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Supplemental Methods 

Modifications to the GPV model 

The Grandi-Pandit-Voigt (GPV) model failed to propagate robustly when paced at faster rates (Fig. S1, black 

trace).  We substituted the fast sodium current (INa) kinetics of the original model with the formulation from 

the Luo-Rudy dynamic model (LRd)[1] to achieve normal propagation, as done previously[2] (Fig. S1, blue 

trace).  INa conductance (gNa) was set to 14 mS/µF to reproduce maximum upstroke velocity (208 V/s) and 

action potential amplitude (105 mV) values reported previously[3,4].  In addition, we reduced the number of 

state variables in the GPV model using a rapid equilibrium approximation for Ca2+ and Na+ buffers with fast 

kinetics (Text S2).  This decreased the computation time for tissue simulations by about 6X.  The modified 

GPV model (GPVm) with LRd INa kinetics and fewer state variables was used for all simulations in this study 

unless otherwise indicated. 

Intra-atrial heterogeneity and cAF remodeling 

For the GPVm model, we implemented the changes described in Grandi et al. for the left atrium (LA) and 

right atrium (RA)[5].  In normal cells, the maximum conductance of IKur (gKur) is increased by 20% in the RA 

as compared to the LA.  In cAF cells, the maximum conductances of IKur and Ito are differentially 

downregulated from their normal levels, with gKur decreased by 45% and 55% and gto decreased by 45% and 

80% in the LA and RA, respectively.  Additionally, modifications of the action potential under conditions of 

cAF included the following changes that occurred in both LA and RA: a 10% decrease in gNa, addition of a 

late component to the sodium current (INaL), a 50% decrease in gCaL, a 40% increase in IbarNCX, a 3-fold 

increase in the ryanodine receptor (RyR) Ca2+-dependent activation rate (koCa), a 25% increase in 

sarcoplasmic reticulum (SR) Ca2+ leak, a 2-fold increase in gKs, and a 2-fold increase in gK1. 
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Sato-Bers RyR model implementation 

Model parameters which were modified for implementation of the Sato-Bers RyR model[6] are listed in Table 

2. The SR was divided into junctional (JSR) and network (NSR) compartments, the former of which 

contained the Ca2+ buffer calsequestrin (CSQN). Equations for CSQN buffering in the Sato-Bers model were 

derived from Restrepo et al.[7]: 
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The RyR equations were updated as described in Sato and Bers[6]: 
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Equation S12 was modified to satisfy detailed balance. 

Iterated map analysis 

We used an iterated map analysis to derive Ca2+ cycling stability criteria.  For small SR load perturbations near 

steady state, total SR release (  ) and uptake (  ) on each beat changed linearly from beat to beat[8,9]: 
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  (S14) 

  is the SR Ca2+ release slope,   is the SR Ca2+ uptake factor, and     and    
  are the changes in total SR 

load and peak cytoplasmic Ca2+, respectively, from beats     to  .  We did not consider Ca2+-induced Ca2+ 

release (CICR) and SR leak separately since both were linearly dependent on SR load near steady state and 

their effects added linearly.  Peak cytoplasmic Ca2+ was defined as: 

   
           (S15) 

where    is the total Ca2+ content in the cell at the start of beat  .  Equations S13-S15 were used to construct 

the first mapping equation describing the change in SR load[8–10]: 

                                (S16) 

Note that we did not assume     to be zero.  We also incorporated a new equation for net Ca2+ efflux from 

the cell (  ), which depended linearly on peak cytoplasmic Ca2+ for small perturbations near steady-state: 

         
  (S17) 

  is the sarcolemmal Ca2+ efflux factor.  Equations S13, S14, and S17 were used to find the linear least 

squares fit values of  ,  , and   based on   ,   ,   ,   
 , and   . 
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The Ca2+ efflux term (Eq. S17) was used to construct the second mapping equation describing the change in 

total Ca2+ content[10]: 

                           (S18) 

Though iterated map analysis lacking this second mapping equation has been previously used[9], the addition 

of the second equation provided more accurate theoretical predictions of Ca2+ alternans thresholds in our 

simulations. 

From Eq. S16 and S18, we obtained the following Jacobian matrix for the system[7,10]: 
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The criteria for stability are that both eigenvalues of the Jacobian have absolute value less than 1: 
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Under physiological conditions where the iterated map parameters are positive and   and   are less than 1, 

the iterated map parameters must satisfy 
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for Ca2+ cycling to be stable. 

Regression analysis 

We used multivariable regression analysis methods from Sobie et al. to estimate the contribution of model 

parameters to the alternans threshold pacing cycle length (CL)[11].  Twenty model parameters (Table 1) were 

scaled (from control LA values) stochastically and independently according to a lognormal distribution with a 
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median of 1 and σ = 0.2.  A total of 500 sets of parameter scaling values were generated and used in single-

cell simulations. 

To determine the alternans threshold CL (output) for a given set of parameter scaling values (input), each cell 

was first paced to steady state at a CL of 400 ms.  Then CL was progressively increased or decreased by 1 ms 

every 100 beats until APD alternans ceased (alternans ≤ 1%) or began (alternans > 1%), depending on 

whether alternans was present at a CL of 400 ms or not.  Alternans threshold CL was defined as the shortest 

CL at which alternans did not occur.  Any cell in which alternans persisted at CLs up to 750 ms or in which 

alternans was absent at CLs down to 100 ms was excluded from the analysis.  Input and output matrices were 

log-transformed, then mean-centered and normalized by standard deviations (column-wise), before 

performing linear regression[11].  The regression coefficients obtained by this method indicate which 

parameters the model is most sensitive to with regards to alternans threshold CL, under assumptions of 

linearity.  Linear regression was performed using MATLAB’s LinearModel.fit function.  Each parameter 

coefficient was considered significant if the p-value of its t-statistic was greater than 0.05.  To evaluate the 

predictive ability of the regression analysis, we multiplied the regression coefficients by parameter scaling 

values for the cAF model (log-transformed, mean-centered, and normalized) to obtain the predicted 

contribution of each parameter to changes in alternans CL[12]. 
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