Table S1. Differentially expressed gene quantities compared across the two predominant eukaryotic compartments of the

Pocillopora damicornis coral holobiont. When the "More responsive compartment" has been left blank, this indicates that the

differentially expressed gene (DEG) percentage (*i.e.*, "% DEGs;" #DEGs/total contig count x 100) from each compartment was

similar. C=control temperature (27°C), H=high temperature (30°C), C2=controls sampled after 2 weeks, H2=high temperature corals

sampled after 2 weeks, C36=control corals sampled after 36 weeks, H36=high temperature corals sampled after 36 weeks.

Comparison	α level	#contigs (%)	fold change	#contigs (%)	#coral contigs	#Symbiodinium	Coral vs. Symbiodinium	More
			or comparison		(% DEGs)	contigs (% DEGs)	% DEGs two-sample	responsive
							proportion test Z-score	compartment
C vs. H	10^{0}	236,435 (100%)	10	1,564 (0.661%)	564 (1.17%)	66 (0.429%)	8.070***	host coral
	10-1	35,773 (15.1%)	10	590 (0.250%)	157 (0.326%)	39 (0.254%)	1.40	
	10^{-2}	5,092 (2.15%)	10	133 (0.056%)	28 (0.058%)	9 (0.059%)	0.022	
	10^{-3}	897 (0.379%)	10	32 (0.014%)	4 (<0.01%)	3 (<0.01%)	1.15	
	10-4	265 (0.112%)	2	49 (0.021%)	8 (0.017%)	6 (0.039%)	1.63	
	10-5	109 (0.046%)	2	10 (<0.01%)	1 (<0.01%)	0	0.565	
	10^{-6}	80 (0.034%)	C=0, H>0	65 (0.028%)	1 (<0.01%)	6 (0.039%)	3.80*	Symbiodinium
			C>0, H=0	13 (<0.01%)	2 (<0.01%)	0	0.799	-
	10^{-7}	58 (0.025%)	C=0, H>0	52 (0.022%)	1 (<0.01%)	6 (0.039%)	3.80**	Symbiodinium
			C>0, H=0	5 (<0.01%)	1 (<0.01%)	0	0.565	-
	10 ⁻⁸	43 (0.018%)	C=0, H>0	40 (0.017%)	1 (<0.01%)	6 (0.039%)	3.80**	Symbiodinium
			C>0, H=0	3 (<0.01%)	0	0	no annotated results	-
	10-9	28 (0.012%)	C=0, H>0	25 (0.011%)	0	3 (<0.01%)	3.068*	Symbiodinium
			C>0, H=0	3 (<0.01%)	0	0	no annotated results	2
		No annot	ated contigs were	e differentially exp	pressed at an α le	vel of 10^{-10} .		
C2 vs. H2	10^{0}	236,435 (100%)	10	1,260 (0.533%)	546 (1.13%)	63 (0.410%)	8.010***	host coral
	10 ⁻¹	16,788 (7.10%)	10	208 (0.088%)	57 (0.118%)	15 (0.098%)	0.662	
	10^{-2}	1,546 (0.654%)	10	49 (0.021%)	13 (0.027%)	2 (0.013%)	0.981	
	10-3	232 (0.098%)	10	9 (<0.01%)	2 (<0.01%)	1 (<0.01%)	0.371	
			2	43 (0.018%)	9 (0.019%)	5 (0.032%)	1.01	

