Cezanne (OTUD7B) regulates HIF-1α homeostasis in a proteasome-independent manner

Supplementary Information

Anja Bremm^{1,2,*}, Sonia Moniz³, Julia Mader¹, Sonia Rocha^{3,*} and David Komander^{2,*}

¹ Buchmann Institute for Molecular Life Sciences, Institute of Biochemistry II, Goethe University, Max-von-Laue-Str. 15, 60438 Frankfurt (Main), Germany ² Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK ³ College of Life Sciences, Centre for Gene Regulation and Expression, University of Dundee, Dundee, DD1 5EH, UK

* Correspondence to: Anja Bremm (<u>bremm@em.uni-frankfurt.de</u>), Sonia Rocha (<u>s.rocha@dundee.ac.uk</u>), David Komander (<u>dk@mrc-Imb.cam.ac.uk</u>)

Figure legends

Figure S1. Cezanne regulates HIF-1 α - siRNA deconvolution and controls. A siRNA knockdown of 14 OTU-family DUBs in U2OS cells treated with hypoxia (1% oxygen) for 24 h. Depletion of Cezanne and USP20 decreased HRE-luciferase activity to similar extends compared to control cells. The presented screen was conducted once in triplicate (Z-score >0.8). B, C Transfection of three different Cezanne siRNA oligonucleotides decreased Cezanne mRNA (B) and protein levels (C). D Reporter gene assay showing that depletion of Cezanne resulted in decreased HIF-1 α -dependent luciferase activity. E, F In contrast, loss of Cezanne increased activity of the transcription factors NF- κ B and p53 (PG13 reporter). **G** Protein levels of Rb, β -catenin, and the NF- κ B subunit RelA are not affected by loss of Cezanne. H, I siRNA knockdown of Cezanne resulted in upregulated cleaved-PARP and cleaved-Caspase 3 levels (H), and an increase in the number of apoptotic cells in hypoxia as seen by Annexin V staining (I). (If not specified differently, all experiments were performed three times; bar graphs represent the mean plus standard deviation of these independent experiments. P values were calculated using Student's t test (* < 0.1, **p < 0.01, ***p < 0.001).)

Figure S2. Global effects on HIF-1 α target gene expression.

A Cezanne-depleted and control U2OS cells were treated with hypoxia (24h) and expression of 81 HIF-target genes was analysed by RT-PCR using a customised PCR screen. Threshold cycle (C_T) for each well was calculated using the Rotor-Gene software (QIAGEN) after threshold was manually defined. Subsequently, fold change was calculated by the web-based PCR Array data analysis tool provided by Qiagen. Data are shown as fold change when compared to untreated, NT control. **B** 23 genes out of the 81 genes analysed in (A) were induced more than 2-fold in hypoxia treated cells. Hypoxiadependent induction of these genes was reduced in Cezanne-depleted cells. mRNA levels are shown relative to hypoxia-treated control (NT) cells. See **Table S2**. (Bar graphs represent the mean of two independent experiments.)

Figure S3. Controls.

A U2OS cells were treated with hypoxia and Cezanne protein levels were monitored at various time points. **B** Overexpression of GFP-tagged wild-type or inactive Cezanne in hypoxia-treated U2OS cells affected HIF-1 α levels in a dose-dependent manner. **C** Identical amounts of diubiquitin of all eight linkage types (Coomassie stained, bottom panel) were blotted and incubated with Lys11-linkage specific antibody (top panel) or Lys48-linkage specific antibody (middle panel). **D** Ubiquitin chain restriction (UbiCRest) analysis [1] of polyubiquitinated HIF-1 α using non-specific USP21 as a positive control, as well as the Lys11-specific Cezanne catalytic domain, and the Lys48-specific OTUB1, both of which reduce HIF-1 α poly-ubiquitination. **D** Loss of Cezanne also resulted in lower HIF-1 α protein levels when the Lys11 linkage-specific E2 enyzme UBE2S was co-depleted. (All experiments were performed three times.)

