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Ancestral Genomes: E. coli RU1 and C. freundii RU2 

The closely related E. coli and C. freundii are gamma-proteobacteria and are 

grouped into the Enterobacteriaceae (Figure S1). Both are facultative anaerobic, Gram-

negative commensal bacteria that can be isolated from the human gut flora and are 

opportunistic pathogens. C. freundii is often acquired as nosocomial infections, while E. 

coli infections are typically food-borne. The sequenced genome of E. coli RU1 was 

assembled into 106 contigs at a size of 4.7 MB, with 4565 annotated genes and 63 

RNAs. Of the annotated genes, a total of 989 were hypothetical and 2756 (160 of which 

were hypothetical) were grouped into 578 subsystems (Figure S6, 8a). The genome of C. 

freundii RU2 was assembled into 47 contigs. It was considerably larger than the E. coli 

genome with a size of 5.25 MB, 5068 annotated genes and 78 RNAs. A total of 1047 

genes were annotated as hypothetical, and 2950 genes (of which 149 genes were 

hypothetical) were grouped in 575 subsystems (Figure S6, 8a). Among all the 

subsystem categories, E. coli had significantly more genes than C. freundii (relative to 

the total number of genes annotated) in Phages, Prophages, Transposable Elements 

and Plasmids (Fisher’s exact test: p = 0.015), Nucleoside and Nucleotides (p = 0.048), 

Nitrogen Metabolism (p = 0.044) and Metabolism of Aromatic Compounds (p = 0.0042), 

while C. freundii had significantly more genes that fell in to the subsystems categories of 

Iron Acquisition and Metabolism (p<0.0001) and Motility and Chemotaxis (p = 0.0013). 

Only the last two comparisons remained significant after sequential Bonferroni correction 

[88].  

 

 

BBL BHI contains more carbohydrates and amino acids 

We used two different premixed media that differed in the amino acid and 

carbohydrate composition and content: LB Miller (10g tryptone, 5g yeast extract, 10 g 



NaCl per liter of water) and BBL BHI (8g brain heart infusion from solids, 5g peptic digest 

of animal tissue, 16g pancreatic digest of casein, 3g dextrose, 5g NaCl, 2.5g Na2PO4 

[89]). To estimate the final concentrations of different amino acids and carbon sources in 

the media, we used the information published in the BD Bioscience Technical Manual 

[90] for the individual ingredients and calculated the final composition (in percent dry 

weight per liter premixed media). Unfortunately, no quantitative composition analysis 

was available for one of the ingredients of BHI, the brain heart infusion from solids, 

because this ingredient is not subject to lot quality controls (BD personal communication). 

Therefore, any estimates for BHI should be considered as minimal estimates. This is 

especially true for peptides and amino acids, which are likely high in brain heart infusion 

from solids. Table S3 outlines the estimated final compositions of the two media. The 

amounts of amino acids, especially arginine, aspartic acid, glycine and proline are 

considerably higher in BHI than in LB. The addition of dextrose to BHI significantly 

increased the carbohydrate content in BHI compared to LB.  

 

 

Phenotypic assays reveal adaptation to the selective environments and underlying 

genetic variation present in the populations 

Both ancestral strains were able to grow well in the selective media, reaching 

stationary phase densities within 8 hours in LB and about 12 hours in BHI (after 100-fold 

dilution of stationary phase culture into fresh media). The lag times of the ancestral 

strains were almost twice as long in BHI than in LB, with very similar growth rates. 

Stationary phase densities were higher in BHI than in LB (Table S1), consistent with 

higher nutrient concentrations in BHI.  