			C=0, H>0	118 (0.050%)	5 (0.010%)	12 (0.078%)	4.47**	Symbiodinium
			C>0, H=0	11 (<0.01%)	2 (<0.01%)	0	0.799	
	10^{-4}	15 (<0.01%)	C=0, H>0	1 (<0.01%)	0	0	no annotated results	
			C>0, H=0	2 (<0.01%)	1 (<0.01%)	0	0.565	
	10^{-5}	No annota	ted contigs we	re differentially exp	pressed at an α lev	vel of 10^{-5} .		
C36 vs. H36	10^{0}	236,435 (100%)	10	1,656 (0.700%)	579 (1.20%)	109 (0.709%)	5.13***	host coral
	10^{-1}	9,708 (4.11%)	10	265 (0.112%)	81 (0.168%)	31 (0.202%)	0.868	
	10^{-2}	735 (0.311%)	10	56 (0.024%)	15 (0.031%)	9 (0.059%)	1.53	
	10^{-3}	54 (0.023%)	10	12 (<0.01%)	5 (0.010%)	3 (<0.01%)	0.881	
		· · · · ·	2	36 (0.015%)	8 (0.017%)	7 (0.046%)	2.04	
			C=0, H>0	5 (<0.01%)	4 (<0.01%)	0	1.13	
			C>0, H=0	5 (<0.01%)	2 (<0.01%)	0	0.799	
	10^{-4}	6 (<0.01%)	2	1 (<0.01%)	0	0	no annotated results	
			C=0, H>0	2 (<0.01%)	2 (<0.01%)	0	0.799	
			C>0, H=0	0	0	0	no annotated results	
	10^{-5}	No annota	ted contigs we	re differentially exp	pressed at an α lev	vel of 10^{-5} .		
2 vs. 36	10^{0}	236,435 (100%)	10	3,195 (1.35%)	911 (1.89%)	219 (1.42%)	3.80**	host coral
	10^{-1}	70,938 (30.0%)	10	2,008 (0.849%)	460 (0.954%)	169 (1.099%)	1.59	
	10^{-2}	30,884 (13.1%)	10	529 (0.224%)	99 (0.205%)	52 (0.338%)	2.95*	Symbiodinium
	10^{-3}	13,086 (5.53%)	10	139 (0.059%)	25 (0.052%)	13 (0.085%)	1.45	r r
	10^{-4}	3,202 (1.35%)	10	39 (0.017%)	9 (0.019%)	5 (0.032%)	1.01	
	10^{-5}	516 (0.218%)	10	8 (<0.01%)	2 (<0.01%)	2 (<0.01%)	1.21	
		· · · · · ·	2	360 (0.152%)	45 (0.093%)	108 (0.702%)	13.4***	Symbiodinium
	10^{-6}	126 (0.053%)	2	36 (0.015%)	2 (<0.01%)	7 (0.046%)	3.76**	Śymbiodinium
	10^{-7}	60 (0.025%)	2	3 (<0.01%)	1 (<0.01%)	1 (<0.01%)	0.853	2
		· · · · ·	C=0, H>0	14 (<0.01%)	1 (<0.01%)	0	0.565	
			C>0, H=0	43 (0.018%)	1 (<0.01%)	6 (0.039%)	3.80**	Symbiodinium
	10^{-8}	42 (0.018%)	C=0, H>0	3 (<0.01%)	0	0	no annotated results	2
		· · · · ·	C>0, H=0	39 (0.017%)	1 (<0.01%)	6 (0.039%)	3.80**	Symbiodinium
	10 ⁻⁹	28 (0.012%)	C=0, H>0	25	0	3 (0.02%)	3.10**	Śvmbiodinium
		× ,	C>0, H=0	3 (<0.01%)	0	0	no annotated results	2
		No annota	ted contigs we	re differentially exp	ressed at an α lev	rel of 10^{-10} .		
¥.	~ 0 01	**	001	2 1				

p*<0.01. *p*<0.001. ****p*<0.0001.

Table S2. Repeated-measures ANOVA results of host coral gene expression. Full gene names and the respective functional categories can be found in Table 1. Statistically significant differences (p<0.05) have been underlined for emphasis. R^2 values between data derived from the two gene expression quantification techniques can be found in Figs. S1 and S2. "HSD" = honestly significant difference.

Gene Illumina-derived data			data Fig.	Real-time PCR-derived data			Fig.
source of variation	Exact F	р	Tukey's HSD tests	Exact F	р	Tukey's HSD tests	
са			Sla				S1b
treatment	4.0	0.12		3.8	0.15		
time	15	0.019	36>2	0.29	0.63		
treatment x time	8.4	0.044	H36(A)>all others(B)	1.8	0.27		
amylase			S1d				Sle
treatment	42	0.0029	high>control	0.96 ^a	0.40		
time	79	< 0.001	2>36	59	< 0.01	2>36	
treatment x time	14	0.020	H2(A), C2(B), H36(BC), C36(C)	1.04	0.38		
iontrans			S1g				S1h
treatment	13	0.022	high>control	0.18^{a}	0.72		
time	43	< 0.01	36>2	0.078	0.81		
treatment x time	20.	0.011	H36(A), C36(B), C2(BC), H2(C)	10.3	0.084		
sftase			S1j				S1k
treatment	2.0 ^b	0.23		0.01	0.93		
time	30.	< 0.01	36>2	13	0.038		
treatment x time	4.5	0.102	C36(A), H36(AB), H2(BC), C2(C)	18	0.024		
тср			S1m				S1n
treatment	1300	< 0.001	high>control	0.27^{a}	0.641		
time	42	< 0.01	2>36	260	< 0.001	2>36	
treatment x time	6.7	0.061	H2(A), C2(B), H36(BC), C36(C)	1.8	0.278		
lectin			S1p				S1q
treatment	150	< 0.001	high>control	6.0 ^a	0.071		
time	5.8	0.074	36>2	1.2	0.34		

