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1st Editorial Decision 09 March 2014 

 
Thank you again for submitting your work to Molecular Systems Biology. We have now heard back 
from the three referees who agreed to evaluate your manuscript. As you will see from the reports 
below, the referees find the topic of your study of potential interest and are cautiously supportive. 
They raise, however, several important concerns on your work, which should be convincingly 
addressed in a major revision of the manuscript.  
 
One of the major points raised by reviewers #1 and #3 refers to the need to demonstrate more 
convincingly that changes in the cell cycle phase distribution underly the observed common 'slow 
growth expression signature'. Both reviewer #1 and #3 make important and constructive suggestions 
for additional analyses to support these claims more rigorously.  
 
If you feel you can satisfactorily deal with these points and those listed by the referees, please 
submit a revised version of your manuscript. Please attach a covering letter giving details of the way 
in which you have handled each of the points raised by the referees. The revised manuscript might 
be once again subject to review.  

------------------------------------------------------  
 
REFEREE REPORTS: 

 

Reviewer #1:  
 
In this work the authors analyze mRNA expression patterns of over 1000 yeast mutants, each 
deleted for a single gene. They identify a common slow growth expression signature, similar to the 
previously identified Environmental Stress Response (ESR) signature. The authors attribute this 
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signature to changes in the distribution of cells over different cell cycle phases in different growth 
rates, and in support show that it can be recapitulated to a high degree using published data of gene 
expression taken at different stages of the cell cycle.  
 
The subject matter of this paper is very interesting, with broad implications for any study that 
involves changes in growth rate. It joins a recently revived interest in the interconnection between 
gene expression and growth rate, and the ways to decouple global growth-related effects from 
specific regulation.  
 
This work adds both valuable data and a fresh perspective to the connection between gene 
expression and growth rate, by several means. First, whereas most previous works changed the 
growth rate by changing environmental conditions, this work explores this connection in deletion 
mutants. The authors find strikingly similar expression patterns when changing the growth rate by 
either deletion or environment, thereby increasing the generality of the phenomenon. Second, the 
authors add an important layer of understanding to the connection between gene expression and 
growth rate by suggesting that it may be largely accounted by different fractions of cells at different 
stages of the cell cycle in different growth rate regimes.  
 
Altogether, the authors make a valuable contribution to the field that will be of interest to the 
readership of Molecular Systems Biology. However, I do have several major concerns regarding 
experimental procedures, analysis and presentation, which are detailed below.  
 
Major points:  
1. As I understand from the experimental procedures detailed in Kemmeren et al., strains were 
grown in liquid media to stationary (for a day), and then inoculated into fresh media. Gene 
expression was then profiled after two generations of exponential growth. This procedure was used 
for assaying both mutants and various environmental conditions. Importantly, using this 
experimental procedure expression is assayed when the cells are not yet in balanced growth. 
Balanced growth is generally assumed after 10 doublings. At the time the authors are assaying the 
cells a considerable fraction of the population has probably not yet recovered from stationary and 
did not start dividing yet. Thus, the authors cannot decouple whether the increased G1 population 
observed in slow-growing mutants/conditions is due to the changes in growth rate or to changes in 
recovery from stationary. Perhaps the 'slow-growth expression pattern' is actually a 'stationary 
expression pattern'? If this is the case, then the 'slow-growth expression pattern' is mostly derived 
from an experimental artifact and its utility for the community is limited. I think to make the authors' 
claim general and strong they should repeat the experiment for several strains under balanced 
growth conditions (in either chemostats or after 10 generations of exponential growth).  
 
2. The authors make a highly general claim based on a biased set of mutants. The manuscript is 
somewhat misleading in that it states that 1484 yeast deletion strains were examined, generating the 
impression of a randomly sampled set. Only when reading the manuscript by Kemmeren et al., one 
finds that this set is focused on gene expression regulators. The authors should present the set 
properly, such that the readers will be aware that it is biased. Furthermore, given this bias the 
authors need to invest more analysis in convincing that the effect is not dominated by the regulatory 
nature of their dataset. Such an attempt has been made in figure 1c, however I do not find this 
analysis convincing. On the contrary, figure 1c shows that there are substantial differences in the 
representation of some of the categories in the group showing the slow-growth expression pattern 
(for example protein trafficking, which appears over-represented, and gene-specific transcription 
factor, which appears under-represented). Whereas I am convinced by the correlation between 
growth rate and the slow-growth expression pattern, the GO analysis presented is not convincing 
that the effect is not dominated by specific groups. Incidentally, both results can coincide if, for 
example, deletions of genes with similar functions result in both similar growth rate and similar 
expression patterns. If the authors want to convince that gr plays a greater role than GO they should 
perform additional analyses, for example, show that correlations between pairs of deletions with 
similar growth rates, but belong to different GO categories are generally higher than correlations 
between pairs from the same GO category, but that result in different growth rates. Also, they can 
select from their set random subsets that recapitulate the genomic distribution of GO categories, and 
examine whether their results still hold to control for the initial biases in the examined set. I would 
also add some supplementary figures and analyses to examine other factors, which may be attributed 
to the common effect, such as average expression level, connectivity of the protein in protein-
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interaction networks etc., and examine whether any of these have a better explanatory power than 
growth rate. If these have some explanatory power, then it is worth examination, and if all have less 
explanatory power than growth rate it will make the authors' claim much more convincing.  
 