We hypothesized that adaptation in a relatively flat landscape would progress 

slowly with small incremental fitness gains. We measured lag time, growth rate and 



stationary phase density of the ancestral and evolved populations to assess how the 

populations adapted to the selective environments. Over the course of the selection 

experiment, lag time decreased significantly in all LB-evolved populations, but only for C. 

freundii populations evolved in BHI, while maximum growth rate decreased significantly 

in BHI and showed no changes in LB for both species (Planned comparison between 

ancestor and evolved populations: Table S1). A comparison between the two species 

and media showed that growth rate and lag time evolved differently in E. coli and C. 

freundii in LB and BHI, as indicated by a full factor ANOVA with Species and selective 

Media as factors (lag time: Species: F1,206 = 52.4; Media: F1,206 = 508, Media×Species: 

F1,206 = 11.05, all p < 0.0001; growth rate: Species: F1,206 = 120; Media: F1,206 = 57; 

Species×Media: F1,206 = 23.8, all p < 0.0001). The differential adaptation to the two 

selective media is likely due to the media composition and different dilution rates 

experienced by the LB- and the BHI-evolved populations. The populations adapted to 

BHI-evolved for 760 generations and experienced higher daily dilutions (Figure 1), which 

allowed different genotypes in the population to be in direct competition for longer, 

resulting in stronger selection for faster growth. It is possible that extending the selection 

of the LB-evolved populations by another 500 generations would lead to changes in 

growth rates.   

Based on the increased content of carbohydrates and amino acids in BHI, we 

hypothesized that the populations evolved in BHI should reach higher stationary phase 

densities than populations evolved in LB. Over the course of the experiment, average 

density (measured as average OD600 between 16 and 24 hours after inoculation) of E. 

coli increased significantly in LB and BHI compared to the ancestor, while average 

density of C. freundii increased significantly only in BHI (LB: F1,47 = 0.48, p = 0.48; BHI: 

F1,29 = 120.3, p < 0.0001). Overall, average densities were significantly higher in the BHI-

evolved populations compared to the LB-evolved populations (C. freundii: Media F1,79 = 



810.7, p < 0.0001, Block F3,79 = 2.15, p = 0.1; E. coli: Media F1,79 = 300, p < 0.0001, 

Block F3,79 = 4.4, p = 0.006), supporting our hypothesis that the increased nutrient 

content in BHI would result in higher yield and larger populations at stationary phase.  

The E. coli populations consistently lost motility, while the C. freundii populations 

retained it. Bacteria that have been cultured in the laboratory are often non-motile [91-

93]. We isolated eight randomly chosen single colonies from each evolved population 

and tested their motility. While both ancestral strains are motile, evolved E. coli 

populations all contained single clones that lost the ancestral swarming ability. While we 

observed significant differences in loss of motility among the populations (p < 0.0001, 

mixed binary model), loss of motility was consistent across environments in the E. coli 

evolved populations. With the exception of a single clone evolved in LB, all C. freundii 

clones and hence populations retained motility, regardless of the selective environment.  

Colony size morphology and size varied considerably in the evolved E. coli 

populations when plated on tetrazolium arabinose plates (Figure 2). The color indicates 

the cells’ ability to utilize arabinose, with white cells being able and dark (red) colonies 

being unable to use arabinose. To test the genetic variation with and among populations 

more systematically, we used our test sets of eight single clones from each population 

and tested them for variations in redox state on methylene blue plates and in 

exopolysaccharide content on Congo Red plates.  While we observed substantial color 

variation both within and among the BHI-evolved E. coli (Figure S2) and all the C. 

freundii populations, we observed a consistent inability of colonies from the LB-evolved 

E. coli populations to grow in the presence of methylene blue. Methylene blue is a 

known nitric oxide synthetase (NOS) inhibitor [94]. The inability of these colonies to grow 

could indicate that these colonies are lacking alternative pathways to NOS to deal with 

oxidative stress. As with methylene blue, we also observed considerable variation within 



and among all populations in the content of exopolysaccharides, as indicated by Congo 

Red staining.  