treatment x time	6.1	0.069	H36(A)>all others(B)	1.4	0.31	
selectin			S1s			S1t
treatment	5.7	0.075		1.0^{a}	0.38	
time	8.2	0.046	2>36	21	0.020	2>36
treatment x time	10.	0.034	H2(A)>all others (B)	0.90	0.41	H2(A), C2(AB), H36(AB), C36(B)
hsp70			S2a			S2b
treatment	1.2	0.34		0.36	0.58	
time	8.6	0.043	36>2	0.27	0.63	
treatment x time	0.90	0.40		0.015	0.91	
cu-zn-sod			S2d	,		S2e
treatment	5.0	0.090	control>high	9.1 ^b	0.057	
time	24	< 0.01	36>2	0.6	0.50	
treatment x time	0.039	0.85		1.4	0.33	
vwfα			S2g	1		S2h
treatment	17	0.015	high>control	0.12 ^b	0.75	
time	0.28	0.63		0.39	0.58	
treatment x time	71	0.001	H36(A), C2(A), H2(B), C36(B)	0.20	0.69	
DNAp			S2j			S2k
treatment	102	< 0.001	control>high	1.5^{a}	0.29	
time	32	< 0.01	36>2	8.3	0.045	36>2
treatment x time	< 0.01	0.93	C36(A), C2(B), H36(B), H2(C)	0.42	0.55	
smc-csp			S2m			S2n
treatment	150	< 0.001	control>high	0.25	0.65	
time	2.2	0.21		21	0.019	
treatment x time	0.65	0.47	C2(A), C36(A), H2(B), H36(B)	21	0.019	
gfp-like cp			S2p			S2q
treatment	6.6	0.062		3.2 ^a	0.17	
time	7.1	0.056	36>2	0.046	0.84	
treatment x time	5.7	<u>0.076</u>	H36(A)>all others(B)	4.7	0.12	H36(A), C2(AB), H2(AB), C36(B)

^alog-transformed data. ^brank-transformed data.

Table S3. **Repeated-measures ANOVA results of** *Symbiodinium* **gene expression.** Full gene names and the respective functional categories can be found in Table 1. Statistically significant differences (p < 0.05) are underlined for emphasis. R^2 values between data derived from the two gene expression quantification techniques can be found in Figs. S3 and S4. Genes for which both techniques yielded significant temperature treatment effects (in the model as a whole or in the post-hoc tests) have been emphasized in bold font. "HSD" = honestly significant difference.

Gene	Illumina-derived data Fig			Real-tim	e PCR-	derived data Fig.
source of variation	Exact F	р	Tukey's HSD tests	Exact F	р	Tukey's HSD tests
transketolase			S3a			S3b
treatment	22 ^a	0.043		1.0^{a}	0.42	
time	13	0.071	2>36	32	0.030	2>36
treatment x time	0.033	0.87	C2(A), H2(AB), H36(BC), C36(C)	5.2	0.15	C2(A), H2(AB), H36(B), C36(B)
zifl1l			S3d			S3e
treatment	21	< 0.01	control>high	15^{a}	0.060	control>high
time	32	<u><0.01</u>	2>36	12	0.076	2>36
treatment x time	11	0.029	C2(A)>all others(B)	2.0	0.29	C2(A)>all others (B)
nrt2			S3g			S3h
treatment	0.031	0.87		0.18	0.69	
time	81	< 0.001	2>36	22	<u><0.01</u>	
treatment x time	0.015	0.91	C2(A), H2(A), C36 (B), H36(B)	0.21	0.67	C2(A), H2(AB), H36(BC), C36(C)
vdic			S3j			S3k
treatment	25	< 0.01	high>control	0.077	0.81	
time	78	< 0.001	2>36	28	0.035	2>36
treatment x time	9.4	0.038	H2(A), C2(B), H36(C), C36(C)	2.0	0.29	C2(AB), H2(A), H36(AB), C36(A)
K^+ channel			S3m			S3n
treatment	2.9 ^b	0.16		< 0.01	0.98	
time	88	< 0.001	2>36	27	0.036	2>36
treatment x time	4.6	0.099	H2(A), C2(A), C36(B), H36(B)	0.81	0.46	
Ca^{2+} channel			S3p			S3q

