallic layers to perform the calculations in-line with

previous investigations7, 12–15. We used the experimental lattice constant of Au (4.065 Å) to build

the (111) surface and a Monkhorst-Pack16 grid of 2 × 2 × 1 k-points in the reciprocal space. For

each system, the volumes vAm
eff were calculated with the molecule placed at distances larger than 4.0

Å with respect to the topmost unrelaxed substrate layer. The final values taken for the calculation

of �0
Am

(i!) correspond to the distance averaged value in each system.
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Using the theory described above, we computed the interaction coefficient CAmAu
3 for C, H,

and O in the [N,P,T]TCDA molecules with Au(111) as substrate. We define the weighting factor

A for species A with respect to Carbon as A = 1
3

∑3
m Am , where Am = CAmAu

3 /CCmAu
3 and

m = {N,P,T} as described in the text above. The results are given in Supplementary Table 2.

C3 coefficients from the random phase approximation

Fig. 4a contains C3 coefficients based on the random phase approximation (RPA) to the adiabatic-

connection fluctuation-dissipation theorem (ACFDT)15, 17–19. The calculation is based on Eq. 6

with RPA-calculated molecular polarizabilities and �S for the metal from Ref. 20.

Since we are in the limit of clearly separated subsystems surface and molecule, we have

to use the macroscopic dipole polarizability �macr which is defined as the dipole response to the

macroscopic electric field. But we need to calculate the macroscopic response of the molecule

from a full microscopic quantum theory of the molecule, because we are interested in the role

played by the quantum mechanical electronic states in the response.

The evaluation of the � in Eq. 6 starts with the microscopic density-density response function

�(r, r′, !) = −4
1

V

occ∑
m

empty∑
n

 m(r) ∗m(r′) ∗n(r) n(r′)
En − Em

(En − Em)2 − !2
(6)

at the RPA level. This function reveals how a perturbation of the density at position r within the

molecule propagates to position r′. The ∣m⟩, ∣n⟩ are the quantum mechanical states of the electrons

in the molecule. From Supplementary Equation 6, we calculate the Fourier transform (�(!))Q,Q′ ,

where in our notation the matrix (f)Q,Q′ is the Fourier transform of f(r, r′). (�(!))Q,Q′ is related
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to the microscopic dielectric function (�(!))Q,Q′ by a matrix-matrix multiplication with the bare

Coulomb interaction (v(!))Q,Q′

(�(!))Q,Q′ = 1− (v)Q,Q′(�(!))Q,Q′ (7)

In Fourier space, we can obtain the inverse microscopic dielectric function (�−1(!))Q,Q′ by a

simple matrix inversion. The macroscopic dielectric constant is defined as the long-range limit of

the inverse dielectric function, which can be obtained in Fourier space as

�−1
macr(!) = (�−1(!))Q=0,Q′=0. (8)

Finally, we have to relate the macroscopic dielectric function to the macroscopic polarizability that

can be used in Eq. 6. Here we use the fact that the polarization density P = p/V, where V is the

volume, can be expressed by

P(r) =
�macr − 1

4�
E(r), (9)

where E(r) is the macroscopic electric field. Combining this with the definition of the macroscopic

polarizability p(r) = �macrE(r) we obtain

�macr(!) =
V

4�
(�macr(!)− 1). (10)

�macr(!) at imaginary frequencies is then inserted into Eq. 6. We note that for anisotropic objects

like the molecules under consideration here, different directions along which the Q,Q′ approach

zero in Supplementary Equation 8 lead to different dielectric functions. In other words, �macr(!)

and �macr(!) are 3×3 tensors. Because of the symmetry of our molecules, these tensors become

diagonal if the coordinate system is chosen to coincide with the three symmetry directions (princi-

pal axes), such that the macroscopic polarizability is fully described by the three functions �xx(!),
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�yy(!) and �zz(!). Note that we use a molecular coordinate system in which x refers to the long

molecular axis within the plane of the molecule, y refers to the short axis, and z is perpendicular

to the molecular plane.
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