 

 

Mutator phenotypes evolved in four E. coli populations  

Four E. coli populations acquired a large number of mutations, suggesting that 

these populations evolved to become mutators. Indeed, both LB-evolved populations, 

LB4 and LB11, acquired mutations in the recombination and repair gene recT and are 

the only two populations with mutations in this gene. RecE and RecT work together to 

promote DNA recombination [95,96]. RecT catalyzes homology-dependent DNA strand 

exchange and requires ssDNA ends on the linear DNA duplex [96,97]. Population BHI6 

had a mutation in the E. coli excinuclease ABC subunit A (also known as uvrC) and is 

part of the nucleotide excision repair pathway [98]. BHI10 had a mutation in the DNA 

polymerase I (polI). While all these genes are associated with DNA replication, 

replication fidelity and repair, it is not certain that these mutations directly contributed to 

the elevated mutation rates. None of the other populations had mutations in recT, uvrC 

or polI. We did not observe mutations in the commonly observed mutL or mutS genes in 

these four populations. One population, LB2 had a mutL mutation, but it did not have as 

many mutations as the mutator populations.  

 

 

Mutations in various efflux pumps suggest loss of function and are consistent with the 

SPANC balance 

E. coli and C. freundii have multiple copies of the membrane fusion protein of the 

RND efflux pump, cmeA, and of the inner membrane transporter, cmeB. Based on the 

RAST annotations, our E. coli strain has three copies of cmeA, and four copies of cmeB, 



while C. freundii only has one copy of cmeA and five copies of cmeB. In the E. coli 

populations, we observed mutations in cmeA on contig00003 in four populations (LB5, 

LB9, LB11 and LB12), all either insertions, deletions or SNPs that resulted in stop 

codons. A different set of five populations had mutations in cmeB on contig00003 (LB1, 

LB4, LB5, LB7 and LB8), two were substitutions to stop codons, two were insertions and 

one population had two single nucleotide substitutions. Three BHI-evolved populations 

acquired mutations in cmeB: one population (BHI4) had an insertion and another one 

(BHI6) had a substitution on contig00044, while one population had an insertion on 

contig00003. Mutations in cmeA and cmeB were not as prevalent among the LB-evolved 

and completely absent among the BHI-evolved C. freundii populations. One LB-evolved 

C. freundii population acquired a substitution in cmeB on contig00017 (LB25), one had 

an insertion on contig00001 (LB34) and a third population had an insertion in the RND 

efflux transporter on contig00005 (LB2). An insertion in cmeB on contig00003 evolved in 

one MA line. The same MA line also acquired an insertion in cmeA on contig00027. 

 

 

Mutations in arcA did not evolve in populations of a laboratory strain evolved against the 

same selection conditions as E. coli RU1 and C. freundii RU2 

We performed our selection experiments with de novo isolated strains of E. coli 

and C. freundii to be able to use LB and BHI as novel environments. We also evolved 

twelve replicated populations founded with the two isogenic lab strains E. coli B REL606 

and E. coli B REL607 (six populations each), which only differ in their ability to use 

arabinose, in LB under the same conditions as the LB-evolved populations. While we did 

not use whole genome sequencing on these populations, we sequenced the arcA locus 

of thirty single colonies isolated from two evolved populations each (LB13 and LB14). 

Out of the sixty clones sequenced, not a single one acquired a mutation in arcA, 



compared to the very abundant arcA mutations in the LB-evolved E. coli RU1 

populations. This difference could be explained by sequence divergence in arcA 

between the two E. coli strains as well as the fact that REL606 and REL607 are 

domesticated laboratory strains. Compared to E. coli RU1, E. coli B REL606 has three 

synonymous and one non-synonymous mutations (D11N) in arcA. This amino acid 

change also evolved in our experiment and supports our hypothesis that one single 

mutation is enough to convey a selective benefit. In addition, this observation further 

highlights the fact that laboratory adaptation needs to be considered when working with 

clinical or other de novo isolates. 

 

 

Putrescine secretion and changes in carbohydrates 

The increased metabolic rate of the evolved populations resulted in the secretion 

of putrescine. When we measured putrescine, we also assessed changes in 

carbohydrates both in the cell extract and in the spent media. Among the carbohydrates 

tested, only a few changed significantly. In the cell extract, we observed a significant 

increase of ribose and decreases of mannose and glucose in the evolved populations 

(Figure S4). In the spent media, only putrescine differed significantly between the 

ancestor and the evolved populations.    