Figure S4. Effect of Cezanne on HIF-1 α degradation

A Reduced HIF-1 α protein levels upon Cezanne knockdown in MG132-treated cells was observed with four different siRNA oligonucleotides. B Cezannedepleted and control U2OS cells were treated with hypoxia for 8 h or 24 h and directly lysed in SDS sample buffer. Knockdown of Cezanne decreased HIF-1 α protein levels in normoxia and hypoxia. **C** Inhibition of proteasome activity by epoxomicin did not rescued HIF-1 α levels in Cezanne-depleted cells neither under normoxia nor under hypoxia. D Co-depletion of Cezanne and the proteasome subunit Rpn11 resulted in decreased HIF-1 α levels. E VHLnegative RCC4 cells expressed equal HIF-1 α levels in the presence and absence of Cezanne. Reconstitution of VHL rendered RCC4 cells sensitive again for HIF-1 α regulation by Cezanne, i.e. in HA-VHL expressing RCC4 cells HIF-1 α levels were decrease by approx. 25% when Cezanne was depleted. Quantification of four independent experiments using ImageJ software. F Combined inhibition of proteasome and lysosome activity by MG132 and chloroquine did not fully rescue HIF-1 α levels in Cezanne-depleted cells (lane 5-6). G Knockdown of Cezanne did not alter cell cycle distribution. (If not specified differently, all experiments were performed three times; bar graphs represent the mean plus standard deviation of these independent experiments. P values were calculated using Student's t test (***p < 0.001).)

Table S1. HIF-target genes analysed in PCR screen

Uniprot	Gene name	Protein name	
<u>P08183</u>	ABCB1	Multidrug resistance protein 1	
<u>Q9UNQ0</u>	ABCG2	ATP-binding cassette sub-family G member 2	
<u>P35318</u>	ADM	ADM	
<u>P35368</u>	ADRA1B	Alpha-1B adrenergic receptor	
<u>P04075</u>	ALDOA	Fructose-bisphosphate aldolase A	
<u>015123</u>	ANGPT2	Angiopoietin-2	
<u>O14503</u>	BHLHB2	Basic helix-loop-helix family, member e40	
<u>Q9C0J9</u>	BHLHB3	Basic helix-loop-helix family, member e41	
<u>Q12983</u>	BNIP3	BCL2/adenovirus E1B 19 kDa protein-interacting protein 3	
000000		BCL2/adenovirus E1B 19 kDa protein-interacting protein 3-	
060238	BNIP3L		
<u>Q16790</u>	CAIX		
<u>Q16602</u>	CALCRL	Calcitonin gene-related peptide type 1 receptor	
<u>Q16589</u>	CCNG2		
P38936	CDKN1A	Cyclin-dependent kinase inhibitor 1	
<u>Q99967</u>	CITED2	Cbp/p300-interacting transactivator 2	
P20908	COL5A1	Collagen alpha-1(V) chain	
P00450	CP		
P29279	CIGF	Connective tissue growth factor	
<u>P07339</u>	CISD		
P48061	CXCL12	Stromal cell-derived factor 1	
<u>P61073</u>		C-X-C chemokine receptor type 4	
Q9NX09	DDI14/RTP801	DNA damage-inducible transcript 4 protein	
<u>Q9GZ19</u>	EGLN1	Egl nine homolog 1 (PHD2)	
<u>Q9H6Z9</u>	EGLN3	Egl nine homolog 3 (PHD3)	
P05305	END1	Endothelin-1	
P1/813	ENG	Endoglin	
<u>P06733</u>	ENO1	Alpha-enolase	
P01588	EPO	Erythropoletin	
P14921	EIS1	Protein C-ets-1	
P22830	FECH	Ferrochelatase, mitochondrial	
<u>P11487</u>	FGF3	Fibroblast growth factor 3	
<u>P17948</u>	FLI1	Vascular endothelial growth factor receptor 1	
P01100	FOS	Proto-oncogene c-Fos	
P02792	FIL	Ferritin light chain	
P04406	GAPDH	Giyceraidenyde-3-phosphate denydrogenase	
P22352	GPX3	Giutathione peroxidase 3	
<u>P14210</u>	HGF	Hepathocyte growth factor	
<u>Q9Y2N7</u>	HIF3A	Hypoxia-inducible factor 3-alpha	
P52789	HK2	Hexokinase-2	
P09691	HMOX1	Heme oxygenase 1	
<u>QU2363</u>	ID2	DNA-binding protein innibitor ID-2	
P01344		INSUIN-IIKE GROWTH TACTOR II	
PU8833	IGFBP1	Insulin-like growth factor-binding protein 1	
P05107	IIGB2	Integrin beta-2	
<u>PU5412</u>	JUN	ranscription factor AP-1	
<u>Q914C1</u>		Lysine-specific demethylase 3A	
094953		Lysine-specific demethylase 4B	
r21503	NILLG	ni ilganu / Stem cell factor	