3. The authors fit weights to 14 cell cycle phases to obtain maximum correlation to a particular 
expression pattern (Heat shock, 15min) and then state that the high correlation observed indicates 
that expression patterns are largely determined by cell cycle population shifts. The analysis 
performed is likely overfitting as many parameters are being optimized (4 cubic splines). 
Unfortunately, the resulting parameters are not subjected to further quantitative testing or cross 
validation. The agreement with the flow cytometry data is only qualitative (more/less cells in G1) 
with no numerical indication of the proportions. Numbers of fractions of cells in G1/S/G2+M should 
be indicated for both model and flow cytometry measurements and compared, for both heat-shock 
and mutant experiments. Quantitative agreement will reinforce the authors' claim, whereas 
disagreement will indicate that the initial high correlation was indeed a result of overfitting. These 
numbers should also be discussed in light of previous literature that looked at fraction of cells in 
different stages of the cell cycle in different growth conditions/mutants. High deviations from 
previously-described fractions of cells in different stages of the cell cycle may indicate that indeed 
the experimental setup used in this work ( in which the cells are not in balanced growth - see 
comment 1), increases the 1N population and therefore the impact of the reported expression 
signature.  
 
4. The authors compare their results extensively to the previously defined ESR. However, whereas 
the ESR was defined more than a decade ago there has been a body of work since that attributed 
much of the ESR to changes in growth rate, as also acknowledged by the authors in the discussion. 
There has also been much work in E.coli that connected growth rate to many cellular parameters, 
including gene expression. As such, to make the work more relevant to current knowledge, the 
authors should focus less on the ESR and discuss whether their slow growth signature in mutants is 
similar to the slow growth signature observed in WT strains in different growth conditions.  
 
5. Figure 1d- the authors claim that the points with lower correlation (off-diagonal) are due to 
additional gene expression changes specific to those individual mutants. This statement is not 
backed by any analysis. The authors should present the names of these mutants, provide examples 
for these 'specific' expression changes and explain why they are interpreted as specific. It should be 
explained what is common to these deletions. Why do they exhibit more changes over the prevailing 
growth-rate signature compared with other deletions? Do they belong to a specific GO category? Is 
this significant? Are they relatively upstream in signaling networks? Are they more connected in 
protein-protein interaction networks?  
 
6. Presentation of experimental procedures and figure legends are severely lacking. Even if complete 
procedures were previously described in other papers, the manuscript should include a short 
recapitulation of the main experiments and analysis performed. Similarly for figure legends. The 
appropriate sections should be augmented.  
 
Minor points:  
1. Figure 1- Legend is lacking. Many details that appear in the figures are not specified in the 
legend. For example, an explanation regarding color code for the points in figure 1d is missing 
(what are the blue dots and what are the gray?)  
2. Figure 1c- p-values should be added to the analysis and properly presented in either text or figure.  
3. The introduction does not clearly state the goal of this work.  
4. The analysis of medium depletion is a valuable control, however the results are neither surprising 
nor extremely interesting. I would consider moving this section to the supplementary to allow room 
for the more important analyses.  
5. FACS is an acronym for Fluorescence Activated Cell Sorting. The authors have not performed 
sorting in this work and therefore should use the appropriate term- flow cytometry measurements.  
 
Reviewer #2:  
 
In this manuscript O'Duibhir et al. present an elegant method to identify and correct for the effects 
of cell-cycle variations in gene expression data. The study convincingly proves that the 
transcriptional effect observed in many stress conditions and yeast deletion mutants can be 
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explained simply by the redistribution in number of cells at different cell cycle stages associated to a 
slow growth phenotype. The method described here will be ubiquitously applicable to any data set 
analyzing gene expression across different genotypes or phenotypes and for other organisms as well. 
And it will be especially useful to disentangle direct effects from downstream consequences due to 
changes in cellular growth. Since I see that this method could be widely used, I would recommend 
the acceptance of this manuscript after the authors address a few key points in the discussion that 
will further enrich the manuscript.  
 
1) Firstly, what is relationship between the signature of the cell-cycle vector with the platform used 
to measure gene expression. It is clear from the paper that when applying the method to datasets 
such as Gasch et al. and Kemmeren et al., using different array technology, the results vary a bit. A 
brief discussion on how a change in platform might affect the results and may be accounted for 
should be discussed.  
 
2) Along the same line, in order to prove the ubiquity and platform independence of the method, it 
would be desirable that the authors demonstrate that their method is also applicable to previously 
published RNA-Seq data. As that is the most common technology used nowadays.  
 
3) Although the authors mention ESR genes to be a part of the cell-cycle signature vector, an 
expanded discussion about which genes are enriched in the cell-cycle signature, GO terms analysis 
would shed light on why the slow growth phenotype might manifest as a result of stress and in 
different genotypes.  
 
4) As a minor note, I am not sure if the authors used 2µm (or rather 0.2µm) filters to obtain the pre-
conditioned media.  
 

 
Reviewer #3:  
 
Applying principal component analysis on a large dataset of yeast mutant transcription profiles, 
O'Duibhir and colleagues report a general transcriptional response to gene deletion that is similar to 
the early stress response seen upon environmental perturbation. This main response also correlates 
with growth rate and with distribution of cells along the cell cycle phase (proportion of 1N versus 
2N-cells from FACS data). It is proposed that this general transcriptional effect at the population 
level is the consequence of a change in the distribution of cells among the cell cycle phases. This 
hypothesis is corroborated by a computational deconvolution of the steady-state mutant expression 
profiles over phase-specific gene expression data from a cell-cycle study. Finally, a method to 
remove this main effect from transcription profiles is provided and it is demonstrated that it helps 
distinguishing the direct effect of genetic perturbations from indirect effects likely due to change in 
growth behavior.  
 