 

 

Parallel evolution at the subsystem levels is rare and mainly driven by a few genes 

While arcA was the only gene that acquired mutations in all evolved LB 

populations, we also observed several genes with parallel changes among the C. 

freundii populations (Figure 5). The gene encoding the Valine-Glycine Repeat Protein G, 

vgrG, a homolog to the tailspike of bacteriophage T4, acquired mutations in all evolved 



C. freundii. Since we used a different filtering method for the C. freundii populations than 

for E. coli, it could be possible that these mutations represent systematic errors that did 

not get discarded during the filtering step. However, we observed a large number of 

mutations in this gene suggesting that the repeated evolution of mutations in this gene is 

not due to systematic errors. Adenosylmethionine-8-amino-7-oxononanoate 

aminotransferase, an enzyme in the biotin to fatty acid biosynthesis pathway acquired 

mutations in all but one evolved C. freundii populations. Unlike mutations in vgrG, this 

mutation could potentially be an error, since the same nucleotide substitution is fixed in 

all populations it occurs, which is rather unlikely. Nonetheless, one population did not 

have the same mutation. There are two copies of the same gene annotated in C. freundii. 

The other copy of the gene had a mutation in one LB population.  

Parallel evolution among independently evolved populations can also occur 

along a pathway by affecting different genes of the same pathway in different 

populations. As such, we would not be able to identify parallel evolution at the level of 

genes. To test for convergence among independently evolved populations along 

pathways, we used the three hierarchy levels of the subsystem categories and identified 

subsystems that were affected repeatedly. At the subsystem level, no clear pattern 

emerged. Among the E. coli populations, no subsystem accumulated mutations in all, or 

most populations. Leucine biosynthesis acquired mutations in eight LB-evolved lines and 

no subsystem acquired mutations in eight or more lines among the BHI-evolved 

populations or the MA lines. The C. freundii populations showed more parallel evolution 

at the subsystem level: All populations acquired mutations in the Type VI secretion 

system. This is mainly due to mutations in VgrG, the gene that acquired mutations in all 

evolved C. freundii populations. With the exception of one LB-evolved population, all C. 

freundii populations acquire mutations in three different biotin subsystems: Biotin 

synthesis cluster, biotin biosynthesis and biotin biosynthesis experimental, which was 



mostly due to the mutation in the Adenosylmethionine-8-amino-7-oxononanoate 

aminotransferase assigned to all three subsystems. Lastly, ten populations evolved in 

LB acquired mutations in the translation termination factors and translation initiation 

factors. Besides the biotin, protein biosynthesis, and protein secretion systems 

subcategories already identified above, we also observed mutations in DNA repair in 

eleven LB-evolved populations, while ten populations had mutations in six other 

subsystem categories: resistance to antibiotics and toxic compounds; lysine, threonine, 

methionine and cysteine; glutamine, glutamate, aspartate, asparagine; transcription; 

regulation and cell signaling; and RNA processing and modification.  

At the highest level, the categories, we observed more parallel evolution, but still 

fewer among the E. coli populations than among the C. freundii populations (Figure S7). 

Nine LB-evolved E. coli populations acquired mutations in virulence, disease and 

defense, while seven populations acquired mutations in protein metabolism in LB and 

BHI. Among the C. freundii populations, besides the categories mentioned above, 

membrane transport, cofactors, vitamins prosthetic group, and protein metabolism, 

twelve LB-evolved populations also acquired mutations in two more categories: amino 

acid and derivatives and RNA metabolism. Eleven LB-evolved populations had 

mutations in carbohydrates; DNA metabolism; regulation and cell signaling, while ten 

populations had mutations in virulence, disease and defense; and respiration.  