treatment	9.5	0.037	control>high	0.10 ^b	0.78		
time	34	<u><0.01</u>	2>36	7.8	0.11	2>36	
treatment x time	3.8	0.12	C2(A)>all others(B)	0.17	0.72	C2(A), H2(AB), H36(AB), C36((B)
rbcL			S3s				S3t
treatment	11 ^c	<u>0.030</u>	high>control	0.32	0.60		
time	45	<u><0.01</u>	2>36	24	<u><0.01</u>	2>36	
treatment x time	0.058	0.82	H2(A), C2(A), H36(B), C36(B)	0.019	0.90	H2(A), C2(AB), H36(BC), C36(C)
psI			S3v				S3w
treatment	12	0.027	high>control	6.7^{a}	0.061		
time	49	0.002	2>36	26	< 0.01	2>36	
treatment x time	0.17	0.70	H2(A), C2(AB), H36(BC), C36(C)	1.9	0.24	H2(A), C2(A), H36(AB), C36(B	5)
pgpase			S3y				S3z
treatment	3.0	0.16		0.32	0.60		
time	16	<u>0.016</u>	2>36	15	0.018	2>36	
treatment x time	0.29	0.62	H2(A), C2(A), H36(AB), C36(B)	0.034	0.86	H2(A), C2(AB), H36(AB), C36((B)
hsp40			S4a				S4b
treatment	0.068°	0.81		0.63 ^a	0.49		
time	32	<u><0.01</u>	36>2	5.2	0.11		
treatment x time	0.39	0.57		0.064	0.82		
hsp70			S4d				S4e
treatment	9.3	0.038	high>control	7.4	0.053		
time	34	<u><0.01</u>	2>36	30	< 0.01	2>36	
treatment x time	< 0.01	0.94	H2(A), C2(AB), H36(BC), C36(C)	2.8	0.17	C2(A), H2(A), H36(B), C36(B)	
hsp90			S4g				S4h
treatment	13	0.023	high>control	0.66^{a}	0.48		
time	32	<u><0.01</u>	2>36	66	< 0.01		
treatment x time	0.17	0.71	H2(A), C2(B), H36(B), C36(C)	2.7	0.20	C2(A), H2(A), H36(B), C36(B)	
apx1			S4j				S4k
treatment	0.14	0.49		0.16^{a}	0.71		
time	17	0.014	2>36	34	< 0.01	2>36	
treatment x time	0.17	0.70	C2(A), H2(A), H36(AB), C36(B)	0.901	0.40	C2(A), H2(A), H36(B), C36(B)	
ubiqlig			S4m				S4n
treatment	32	<u><0.01</u>	high>control	14	0.033	high>control	

time	1900	< 0.001	2>36	26	0.015	2>36
treatment x time	102	< 0.001	H2(A), C2(B), H36(B), C36 (C)	0.31	0.62	H2(A), C2(AB), H36(BC), C36(C)
cildyn			S4p			S4q
treatment	8.7	0.042	high>control	1.1 ^a	0.36	
time	48	< 0.01	2>36	5.2	0.11	2>36
treatment x time	8.7	0.042	H2(A)>all others(B)	1.2	0.36	
RNA helicase			S4s			S4t
treatment	35	< 0.01	high>control	0.23 ^a	0.68	
time	73	< 0.001	2>36	1300	< 0.01	2>36
treatment x time	34	<u><0.01</u>	H2(A), C2(B), H36(B), C36(C)	75	0.013	H2(A), C2(A), H36(AB), C36(B)

^alog-transformed data. ^bsquare root-transformed data. ^crank-transformed data.

Supplemental figure captions

Fig. S1. Host coral metabolism, transport, and cell adhesion gene expression. mRNA expression levels of genes (see full names in Table 1.) involved in metabolism (a-f), transport (go), and cell adhesion (p-u) were determined with either Illumina RNA-Seq (fragments per kilobases mapped [fpkm]; a, d, g, j, m, p, and s) or real-time PCR (inverse-log threshold cycle [C_t] values normalized to recovery of the Solaris[™] [Thermo-Scientific] RNA spike; b, e, h, k, n, q, and t) in both control (hollow diamonds of a, b, d, e, g, h, j, k, m, n, p, q, s, and t) and high temperature (black triangles of a, b, d, e, g, h, j, k, m, n, p, q, s, and t) samples. The correlation between these two techniques was also assessed for both the control (white and black diamonds at the 2 and 36-week sampling times, respectively) and high temperature (white and black triangles at the time 2 and 36-week sampling times, respectively) samples (c, f, i, l, o, r, and u), and linear regression *t*-tests were conducted to determine the significance of the correlations. In a, b, d, e, g, h, j, k, m, n, p, q, s, and t, error bars represent standard error of the mean. Letters adjacent to either control or high temperature icons in certain panels denote significance at p < 0.05 by Tukey's honestly significant difference tests. One biological replicate from the control treatment group sampled after two weeks was considered to be an outlier and was neither analyzed nor plotted.