The finding that the transcriptional effect of genetic perturbation resembles the effect of 
environmental perturbation is not very surprising (Fig. 1-3). Also, the correlation between 
transcriptional response to stress and growth rate had already been reported (as properly 
acknowledged in the manuscript: Brauer et al for instance). Nevertheless, the proposed method to 
remove this effect is useful for the yeast community and beyond (Fig. 6). These claims are well 
supported and deserve publication. However, the most innovative aspect is the change in cell phase 
distribution (Fig. 4). It is provocative because it suggests that there is no general transcriptional 
stress response by itself that is not explained by a change in the distribution of cells among the 
phases of the cell cycle. In response to stress, cells would temporarily arrest in the G1 phase, thereby 
inducing a change in phase distribution within the population and thus an overall change of 
expression at the population level. It is very suprising because there are well documented general 
stress response genes (TATA-containing genes, stress- activated protein kinase (SAPK) and TOR 
pathway, see also the excellent review LÛpez-Maury et al. Nat. Genet. 2008), which are thought to 
be distinct from G1 phase genes. However, this claim is not very well supported. Although the paper 
could be accepted without it, the authors should try to make this analysis more convincing.  
 
Indeed this analysis (Fig. 4) suffers from the following drawbacks:  
1) The "G1" phase expression data likely contains a superposition of non-cycling stress response 
signal and of unstressed cycling G1 signal. Indeed, the phase-specific expression levels were taken 
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from one cell-cycle time-series (Elutrition series, Spellman et al. 1998). This series, as other cell-
cycle time-series, is based on a synchronization protocol (in this case based on centrifugation), 
which could stress the cells at the initial time point. Hence, the first time points of synchronized 
populations often present a transcriptional response that is not cyclic (Spellman et al. 1998, Guo et 
al PNAS 2013). Moreover, the elutrition series from Spellmann et al. starts in the G1 phase. Thus, 
the G1 phase is the one most likely containing non-cyclic stress response signal. The G1 phase data 
at the next cycles could not be considered for the elutrition series because it covered a single cell 
cycle only.  
2) The algorithm inferring the proportion of cells in each phase is not formerly described (detailed 
concerns below). A formal description and an implementation should be provided.  
 
To overcome these issues, a few approaches could be investigated:  
1) Using other cell cycle data. Spellmann et al published two other time series that cover at least two 
cell cycles. Granovskaia et al, Genome Biol. 2010, reported two further datasets with at least two 
cell cycles with amore recent technology (high resolution tiling array). Data from the later cycles, 
which are less prone to have overlapping stress response signal could be used.  
2) Using the fit of Guo et al. PNAS 2013. These authors have developed a computational method to 
extract the pure expression levels of each cell cycle stage from cell-cycle time series. They removed 
non-periodic signal found in the early stages, controlled for asynchrony and distinguished daughter 
from mother cells.  
 
My personal conviction is that the first component identified here is a mix of general stress response 
and of response to change in growth. The distinction between these two components has been so far 
elusive (LÛpez-Maury et al. Nat. Genet. 2008). By breaking down the first component into a cell-
cycle phase part and an orthogonal "stressed" part (expected to be TATA-rich, in TOR pathways, 
etc.), this study could be able to dissect and quantify the respective contribution of each to the global 
stress response.  
 
Detailed comments  
 
p.2 These two statements are unclear: "The challenge with regard to indirect effects is that typically 
these are not of a general nature." "Depending on the goals of a particular study, indirect effects 
nevertheless need to be taken into account, especially if the goal is to derive molecular 
mechanisms."  
 
p.3 SVD and principal component analysis are formally the same (the eigenvectors of the right/left 
space are those of the covariance matrix / transpose of the matrix). SVD is a mathematical 
decomposition, PCA is a statistical method based on it. Hence, I suggest using the PCA terminology 
(what is done is the analysis of the first principal component). Also, readers will be more familiar 
with PCA.  
 
Fig. 1C "chromatin factor" => chromatin factor, "transcription machinary" => transcription 
machinery. Plotting the odd ratios or sorting the categories by decreasing ratio #{r>0.5} / #{all}) 
will better highlight the important categories.  
 
Fig. 2F-I. The reproducibility is remarkable. The authors should describe all pre-processing of the 
raw data including the normalization.  
 
Fig. 3A could be replaced by the projection of each of these datasets to the plane of the two first 
principal components (PC1, PC2). We shall see Gasch and Causton far on the right (along PC1) but 
also be able to visualize all other datasets and maybe understand what the second component is.  
 
Fig 3B: "Correlation of the slow growth..." It is not a correlation but a scatter plot. Applies to 4A 
and 5A as well.  
 
Fig. 4: Also here a panel could show the projection of each time point of Spellmann et al on 
(PC1,PC2).  
 
Fig. 4A should show all data points, as the model was fitted on all data.  
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Methods "modeling of the ESR cell cycle phase signatures":  
The statistical model should be formally described. In particular it is unclear:  
i) what was fitted. Was it the natural (unlogged) gene expression values (concentrations should sum 
up in the natural scale) or something else?  
ii) how the reference signal (wild type unsynchronized population) was taken into account  
iii) what the noise model was. Indeed variance of unlogged microarray gene expression data grows 
with expression value (heteroskedascisty) so if sums on the natural scale were modeled (i), this point 
must be addressed.  
iv) whether the proportions were constrained to be non-negative and sum to 1  
v) what exact 4 time points were taken as spline nodes  
vi) which optimization algorithm was used.  
Moreover, the corresponding scripts should be provided. 
 
 
 
1st Revision - authors' response 08 May 2014 

 
All three referees agree on the general importance of our findings. Several issues were raised which 
we have extensively addressed. Our answers to the specific points are in italics below. In red italics 
we state the changes made to manuscript. We thank the referees for all their suggestions. The 
additional analyses and the changes made have considerably improved the study. 
 
