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SUMMARY
Definitive hematopoietic stem cells (HSCs) develop in the aorta gonadmesonephros (AGM) region in a stepwisemanner. Type I pre-HSCs

express CD41 but lack CD45 expression, which is subsequently upregulated in type II pre-HSCs prior to their maturation into definitive

HSCs. Here, using ex vivo modeling of HSC development, we identify precursors of definitive HSCs in the trunk of the embryonic day

9.5 (E9.5) mouse embryo. These precursors, termed here pro-HSCs, are less mature than type I and II pre-HSCs. Although pro-HSCs

are CD41+, they lack the CD43 marker, which is gradually upregulated in the developing HSC lineage. We show that stem cell factor

(SCF), but not interleukin-3 (IL-3), is a major effector of HSCmaturation during E9–E10. This study extends further the previously estab-

lished hierarchical organization of the developing HSC lineage and presents it as a differentially regulated four-step process and identifies

additional targets that could facilitate the generation of transplantable HSCs from pluripotent cells for clinical needs.
INTRODUCTION

The embryonic aorta gonad mesonephros (AGM) region is

an important site of hematopoietic stem cell (HSC) devel-

opment prior to colonization of the fetal liver (Dzierzak

and Speck, 2008;Medvinsky et al., 2011). At the embryonic

day 11 (E11) preliver stage, developing HSCs have also

been identified in the placenta, extraembryonic arteries,

and head (Dzierzak and Speck, 2008; Gekas et al., 2010;

Gordon-Keylock et al., 2013; Li et al., 2012). In the AGM re-

gion, definitive HSCs (dHSCs) are localized to the endothe-

lial lining of the dorsal aorta (de Bruijn et al., 2002; Rybtsov

et al., 2011). The first dHSCs emerging in the AGM region

express endothelial-specific markers such as vascular endo-

thelial cadherin (VE-cadherin) (Ivanovs et al., 2014; North

et al., 2002; Taoudi et al., 2005). Cell-fate experiments us-

ing permanent genetic labeling of embryonic endothelial

cells and their progeny provided strong evidence in favor

of the endothelial origin of HSCs (Chen et al., 2009; Zovein

et al., 2008). Live imaging in zebrafish revealed the forma-

tion of Runx1+ HSC/multipotent progenitors from the

endothelial lining of the dorsal aorta (Bertrand et al.,

2010; Kissa and Herbomel, 2010). Despite the strong indi-

cation that HSCs develop from a specialized hematogenic

endothelial lining of the dorsal aorta, it is becoming

increasingly apparent that this is not a single-step process

(Rybtsov et al., 2011; Taoudi et al., 2008). Furthermore,

some evidence suggests that divergence of the HSC lineage

from the embryonic endotheliummay occur prior to E10.5

before extensive formation of intra-aortic clusters (Rybtsov

et al., 2011; Swiers et al., 2013a; Yoder et al., 1997).
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Ex vivo modeling is a powerful tool for dissecting the

mechanisms of embryonic development of HSCs. During

a few days ex vivo, the AGM region and extraembryonic

arteries are capable of generating a large pool of dHSCs

comparable to that developing in the fetal liver (Gordon-

Keylock et al., 2013; Taoudi et al., 2008).While AGM region

explant cultures initially enabled HSC maturation to be

replicated in vitro (Medvinsky and Dzierzak, 1996), a disso-

ciation-reaggregation culture system thatwas subsequently

developed enabled analysis of individual cell populations

in the AGM region (Taoudi et al., 2008). Two types of em-

bryonic precursors sequentially developing into dHSCs

have been described in the E10.5–E11.5 AGM region:

type I pre-HSCs (VE-cad+CD45�CD41lo) and type II pre-

HSCs (VE-cad+CD45+) (Rybtsov et al., 2011). Although

E11.5 dHSCs are localized to the endothelial layer of the

dorsal aorta (de Bruijn et al., 2002), type I and II pre-HSCs

are distributed more broadly both in the endothelial and

subendothelial cell layers (Rybtsov et al., 2011). At E11,

pre-HSCs have also been identified in extraembryonic ar-

teries (Gordon-Keylock et al., 2013). Meanwhile, cells of

the yolk sac cleanly severed from extraembryonic arteries

lack or show poor capacity to mature into dHSCs in similar

culture conditions (Gordon-Keylock et al., 2013; Rybtsov

et al., 2011).

Previous studies showed that the caudal part of the E8.5

embryo contains precursors that can give rise to low-level

repopulating hematopoietic cells (Cumano et al., 1996).

However, the development of true adult-type high-level re-

populating HSCs in culture has been achieved to date only

from E10.5 AGM region cells (Robin et al., 2006; Rybtsov
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et al., 2011; Taoudi and Medvinsky, 2007). Understanding

the mechanics of HSC development requires tracking and

characterization of the entire embryonic pathway leading

to dHSC formation, covering earlier stages of development.