<u>Q16787</u>	LAMA3	Laminin subunit alpha-3
P00338	LDHA	L-lactate dehydrogenase A chain
<u>P41159</u>	LEP	Leptin
<u>Q07820</u>	MCL1	Induced myeloid leukemia cell differentiation protein Mcl-1
<u>P08581</u>	Met	Hepatocyte growth factor receptor
<u>P50281</u>	MMP14	Matrix metalloproteinase-14
<u>P50539</u>	MXI1	Max-interacting protein 1
<u>P35228</u>	NOS2A	Nitric oxide synthase, inducible
<u>P29474</u>	NOS3	Nitric oxide synthase, endothelial
<u>Q86UR1</u>	NOXA1	NADPH oxidase activator 1
<u>P06748</u>	NPM1	Nucleophosmin
<u>P21589</u>	NT5E	Ecto-5'-nucleotidase
<u>P13674</u>	P4HA1	Prolyl 4-hydroxylase subunit alpha-1
<u>P17858</u>	PFK	6-phosphofructokinase, liver type
<u>Q16875</u>	PFKFB3	6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3
<u>Q16877</u>	PFKFB4	6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4
<u>P00558</u>	PGK1	Phosphoglycerate kinase 1
<u>Q03405</u>	PLAUR	Urokinase plasminogen activator surface receptor
<u>Q13794</u>	PMAIP1	Phorbol-12-myristate-13-acetate-induced protein 1
<u>P37231</u>	PPARG	Peroxisome proliferator-activated receptor gamma
~~~~~		Serine/threonine-protein phosphatase 1 regulatory subunit
<u>Q96QC0</u>	PPP1R10	10
P53041	PPP5C	Serine/threonine-protein phosphatase 5
<u>P35354</u>	PIGS2	Prostaglandin G/H synthase 2
<u>Q9UBF6</u>	RNF7	RING-box protein 2 (RBX2)
D11166	SI C241	Solute carrier family 2, facilitated glucose transporter
<u>F11100</u>	SLUZAT	Solute carrier family 2 facilitated glucose transporter
P11169	SLC2A3	member 3
014746	TERT	Telomerase reverse transcriptase
P02787	TF	Serotransferrin
Q07654	TFF3	Trefoil factor 3
P02786	TFRC	Transferrin receptor protein 1
P10600	TGFB3	Transforming growth factor beta-3
Q15672	TWIST1	Twist-related protein 1
P15692	VEGFA	Vascular endothelial growth factor A
P19544	WT1	Wilms tumor protein

# Table S2. Altered HIF-target gene expression in Cezanne-depleted U2OScells

Listed genes (column 1) were induced more than 2-fold compared to nontargeting control. The absolute values for induction (column 2) compared to the absolute values in Cezanne-depleted cells (column 3) are shown. Column 4 shows the % reduction in target gene expression induced by Cezanne knockdown. Data is represented in **Figure S2**.

			siCezanne
Gene	NT	siCezanne	% reduction
ADM	11.92	8.46	29.04
BHLHE40	2.03	1.45	28.30
BHLHE41	4.47	3.05	31.70
BNIP3	11.96	7.73	35.38
BNIP3L	5.45	3.99	26.80
CA9	663.98	410.15	38.23
CCNG2	2.46	1.64	33.57
DDIT4	8.52	6.57	22.89
EGLN1	4.96	4.03	18.77
EGLN3	53.08	34.54	34.93
HIF3A	4.20	3.15	25.00
HK2	5.31	4.16	21.81
KDM3A	2.01	1.71	15.03
KDM4B	2.27	1.77	22.08
LDHA	3.06	2.33	23.95
PFKFB4	18.19	12.17	33.10
PFKL	2.08	1.77	15.03
PGK1	6.06	4.87	19.62
PTGS2	2.18	2.11	3.41
P4HA1	5.46	4.20	23.16
SLC2A1	4.56	3.23	29.29
SLC2A3	4.66	3.27	29.78
TFF3	19.84	5.74	71.08

#### **Materials and Methods**

#### siRNA oligonucleotides

siRNA oligonucleotides were synthesized by Thermo Scientific (Non-targeting siRNA control, D-001810-01; SMARTpool ZA20D1 (OTUD7B/ Cezanne), L-008670-00; Set of 4 siRNA ZA20D1 (OTUD7B/ Cezanne), LQ-008670-00; SMARTpool UBE2S, L-009707-00); Eurofins MWG Operon (HIF-1, CUG AUG ACC AGC AAC UUG A [1]); (Rpn11, UUA CAA UAA GGC UGU AGA A); or Life Technologies (VCP/p97, a kind gift from L. James, MRC Laboratory of Molecular Biology, Cambridge, UK).