Reviewer #1:  
In this work the authors analyze mRNA expression patterns of over 1000 yeast mutants, each deleted 
for a single gene. They identify a common slow growth expression signature, similar to the 
previously identified Environmental Stress Response (ESR) signature. The authors attribute this 
signature to changes in the distribution of cells over different cell cycle phases in different growth 
rates, and in support show that it can be recapitulated to a high degree using published data of gene 
expression taken at different stages of the cell cycle.  
 
The subject matter of this paper is very interesting, with broad implications for any study that 
involves changes in growth rate. It joins a recently revived interest in the interconnection between 
gene expression and growth rate, and the ways to decouple global growth-related effects from 
specific regulation.  
 
This work adds both valuable data and a fresh perspective to the connection between gene 
expression and growth rate, by several means. First, whereas most previous works changed the 
growth rate by changing environmental conditions, this work explores this connection in deletion 
mutants. The authors find strikingly similar expression patterns when changing the growth rate by 
either deletion or environment, thereby increasing the generality of the phenomenon. Second, the 
authors add an important layer of understanding to the connection between gene expression and 
growth rate by suggesting that it may be largely accounted by different fractions of cells at different 
stages of the cell cycle in different growth rate regimes.  
 
Altogether, the authors make a valuable contribution to the field that will be of interest to the 
readership of Molecular Systems Biology. However, I do have several major concerns regarding 
experimental procedures, analysis and presentation, which are detailed below.  
 
Major points:  
1. As I understand from the experimental procedures detailed in Kemmeren et al., strains were 
grown in liquid media to stationary (for a day), and then inoculated into fresh media. Gene 
expression was then profiled after two generations of exponential growth. This procedure was used 
for assaying both mutants and various environmental conditions. Importantly, using this 
experimental procedure expression is assayed when the cells are not yet in balanced growth. 
Balanced growth is generally assumed after 10 doublings. At the time the authors are assaying the 
cells a considerable fraction of the population has probably not yet recovered from stationary and 
did not start dividing yet. Thus, the authors cannot decouple whether the increased G1 population 
observed in slow-growing mutants/conditions is due to the changes in growth rate or to changes in 
recovery from stationary. Perhaps the 'slow-growth expression pattern' is actually a 'stationary 
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expression pattern'? If this is the case, then the 'slow-growth expression pattern' is mostly derived 
from an experimental artifact and its utility for the community is limited. I think to make the authors' 
claim general and strong they should repeat the experiment for several strains under balanced 
growth conditions (in either chemostats or after 10 generations of exponential growth).  
 
The referee is concerned that the mutants with slower growth may have a different flow cytometry 
profile due to insufficient recovery time from the overnight culture, rather than due to a slower cell 
cycle in general. This is more applicable to bacterial culture than to yeast. Overnight pre-culture of 
bacteria typically result in stationary phase. Overnight pre-culture of yeast typically go into diauxic 
shift, rather than real stationary phase which takes 5-9 days to achieve for yeast (see PMID 
15837421). The recovery time from diauxic shift is fast. When setting up the procedures for 
analyzing the mutants we nevertheless considered the concern raised by the referee and found that 
two cell doublings after overnight pre-culture is sufficient to achieve balanced, exponential growth, 
also for slow growing mutants. Shown below are the growth curves prior to harvesting for the 
slowest growing strains from Figure 5. The blue dots are the number of doublings. Orange dots are 
the doubling times of the culture (inverse of slope of blue dots) as determined with a sliding window 
of ten consecutive culture measurements. By the time of harvesting (last blue point, ± 1 hour after 
the last orange point), all mutants are out of lag-phase and have achieved different rates of 
balanced growth. The concern that slow growing mutants may not have attained balanced growth at 
the time of harvest is therefore ruled out. 
Since other scientists may have the same concern we now mention these observations in the Results 
(page 4, paragraph 2) and have added this figure as supplementary figure 3, also displayed here: 
 

 
 
2. The authors make a highly general claim based on a biased set of mutants. The manuscript is 
somewhat misleading in that it states that 1484 yeast deletion strains were examined, generating the 
impression of a randomly sampled set. Only when reading the manuscript by Kemmeren et al., one 
finds that this set is focused on gene expression regulators. The authors should present the set 
properly, such that the readers will be aware that it is biased. Furthermore, given this bias the 
authors need to invest more analysis in convincing that the effect is not dominated by the regulatory 
nature of their dataset. Such an attempt has been made in figure 1c, however I do not find this 
analysis convincing. On the contrary, figure 1c shows that there are substantial differences in the 
representation of some of the categories in the group showing the slow-growth expression pattern 
(for example protein trafficking, which appears over-represented, and gene-specific transcription 
factor, which appears under-represented). Whereas I am convinced by the correlation between 
growth rate and the slow-growth expression pattern, the GO analysis presented is not convincing 
that the effect is not dominated by specific groups. Incidentally, both results can coincide if, for 
example, deletions of genes with similar functions result in both similar growth rate and similar 
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expression patterns. If the authors want to convince that gr plays a greater role than GO they 
should perform additional analyses, for example, show that correlations between pairs of deletions 
with similar growth rates, but belong to different GO categories are generally higher than 
correlations between pairs from the same GO category, but that result in different growth rates. 
Also, they can select from their set random subsets that recapitulate the genomic distribution of GO 
categories, and examine whether their results still hold to control for the initial biases in the 
examined set. I would also add some supplementary figures and analyses to examine other factors, 
which may be attributed to the common effect, such as average expression level, connectivity of the 
protein in protein-interaction networks etc., and examine whether any of these have a better 
explanatory power than growth rate. If these have some explanatory power, then it is worth 
examination, and if all have less explanatory power than growth rate it will make the authors' claim 
much more convincing.  
 