To be able to compare changes across species and environments, we identified 

the number of genes in each subsystem with mutations. We determined how many 

genes in a subsystem category acquired mutations and calculated a subsystem score 

for every subsystem, by taking the log2 ratio as (number of mutations in a subsystem/ 

genes in subsystem) divided by (number of mutations total / number genes total) and 

subtracting one. We calculated the subsystem score for each species and environment 

individually, which allowed us to compare the score among species and environments 



(Figure S8). If a subsystem category had more than random mutations, we would get a 

score larger than zero, indicating that mutations in this system could be adaptive. If a 

subsystem category had fewer genes with mutations than expected, we would get a 

score smaller than zero, indicating more constraints on genes in these subsystems. 

Subsystems that acquired mutations in response to adaptation should have a similar 

subsystem score either for both species for environments. We see a few surprising 

spikes in subsystem categories that acquired more mutations than expected such as 

dormancy and sporulation in BHI-evolved E. coli populations or virulence, disease and 

defense in BHI-evolved C. freundii populations. However, with the exception of phages, 

prophages, transposable elements and plasmids, where we observed fewer mutations in 

BHI and more than expected mutations in LB in both species, no clear pattern emerges. 

The lack of a clear pattern is consistent with the observed mutations in the global 

regulators arcA and rpoS, which act like a short cut to the accumulation of lots of 

different mutations necessary to get these global effects. While rpoS was grouped in 

RNA metabolism, arcA was not associated with any subsystem category.   

 

 

Proteomics  

Across 39 independent single dimension (1-D) LC-MS analyses of the E. coli 

ancestor sample and the twelve corresponding evolved population samples, we 

identified 4469 unique peptides. The PCA plot of the peptide abundances across the 

ancestor and evolved population samples showed a clear separation between the two 

groups (Figure S9A). This was further supported by a Pearson correlation analysis, 

which also showed a clear distinction between the ancestor and evolved population 

samples (Figure S9B). These 4469 peptides corresponded to 488 proteins, with the 

requirement each protein was identified by at least 2 unique peptides. Quantitative 



analysis of the 488 proteins revealed 166 proteins that were significantly different 

(p<0.01; log2-fold change >± 0.7). Of those 58 proteins were significantly down-regulated 

in the evolved populations relative to the ancestor samples and 108 proteins were 

significantly up-regulated in the evolved population samples relative to the ancestor 

samples (Figure 6, Table S2).   

 

Material and Methods 

 

Phenotypic Assays 

Assays were performed either at the population level or the single colony level. 

We isolated eight randomly chosen single colonies from every population and froze them 

at -80°C for subsequent use. Cells or populations were grown in their selective media 

(LB or BHI) and plated on agar plates made with their selective media, unless otherwise 

stated.  

Growth assays and average stationary phase density: To assess fitness changes, 

we measured growth rates over 24 hours by diluting stationary phase cultures 100-fold 

into fresh LB media and measuring OD every 5 minutes over 24 hours. Maximum growth 

rate and lag time was analyzed following Walkiewicz et al. [74]. Average density was 

assessed as the average OD600 over 16-24 hours after inoculation.   

Motility Assay:  Single colonies were grown to stationary phase in their selective 

media, diluted 1000-fold and plated on LB + 0.25% DIFCO agar or BHI + 0.25% DIFCO 

agar depending on their selective environment to assess their motility and swarming 

ability. The soft agar plates were incubated at room temperature for two days, before we 

scored the plates and determined whether a colony was swarming or not. Each assay 

was performed in triplicate. We used a mixed binary model with block and population as 

mixed factors to test for differences in loss of migration among the populations for each 



environment separately and tested for differences between selective environments by 

analyzing both environments combined. Only data from E. coli were analyzed as only 

one C. freundii isolate lost motility.  

Variation in colony size morphology: Stationary phase populations were plated at 

low density on tetrazolium arabinose (TA) plates and incubated for 48 hours at 37°C. 

Redox state and exopolysaccharide content: To assess the genetic variation 

within populations, we plated 8 single colonies from every population on LB or BHI agar 

plates supplemented with 0.065g/liter methylene blue [99], or with 0.15g/liter Congo Red. 

Methylene blue changes color in response to redox conditions and pH, while Congo Red 

stains exopolysaccharides.  