#### Antibodies used for immunoblots

HIF-1α (MAB1536, R&D Systems), Cezanne (custom antibody, Eurogentec), beta Actin (ab8227, Abcam), LC3B (2775, Cell Signaling), cleaved PARP (Asp214) (9541, Cell Signaling), cleaved Caspase-3 (9664, Cell Signaling), PHD3 (A300-327A, Bethyl Labs), BNIP3 (ab10433, Abcam), HIF-2α (PA1-16510, Thermo Pierce), Tubulin (2125, Cell Signaling), CUL-2 (sc-166506, Santa Cruz), Factor Inhibiting HIF-1 (NB100-428, Novus Biologicals), Von Hippel Lindau (NB100-485SS, Novus Biologicals), beta-catenin (4270, Cell Signalin), Rb (9309, Cell Signaling), ReIA (sc-372, Santa Cruz), Ubiquitin (07-375, Millipore), Ubiquitin K11 linkage, clone 2A3/2E6 (MABS107, Millipore), Ubiquitin, Lys48-specific, clone Apu2 (05-1307, Millipore), UBE2S, (11878, Cell Signaling), p97 ATPase (MA1-21412, Thermo Scientific), GFP (sc-8334Santa Cruz), Rpn11 (Cell Signaling), Normal Rabbit IgG (2729, Cell Signaling)

#### Immunoprecipitation of GFP-tagged Cezanne

HEK293 cells were transfected with 4 µg pOPIN-GFP-Cezanne plasmid DNA per 10 cm culture dish using GeneJuice (Merck Biosciences) according to manufacturer's instructions. Cells were lysed in 10 mM Tris-HCl (ph 7.5), 150 mM NaCl, 0.5% (v/v) IGEPAL[®] CA-630, 100 mM NaF and 1 tablet/10 ml *Complete*, Mini, EDTA-free protease inhibitors (Roche). Cleared cell lysate was rotated at 4°C for 2 h with GFP-Trap[®]-A agarose beads. GFP-Trap[®]-Cezanne complex was washed twice with PBS, once with 1× DUB buffer (50 mM NaCl, 50 mM Tris (pH 7.5) and 5 mM DTT) and immediately used for deubiquitination assays.

#### **Deubiquitination assay**

Full-length GFP-tagged Cezanne was isolated from two 10 cm culture dishes HEK293 cells (see above) and divided into eight different reaction tubes. Cezanne-GFP-Trap[®]-agarose complex was spun down, resuspended in 30  $\mu$ l 1× DUB buffer (50 mM NaCl, 50 mM Tris (pH 7.5) and 5 mM DTT) containing 2  $\mu$ g diubiquitin and incubation at 37°C. 10  $\mu$ l were taken immediately (time point zero) and after 60 min, and reactions were stopped by adding 10  $\mu$ l LDS sample buffer (Life Technologies). Ubiquitin cleavage was detected by silver staining using the Silver Stain Plus kit (BioRad).

#### Ubiquitin chain restriction analysis (UbiCRest)

Ubiquitinated HIF-1 $\alpha$  was immunoprecipitated from HeLa cells treated with 20  $\mu$ M MG132 for 4 h as described above. Immobilized antigen-antibody complex was washed with 1 $\times$  DUB buffer (see above), distributed into four different

tubes, spun down and resuspended again in 25  $\mu$ l 1× DUB buffer. 5  $\mu$ l of diluted DUBs were mixed with the substrate and incubated for 60 min at 37 °C before the reaction was stopped by adding 10  $\mu$ l 4× LDS sample buffer. Samples were resolved on 4%-12% SDS-PAGE gradient gels and analysed by western blotting.

#### References

1. van Uden P, Kenneth NS, Rocha S (2008) Regulation of hypoxiainducible factor-1α by NF-κB. *Biochem J* **412**: 477–484.