There is a misunderstanding about what we meant to achieve with this analysis (figure 1C) and how 
the referee has interpreted our intention. Clearly we need to rephrase this section. 
First, it was not our intention to present the 1484 deletion strains as a randomly choosen set. In fact, 
figure 1C already showed which different functional categories are represented. 
To make it clearer that this is not a random set, we now also describe the set in the Results (page 3, 
paragraph 2). 
 
Second, we are not trying to conclude that GO plays no role (two categories are over- represented). 
The only conclusion that we draw from figure 1C is that the common gene expression signature is 
not restricted to one particular functional category. Rather, mutants with this signature represent all 
kinds of different functional classes. The reason for drawing attention to this is because in the past 
similarity between expression signatures of mutants has been interpreted as indicating shared 
function. There are still many other signatures that indicate shared function (>75% of the changes in 
expression, our answer to point 5 below exemplifies this further) but the common signature 
described here is not one of these because it can be found upon deletion of strains from many 
different functional categories (figure 1C).  
We have rewritten the section, also incorporating the suggestions made under point 5 below to 
include examples of the off-diagonal mutants with specific effects (page 3, paragraph 3 – page 4, 
paragraph 1). 
 
Although the mutants analyzed are focused on regulators, the scope is still broad (one quarter of all 
yeast genes) and covers many different functional groups (figure 1C). Members of any group can 
exhibit the common signature (figure 1C). The focus on regulators (eg transcription factors, 
chromatin regulators) would actually bias the signatures to encompass more direct effects rather 
than the indirect one related to slow growth. Since the same effect is also observed in wild type cells 
subjected to different (slow) growth conditions, the nature of the mutants analyzed here has not 
influenced the general conclusion that slow growth results in an apparent expression response that is 
actually the result of a cell cycle population shift. 
 
3. The authors fit weights to 14 cell cycle phases to obtain maximum correlation to a particular 
expression pattern (Heat shock, 15min) and then state that the high correlation observed indicates 
that expression patterns are largely determined by cell cycle population shifts. The analysis 
performed is likely overfitting as many parameters are being optimized (4 cubic splines). 
 
The original description of the deconvolution procedure was too concise. Overfitting is unlikely. 
Only 4 parameters were varied to obtain a single fit for the expression levels of 859 ESR genes. 
These 4 parameters are the y-values of the four control points of the single spline that governs the 
weighting of the 14 different time points. 
A more extensive description of the procedure has now been provided in the Materials and Methods 
(page 16, paragraph 1). The description in the Results has also been extended to avoid this confusion 
(page 6, paragraph 1). The scripts are also made available. 
 
Unfortunately, the resulting parameters are not subjected to further quantitative testing or cross 
validation. 
 
We have rectified this by applying the same procedure to 100 different randomizations of the gene 
labels of the ESR genes in the heat-shock expression profile. This yields an average correlation of 
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0.06 (maximum 0.13). Compared to the original correlation of 0.88 for the non-randomized set, this 
further demonstrates that the result obtained was not due to overfitting. Similarly, 100 
randomizations of the cell cycle expression data matrix (each time-point column independently 
randomized) yields an average correlation of 0.05, maximum 0.12, again strongly arguing against 
overfitting. In addition to the randomizations we have also performed a cross-validation as 
suggested, i.e. performing the same fitting procedure with only half of the ESR genes and predicting 
the expression of the other half. This was repeated 100 times with random training and test sets. The 
average correlation for the predicted gene expression was 0.88 with a standard deviation of 0.09. 
Again this confirms that there is no overfitting. 
These different controls are now described in the Results (page 6, paragraph 2) and Materials and 
Methods (page 17, paragraph 1). These procedures are also made available within the source code. 
 
The agreement with the flow cytometry data is only qualitative (more/less cells in G1) with no 
numerical indication of the proportions. Numbers of fractions of cells in G1/S/G2+M should be 
indicated for both model and flow cytometry measurements and compared, for both heat-shock and 
mutant experiments. Quantitative agreement will reinforce the authors' claim, whereas 
disagreement will indicate that the initial high correlation was indeed a result of overfitting. 
 
The numerical comparison suggested here was in fact already included in figure 4E (dots: 
experimentally derived fractions; line: fractions derived from simulation). The results also agree 
quantitatively. Figure 5A also already included a numerical comparison for the mutants. 
We have rephrased the sentences describing these results so as to draw more attention to the 
numerical comparisons that were already present (page 7, paragraph 2 and page 8, paragraph 2)). 
 
These numbers should also be discussed in light of previous literature that looked at fractions of 
cells in different stages of the cell cycle in different growth conditions/mutants. High deviations from 
previously-described fractions of cells in different stages of the cell cycle may indicate that indeed 
the experimental setup used in this work ( in which the cells are not in balanced growth - see 
comment 1), increases the 1N population and therefore the impact of the reported expression 
signature.  
 
The cultures that we report on are in balanced growth (see answer to comment 1 above). 
Furthermore, our reported cell cycle population shifts during heat shock (Figure 4D) quantitatively 
agree with previously reported population shifts in Rowley et al., and Johnston and Singer. These 
papers were already cited. 
We have now changed the text relating to these references to clearly state this correspondence (page 
7, paragraph 2 and page 8, paragraph 2). 
With regard to specific mutants, a complete analysis of all flow cytometry profiles for the entire 
gene deletion collection has (to the best of our knowledge) not yet been reported. The Lu et al., 
study (already cited) contained flow cytometry profiles for several deletion strains. Although a 
quantitative analysis of their data was not included in that study, the flow cytometry profiles that we 
report (Figure 5A, B) agree qualitatively with theirs. Since different strains were analyzed it doesn't 
make sense to refer to this. 
 