Fig. S2. Expression of host coral genes involved in the stress response and other processes. mRNA expression levels of genes (see full names in Table 1.) involved in the stress response (af) and other processes (g-r) were determined with either Illumina RNA-Seq (fragments per kilobases mapped [fpkm]; a, d, g, j, m, and p) or real-time PCR (inverse-log threshold cycle [C_t] values normalized to recovery of the SolarisTM [Thermo-Scientific] RNA spike; b, e, h, k, n, and q) in both control (hollow diamonds of a, b, d, e, g, h, j, k, m, n, p, and q) and high temperature (black triangles of a, b, d, e, g, h, j, k, m, n, p, and q) samples. The correlation between these two techniques was also assessed for both the control (white and black diamonds at the 2 and 36week sampling times, respectively) and high temperature (white and black triangles at the time 2 and 36-week sampling times, respectively) samples (c, f, i, l, o, and r), and linear regression *t*tests were conducted to determine the significance of the correlations. In a, b, d, e, g, h, j, k, m, n, p, and q, error bars represent standard error of the mean. Letters adjacent to either control or high temperature icons in certain panels denote significance at *p*<0.05 by Tukey's honestly significant difference tests. One biological replicate from the control treatment group sampled after two weeks was considered to be an outlier and was neither analyzed nor plotted.

Fig. S3. Symbiodinium metabolism, ion transport, and photosynthesis gene expression.

mRNA expression of genes (see full names in Table 1.) involved in metabolism (a-i), ion transport (j-r), and photosynthesis (s-aa) was determined with either Illumina RNA-Seq (fragments per kilobases mapped [fpkm]; a, d, g, j, m, p, s, v, and y) or real-time PCR (inverselog threshold cycle [C₁] values normalized to recovery of the Solaris[™] [Thermo-Scientific] RNA spike; b, e, h, k, n, q, t, w, and z) in both control (hollow diamonds of a, b, d, e, g, h, j, k, m, n, p, q, s, t, v, w, y, and z) and high temperature (black triangles of a, b, d, e, g, h, j, k, m, n, p, q, s, t, v, w, y, and z) samples. The correlation between these techniques was assessed for both control (white and black diamonds at the 2 and 36-week sampling times, respectively) and high temperature (white and black triangles at the time 2 and 36-week sampling times, respectively) samples (c, f, i, l, o, r, u, x, and aa), and linear regression *t*-tests were conducted to determine the significance of the correlations. In a, b, d, e, g, h, j, k, m, n, p, q, s, t, v, w, y, and z, error bars represent standard error of the mean. Letters adjacent to either control or high temperature icons in certain panels denote significance (p < 0.05) by Tukey's honestly significant difference tests. One biological replicate from the control treatment group sampled after two weeks was considered to be an outlier and was neither analyzed nor plotted.

Fig. S4. Expression of *Symbiodinium* genes involved in the stress response and other processes. mRNA expression of genes (see full names in Table 1.) involved in the stress response (a-o) and other processes (p-u) was determined with either Illumina RNA-Seq (fragments per kilobases mapped [fpkm]; a, d, g, j, m, p, and s) or real-time PCR (inverse-log threshold cycle [C_t] values normalized to recovery of the Solaris[™] [Thermo-Scientific, USA] RNA spike; b, e, h, k, n, q, and t) in both control (hollow diamonds of a, b, d, e, g, h, j, k, m, n, p, q, s, and t) and high temperature (black triangles of a, b, d, e, g, h, j, k, m, n, p, q, s, and t) samples. The correlation between these two techniques was assessed across the control (white and black diamonds at the 2 and 36-week sampling times, respectively) and high temperature (white and black triangles at the time 2 and 36-week sampling times, respectively) samples (c, f, i, l, o, and r), and linear regression *t*-tests were conducted to determine the significance of the correlations. In a, b, d, e, g, h, j, k, m, n, p, q, s, and t error bars represent standard error of the mean. Letters adjacent to either control or high temperature icons in certain panels denote significance at p < 0.05 by Tukey's honestly significant difference tests. One biological replicate from the control treatment group sampled after two weeks was considered to be an outlier and was neither analyzed nor plotted.