 

Preparation of samples for proteomics analysis  

Protein was extracted by re-suspending cell pellets in 50 µL lysis buffer [6 M urea 

(Sigma U-0631) and 14.3 mM 2-mercaptoethanol (Sigma (M6240) in 100 mM 

triethylammonium bicarbonate (TEAB), pH 9 (Sigma T7408)]. Samples were then 

incubated for one hour at 60°C with shaking at 600 rpm on a thermomixer. Insoluble cell 

material was removed by brief centrifugation. To the supernatant, 400 µL of 100 mM 

TEAB was added followed by 5 µL of 375 mM iodacetamide (Pierce 90034) in 100 mM 

TEAB. Samples were incubated for 30 minutes in the dark. Proteins were digested with 

2.5 µg of trypsin (Promega V5280) for 14 hours at 37°C with gentle shaking. Solid phase 

extraction (SPE) was performed with a vacuum manifold using Strata C-18 T columns 

and following the manufacturer’s protocol. Briefly, 1 mL of 100% methanol (Sigma 

675415) was added to activate the resin, followed by a conditioning rinse of 1 mL 0.1% 

trifluoroacetic acid (TFA, Sigma T6399) water, then addition of the samples in 100 mM 

TEAB. The samples were washed with 0.1% TFA water, and eluted with 80% acetonitrile 

(Simga 675415) in 0.1% TFA water into clean low protein-binding 1.5 mL microfuge 



tubes (Fisher 02-681-320). Samples were dried down to near completeness (~ 5 µL) 

with an Eppendorf Vacufuge plus. Peptides were resuspended with 0.1% formic acid 

water (Suprapur EMD 11670) and the concentration was adjusted to 1 mg/mL as 

measured using the BCA assay (Pierce 23225). The samples were then transferred to 

high performance liquid chromatography (HPLC) vials with 250 µL inert glass inserts and 

capped with screw caps (Agilent 5182-0715, 5181-8872, 5182-0723). Samples were 

stored at -20°C prior to analysis. 

 

Liquid chromatography-mass spectrometry measurements for proteomics  

Digested peptide samples were injected onto an Agilent Infinity 100 HPLC 

system. The column was a 40 cm long x 105 µM inner diameter fused silica capillary 

packed with 5 µM C18 resin (Phenomenex, Torrance, California).  1 µL aliquots (total 

mass ~1 µg) were injected and subjected to the following gradient 160-minute gradient:  

100% Solvent A for 10 minutes; 0% B to 7.5% B over 1 minute; 7.5% B to 45% B over 

110 minutes; 45% B to 95% B over 2 minutes; 95% B for 10 minutes, 95% B to 0% B 

over 4 minutes, and 100% A for 20 minutes. Solvent A was 5% acetonitrile/0.1% formic 

acid, and Solvent B was 95% acetonitrile/0.1% formic acid.  Blanks consisting of 5 µL 

injections of isopropyl alcohol were run (with a shorter gradient) between samples to 

minimize column carry-over.   

 To minimize statistical impacts to the experiment due to run order or adverse 

instrumental events, samples were grouped into batches such that experimental factors 

were balanced across each batch. Each batch of samples was run in a block with 

randomized run order. Each block was repeated a total of three times with a different 

random run order each time. To monitor the quality of the chromatographic separation, 

standards were run before and after each block. The standard was a tryptic digest of 



ovalbumin, bovine serum albumin, bovine αS1-casein, and bovine lactalbumin (all from 

Sigma) at equal mass concentrations. 

The HPLC was coupled to a Thermo Scientific LTQ Orbitrap XL mass 

spectrometer via a custom electropspray emitter consisting of an etched fused silica 

capillary [100]. The MS was operated in data dependent “high-low” mode with a high-

resolution (R=30,000) precursor scan collected in the Orbitrap followed by collision-

induced dissociation (CID) fragment scans of the top 7 most intense precursors collected 

in the ion trap. Data dependent acquisition parameters were: CID fragmentation 

normalized collision energy 35%; monoisotopic precursor selection enabled; dynamic 

exclusion repeat count 2, repeat duration 30 s, exclusion list size 250, exclusion list 

duration 180 s. 