4. The authors compare their results extensively to the previously defined ESR. However, whereas 
the ESR was defined more than a decade ago there has been a body of work since that attributed 
much of the ESR to changes in growth rate, as also acknowledged by the authors in the discussion. 
There has also been much work in E.coli that connected growth rate to many cellular parameters, 
including gene expression. As such, to make the work more relevant to current knowledge, the 
authors should focus less on the ESR and discuss whether their slow growth signature in mutants is 
similar to the slow growth signature observed in WT strains in different growth conditions. 
 
The discussion starts with this point and we now further strengthen the connection (page 10, 
paragraph 1). In addition, also in response to referee 3, we have included two new panels in Figure 3 
(E and F) showing the correlation for more recently generated data under different growth 
conditions and using different platforms. 
 
5. Figure 1d- the authors claim that the points with lower correlation (off-diagonal) are due to 
additional gene expression changes specific to those individual mutants. This statement is not 
backed by any analysis. The authors should present the names of these mutants, provide examples 
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for these 'specific' expression changes and explain why they are interpreted as specific. It should be 
explained what is common to these deletions. Why do they exhibit more changes over the prevailing 
growth-rate signature compared with other deletions? Do they belong to a specific GO category? Is 
this significant? Are they relatively upstream in signaling networks? Are they more connected in 
protein-protein interaction networks?  
 
As is pointed out in answer to comment 2 above, the slow growth associated signature accounts for 
only part (24%) of the gene expression changes observed in the dataset. Explaining or describing all 
the other mutant signatures is beyond the scope of the current manuscript, which is focused on 
explaining the most commonly found signature. The cited references (Hughes et al. 2000, Roberts et 
al. 2000, Benschop et al. 2010, Lenstra et al. 2011), as well as the paper describing the initial dataset 
(Kemmeren et al. 2014), contain numerous specific examples as well as general analyses of how 
specific expression signatures relate to specific pathways and/or protein complexes. 
Given this comment we think that it may nevertheless be important to include several examples of 
the off-diagonal mutants as suggested. These have been included as Supplementary figure 2. These 
exemplify that mutants with the slow growth signature also have additional expression signatures 
specific to particular protein complexes and pathways, a point that is already well made in the cited 
literature. 
 
6. Presentation of experimental procedures and figure legends are severely lacking. Even if 
complete procedures were previously described in other papers, the manuscript should include a 
short recapitulation of the main experiments and analysis performed. Similarly for figure legends. 
The appropriate sections should be augmented. 
 
The descriptions of procedures (Materials and Methods) and legends have been extended. 
 
Minor points:  
1. Figure 1- Legend is lacking. Many details that appear in the figures are not specified in the 
legend. For example, an explanation regarding color code for the points in figure 1d is missing 
(what are the blue dots and what are the gray?) 
 
Blue dots show the deletion mutants further analyzed by flow cytometry in figure 5. This and other 
missing details have now been supplied. 
 
2. Figure 1c- p-values should be added to the analysis and properly presented in either text or 
figure.  
 
This has been done (figure legend). 
 
3. The introduction does not clearly state the goal of this work.  
 
A sentence that concisely describes the goal is now included (page 2, paragraph 2). 
 
4. The analysis of medium depletion is a valuable control, however the results are neither surprising 
nor extremely interesting. I would consider moving this section to the supplementary to allow room 
for the more important analyses.  
 
Given the comment of referee#3 it has been kept an integral part of the Results. 
 
5. FACS is an acronym for Fluorescence Activated Cell Sorting. The authors have not performed 
sorting in this work and therefore should use the appropriate term- flow cytometry measurements.  
 
Corrected throughout. 
 
 
Reviewer #2:  
In this manuscript O'Duibhir et al. present an elegant method to identify and correct for the effects 
of cell-cycle variations in gene expression data. The study convincingly proves that the 
transcriptional effect observed in many stress conditions and yeast deletion mutants can be 
explained simply by the redistribution in number of cells at different cell cycle stages associated to a 



Molecular Systems Biology   Peer Review Process File  
 

 

 
© European Molecular Biology Organization 11 

slow growth phenotype. The method described here will be ubiquitously applicable to any data set 
analyzing gene expression across different genotypes or phenotypes and for other organisms as 
well. And it will be especially useful to disentangle direct effects from downstream consequences 
due to changes in cellular growth. Since I see that this method could be widely used, I would 
recommend the acceptance of this manuscript after the authors address a few key points in the 
discussion that will further enrich the manuscript.  
 
1) Firstly, what is relationship between the signature of the cell-cycle vector with the platform used 
to measure gene expression. It is clear from the paper that when applying the method to datasets 
such as Gasch et al. and Kemmeren et al., using different array technology, the results vary a bit. A 
brief discussion on how a change in platform might affect the results and may be accounted for 
should be discussed.  
 
This discussion has now been added (page 11, paragraph 3). 
 
2) Along the same line, in order to prove the ubiquity and platform independence of the method, it 
would be desirable that the authors demonstrate that their method is also applicable to previously 
published RNA-Seq data. As that is the most common technology used nowadays.  
 
In general the method is platform independent since results from all platforms are transformed into 
relative gene expression changes. Two different platforms were included originally. 
As a further demonstration of this we now include Figure 3E and F (referred to in the manuscript on 
page 5, paragraph 1): different growth conditions and technology platforms (Affymetrix and 
RNAseq).  
 
3) Although the authors mention ESR genes to be a part of the cell-cycle signature vector, an 
expanded discussion about which genes are enriched in the cell-cycle signature, GO terms analysis 
would shed light on why the slow growth phenotype might manifest as a result of stress and in 
different genotypes.  
 
Enriched GO categories have now been included as Supplementary Table 1 and a discussion of this 
has been added (page 11, paragraph 2). 
 
4) As a minor note, I am not sure if the authors used 2µm (or rather 0.2µm) filters to obtain the pre-
conditioned media.  
 
Corrected (0.2 µm) (page 15, paragraph 2).  
 
 
Reviewer #3:  
Applying principal component analysis on a large dataset of yeast mutant transcription profiles, 
O'Duibhir and colleagues report a general transcriptional response to gene deletion that is similar 
to the early stress response seen upon environmental perturbation. This main response also 
correlates with growth rate and with distribution of cells along the cell cycle phase (proportion of 
1N versus 2N-cells from FACS data). It is proposed that this general transcriptional effect at the 
population level is the consequence of a change in the distribution of cells among the cell cycle 
phases. This hypothesis is corroborated by a computational deconvolution of the steady-state mutant 
expression profiles over phase-specific gene expression data from a cell-cycle study. Finally, a 
method to remove this main effect from transcription profiles is provided and it is demonstrated that 
it helps distinguishing the direct effect of genetic perturbations from indirect effects likely due to 
change in growth behavior.  
 
The finding that the transcriptional effect of genetic perturbation resembles the effect of 
environmental perturbation is not very surprising (Fig. 1-3). Also, the correlation between 
transcriptional response to stress and growth rate had already been reported (as properly 
acknowledged in the manuscript: Brauer et al for instance). Nevertheless, the proposed method to 
remove this effect is useful for the yeast community and beyond (Fig. 6). These claims are well 
supported and deserve publication. However, the most innovative aspect is the change in cell phase 
distribution (Fig. 4). It is provocative because it suggests that there is no general transcriptional 
stress response by itself that is not explained by a change in the distribution of cells among the 
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phases of the cell cycle. In response to stress, cells would temporarily arrest in the G1 phase, 
thereby inducing a change in phase distribution within the population and thus an overall change of 
expression at the population level. It is very suprising because there are well documented general 
stress response genes (TATA-containing genes, stress- activated protein kinase (SAPK) and TOR 
pathway, see also the excellent review López-Maury et al. Nat. Genet. 2008), which are thought to 
be distinct from G1 phase genes. However, this claim is not very well supported. Although the paper 
could be accepted without it, the authors should try to make this analysis more convincing.  
 
Indeed this analysis (Fig. 4) suffers from the following drawbacks:  
1) The "G1" phase expression data likely contains a superposition of non-cycling stress response 
signal and of unstressed cycling G1 signal. Indeed, the phase-specific expression levels were taken 
from one cell-cycle time-series (Elutrition series, Spellman et al. 1998). This series, as other cell-
cycle time-series, is based on a synchronization protocol (in this case based on centrifugation), 
which could stress the cells at the initial time point. Hence, the first time points of synchronized 
populations often present a transcriptional response that is not cyclic (Spellman et al. 1998, Guo et 
al PNAS 2013). Moreover, the elutrition series from Spellmann et al. starts in the G1 phase. Thus, 
the G1 phase is the one most likely containing non-cyclic stress response signal. The G1 phase data 
at the next cycles could not be considered for the elutrition series because it covered a single cell 
cycle only.  
 
Compared to the other cell cycle synchronization methods (heat-shock for cdc28-ts, heat-shock for 
cdc15-2 and alpha-factor arrest), the elutriation dataset is likely the least influenced by stress. This 
advantage, as well as better inherent synchronization compared to the other methods, are extensively 
discussed in the paper by Shedden and Cooper (PMID 12087178). This is why we choose the 
elutriation-based time course data to model the ESR/slow growth effects (see further comments 
below). 
 
2) The algorithm inferring the proportion of cells in each phase is not formerly described (detailed 
concerns below). A formal description and an implementation should be provided.  
 
We apologize for this. Extensive description in the Materials and Methods and R packages have 
been added. 
 
To overcome these issues, a few approaches could be investigated:  
1) Using other cell cycle data. Spellmann et al published two other time series that cover at least 
two cell cycles. Granovskaia et al, Genome Biol. 2010, reported two further datasets with at least 
two cell cycles with amore recent technology (high resolution tiling array). Data from the later 
cycles, which are less prone to have overlapping stress response signal could be used. 
 
As discussed by Shedden and Cooper (PMID 12087178), the elutriation method is the least prone to 
stress and all methods suffer from quite rapid loss of synchronization. When other cell cycle time 
series are used, the results are nevertheless similar. For elutriation the correlation between heat 
shock and the cell cycle based model (Figure 4A) was 0.88. For alpha factor arrest 
(Spellman/Granovskaia) the correlation is 0.82/0.63 and for cdc28-ts (Spellman/Granovskaia) the 
correlation is 0.71/0.35. We have no explanation for why the Granovskaia cdc28-ts yields a lower 
correlation compared to the same method from the Spellman dataset. 
We report the correlations using other cell cycle time course data in the results (page 6, paragraph 2 
– page 7, paragraph 1). We also refer to the Shedden and Cooper paper to rationalize our choice for 
focusing on elutriation, at the same time pointing out that none of the methods used is perfect (page 
6, paragraph 2).  
 
2) Using the fit of Guo et al. PNAS 2013. These authors have developed a computational method to 
extract the pure expression levels of each cell cycle stage from cell-cycle time series. They removed 
non-periodic signal found in the early stages, controlled for asynchrony and distinguished daughter 
from mother cells.  
 
We attempted both this and 1) above. We gave up trying to use the Guo et al dataset mainly because 
option 1) worked well and also in part due to ambiguities in the description of the Guo deconvoluted 
data which was also in a non-standard format. 
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My personal conviction is that the first component identified here is a mix of general stress response 
and of response to change in growth. The distinction between these two components has been so far 
elusive (López-Maury et al. Nat. Genet. 2008). By breaking down the first component into a cell-
cycle phase part and an orthogonal "stressed" part (expected to be TATA-rich, in TOR pathways, 
etc.), this study could be able to dissect and quantify the respective contribution of each to the 
global stress response.  
 