 

Proteomics Data Analysis utilizing AMT tag approach 

In brief, this approach utilizes tandem mass spectrometry (MS/MS) to generate a 

reference peptide database (accurate mass and time tag database; AMT tag database) 

of observed peptides, their associated theoretical masses, and LC elution times 

(normalized). This database is utilized to assign peptide sequences to ion current 

(relative abundance) information of peptides measured using high-resolution, high mass 

measurement accuracy mass spectrometry (LC-MS)[86]. 

 Generated MS/MS spectra were searched using the MSGF algorithm [101] 

against the E. coli RU1 translated genome sequence. Identified peptides of at least six 

amino acids in length having MS-GF score ≤1E-10, which corresponds to an estimated 

FDR <1% at the peptide level, were used to generate an AMT tag database. This 

database comprises the observed peptides, their associated theoretical masses, and 

normalized LC elution times. 



Orbitrap spectra were deisotoped using the software tool Decon2LS [102] after 

which mass and elution time features were identified and matched with VIPER [103] to 

peptides stored in the E. coli RU1 AMT tag database within mass measurement 

accuracy and elution time accuracy cut-offs of <2 ppm and <2%, respectively. Measured 

arbitrary abundance for a particular peptide was determined by integrating the area 

under each LC–MS peak for the detected feature matching to that peptide. Matched 

features from each Orbitrap analysis (dataset) were then filtered on a false discovery 

rate (FDR) of ≤5%; the FDR associated with the AMT tag proteomics approach is 

calculated using STAC (Statistical Tools for AMT tag confidence), a statistical algorithm 

for assigning confidence to matched mass and elution time features [104]. Relative 

peptide abundance measurements in technical replicates were scaled and normalized in 

DAnTE [87]. Normalized peptide abundance values were then rolled up to proteins using 

RRollup [87]; a minimum of five peptides was required for the Grubb's test, with a p-

value cutoff of 0.05. Only peptides unique in identifying a single protein were utilized to 

estimate protein abundances. Additionally, proteins represented by <2 unique peptides 

were removed. ANOVA analyses were applied to protein abundance data sets (p-value 

≤0.01) to identify statistically significant differences in protein expression levels.  

 

GC-MS analysis of putrescine and carbohydrates 

Putrescine secretion was measured with changes in carbohydrates. 

Carbohydrate profiles were determined by hydrolyzing cells to liberate monosaccharides, 

derivatizing the sugars to volatile forms, and analyzing the derivatives by gas 

chromatograpy/mass spectrometry (GC-MS).  We used the alditol acetate method to 

prepare the carbohydrates for analysis [105]. Sugar monomers (e.g., glucose, mannose, 

glucosamine, etc.) were liberated from any cellular polymers using 2 N sulfuric acid 

hydrolysis at 100oC for 3 hours in a nitrogen atmosphere. Following hydrolysis, samples 



were neutralized with a liquid-liquid extraction using N,N dioctyl methylamine base in 

chloroform, and hydrophobic contaminants were removed by solid phase extraction with 

1 mL C-18T cartridges (Phenomenex, Torrence, CA). Reduction of aldehydes to their 

alditol form was performed using sodium borodeuteride, and residual borodeuteride was 

removed as tetra methyl borate gas by addition of methanol-acetic acid under streaming 

nitrogen. Derivatization of reduced sugars was performed by addition of acetic anhydride 

at 100oC for 13-16 hours to form acetate derivatives for GC-MS analysis. Carbohydrate 

concentrations were calculated based upon a ratio of peak areas between known 

amounts of external and internal standards, which were analyzed as separate samples 

in each batch. The amount of each derivatized sugar in a biomass sample was 

determined by a ratio to the internal standard, adjusting for the relative response 

determined from the standard mixture and then calculating a mass per sample volume. 
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