We agree that there are likely two components and in retrospect it is clear that we were too one-
sided in the discussion of our findings which inadvertently conveyed the impression that the entire 
ESR can be accounted for solely by the cell cycle population effect. With the cell cycle data we can 
account for at most 88% of the ESR based on the population shift (Figure 4A). It is indeed well 
known that transcription factors such as Msn2/4 are involved in a direct transcriptional response to 
general stresses. This may correspond to that part of the ESR that we cannot model. It is challenging 
to completely disentangle the two. Starting with Msn2 targets we have tried to make the distinction, 
but even for such a well-established factor and its direct targets this is not trivial. We think that this 
is due to the intimate coupling of the metabolic/redox cycle with the cell cycle: our preliminary 
analyses suggest that some (but not all) Msn2 targets are also cell-cycle regulated likely due to 
redox fluctuations during the cell cycle. A similar phenomenon also appears to occur for other stress 
transcription factors associated with the response to oxidative stress (e.g. Skn7). At this stage we 
think that it would be best to focus the paper on the conclusion that a cell cycle population shift 
contributes to many of the gene expression changes observed upon genetic or environmental 
perturbations that were previously ascribed to "growth". 
We have expanded the discussion to include a section about the contribution of both cell cycle 
population effects (which are clearly taking place upon both environmental and genetic 
perturbations) and the general stress response mediated by factors such as Msn2/4. We state that 
more work is required to completely unravel the two, also alluding to the complications of the redox 
cycling described above (page 10, paragraph 3 – page 11, paragraph 1). Changes have been made 
throughout the results to indicate that a large part, rather than all of the ESR is due to cell cycle 
population effects. 
 
Detailed comments  
 
p.2 These two statements are unclear: "The challenge with regard to indirect effects is that typically 
these are not of a general nature." "Depending on the goals of a particular study, indirect effects 
nevertheless need to be taken into account, especially if the goal is to derive molecular 
mechanisms."  
 
The first statement has been removed and the second has been changed to clarify what was meant 
(page 2, paragraph 1). 
 
p.3 SVD and principal component analysis are formally the same (the eigenvectors of the right/left 
space are those of the covariance matrix / transpose of the matrix). SVD is a mathematical 
decomposition, PCA is a statistical method based on it. Hence, I suggest using the PCA terminology 
(what is done is the analysis of the first principal component). Also, readers will be more familiar 
with PCA.  
 
We agree and have changed the terminology throughout to PCA, but keeping it clear (in the 
Materials and Methods) that we have applied SVD.  
 
Fig. 1C "chromatin factor" => chromatin factor, "transcription machinary" => transcription 
machinery. Plotting the odd ratios or sorting the categories by decreasing ratio #{r>0.5} / #{all}) 
will better highlight the important categories.  
 
Typos corrected in figure 1. We now also include p-values. 
 
Fig. 2F-I. The reproducibility is remarkable. The authors should describe all pre-processing of the 
raw data including the normalization.  
 
The reproducibility is due to automation and many years of using external control calibration 
standards for optimization of accuracy and precision. 
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More description of all growth and microarray procedures has been added (page 13, paragraph 1). 
Full details are included in the paper describing the primary dataset (Kemmeren et al.) that 
extensively describes all steps. 
 
Fig. 3A could be replaced by the projection of each of these datasets to the plane of the two first 
principal components (PC1, PC2). We shall see Gasch and Causton far on the right (along PC1) 
but also be able to visualize all other datasets and maybe understand what the second component is.  
 
We have done this (first figure below). We think that the original Figure 3A is clearer and that it 
would be confusing to introduce the second principal component at this stage since we have not 
investigated it in any detail. The second figure below is also of interest in this respect. Whereas PC1 
captures 24% of the variation in the Kemmeren et al. data, PC2 doesn't distinguish itself from the 
remaining components in this respect. 
 
Projection of compendium datasets to the plane of the two first principal components (PC1, 
PC2): 

 
 
Supplemental Figure 1: 

 
 
We think that the second figure above is a useful additional analysis from which to judge the 
importance and singularity of PC1. We now refer to it in the Results (page 3, paragraph 2) as 
Supplemental Figure 1 
 
Fig 3B: "Correlation of the slow growth..." It is not a correlation but a scatter plot. Applies to 4A 
and 5A as well.  
 
This has been rectified. 
 
Fig. 4: Also here a panel could show the projection of each time point of Spellmann et al on 
(PC1,PC2).  
 
See answer to previous comment about PC2 
 
Fig. 4A should show all data points, as the model was fitted on all data.  
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The original description of what the model was fitted to (only the ESR genes) was not clear enough. 
This has been rectified by an extended description in the Materials and Methods: 
 
Materials and Methods "modeling of the ESR cell cycle phase signatures":  
The statistical model should be formally described. In particular it is unclear:  
i) what was fitted. Was it the natural (unlogged) gene expression values (concentrations should sum 
up in the natural scale) or something else?  
ii) how the reference signal (wild type unsynchronized population) was taken into account  
iii) what the noise model was. Indeed variance of unlogged microarray gene expression data grows 
with expression value (heteroskedascisty) so if sums on the natural scale were modeled (i), this point 
must be addressed.  
iv) whether the proportions were constrained to be non-negative and sum to 1  
v) what exact 4 time points were taken as spline nodes  
vi) which optimization algorithm was used.  
Moreover, the corresponding scripts should be provided.  
 
These points have all been incorporated in the more extensive descriptions and by making R-
packages available for each method. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