Here, we aimed to characterize the cell type immediately

preceding the emergence of type I pre-HSCs by focusing

on the E9.5 stage. We have been able to mature dHSCs

from the E9.5 caudal part of the embryo body. As expected,

the maturation of these early precursors into dHSCs re-

quires a longer time than of E11.5 AGM region-derived

type I and II pre-HSCs.

Embryonic precursors of dHSCs are known to express

CD41 (Bertrand et al., 2005; Ferkowicz et al., 2003;

McKinney-Freeman et al., 2009; Rybtsov et al., 2011). We

show that E9.5 HSC precursors also express CD41 and

RUNX1 but in contrast to later (including adult) stages

lack expression of CD43 (Moore et al., 1994). E9.5 HSC pre-

cursors and type I pre-HSCs can mature into dHSCs in

response to stem cell factor (SCF), but not interleukin-3

(IL3), although for type II pre-HSCs, SCF and IL-3 are

equally active. Such strong early dependency on SCF, but

not IL-3, identifies SCF as a major HSC maturation factor,

which is consistent with the dramatic HSC deficiency in

SCF knockouts, but not in IL-3 knockouts (Ding et al.,

2012). Taken together, these features identify the E9.5 pre-

cursor as a distinct hematopoietically committed cell type

termed here ‘‘pro-HSC.’’

In summary, using a modified ex vivo protocol enabling

replication of HSC development from the E9.5 mouse

embryo, we characterize here an early hematopoietic

precursor in the HSC hierarchy (pro-HSC) localized to the

aortic region of the E9.5 embryo. Pro-HSCs are VE-

cad+CD45�CD41loCD43� and SCF dependent and precede

the appearance of type I pre-HSCs in the AGM region.

Taken together with previous studies, HSC development

between E9.5 and E11.5 can be characterized as a four-

step process driven primarily by SCF.
RESULTS

E9.5 Precursors Require a Longer Time than Type I and

II Pre-HSCs to Mature into dHSCs

Previous studies showed that 3–4 days in culture is suffi-

cient for dHSCs maturation from E11.5 AGM cells (Med-

vinsky and Dzierzak, 1996; Taoudi et al., 2008). Our

attempts to obtain dHSCs by culturing the caudal part

of E9.5 embryo using similar conditions have failed, and

we reasoned that precursors of HSCs from this early stage

may require a longer culture period. Therefore, cell sus-

pensions obtained from caudal parts of E9.5 embryos

were coaggregated with OP9 cells and cultured for

7 days on floating membranes at the gas-liquid interphase
490 Stem Cell Reports j Vol. 3 j 489–501 j September 9, 2014 j ª2014 The A
in presence of three growth factors (termed further

3GF): IL-3, SCF, and Fms-related tyrosine kinase 3 ligand

(FLT3L). After 7 days in culture, cells were transplanted

intravenously into adult irradiated recipients, which

resulted in a long-term multilineage high-level hema-

topoietic repopulation (Figure 1A). Systematic analysis

demonstrated a significant gap in maturation kinetics be-

tween HSC precursors in E9.5 and E10.5/E11.5 embryos.

While late E10.5 and E11.5 pre-HSCs can mature into

dHSCs during 4 days culture, E9.5 precursors produce

dHSC only after 7 days of culture (Figure 1A; Taoudi

et al., 2008), and coaggregation with OP9 cells facilitated

dHSCs maturation from E9.5 cells (Figure S1A available

online). Primary and secondary transplantations of bone

marrow from primary recipients repopulated with E9.5-

derived cells showed balanced long-term multilineage

engraftment detectable in the peripheral blood and

lymphohematopoietic organs (Figures S1B–S1E) (Muller-

Sieburg et al., 2012).

Pro-HSCs Are Distributed along the Aortic Region

between the Heart and the Base of the Umbilical Cord

To investigate the localization of pro-HSCs in the E9.5 em-

bryo, cell suspensions obtained from the E9.5 caudal part

(trunk below heart level), anterior part (AP; including the

rest of the body), yolk sac, and placenta were coaggregated

with OP9 cells, cultured for 7 days with 3GF, and then

transplanted into irradiated recipients (Figure 1B). Only

the caudal part was able to generate dHSCs. None of other

tissues, including those that harbor HSCs at later stages

(placenta, yolk sac, and anterior part above the heart,

including the head), contained precursors capable of

maturing into dHSCs. Of note, the caudal part generates

HSCs regardless of low content of colony-forming units

in culture (CFU-C), whereas the yolk sac lacks HSC poten-

tial, despite the presence of large numbers of CFU-C (Fig-

ures 1B and 1C).

To determine more accurately the localization of pro-

HSCs, E9.5 caudal parts were sectioned into thick trans-

verse slices along the longitudinal axis (Figure 1D) that

were tested for their ability to generate dHSCs. The

following subregions were tested: umbilical cord (a), tail

(b), posterior caudal part (one-third of the caudal part

excluding tail harboring the region of �5 somite pairs

(sp) around the base of the umbilical cord) (c); intermediate

caudal part (intermediate one-third of the caudal part �5

sp) (d); rostral caudal part (one-third of the caudal part adja-

cent to the heart, including the base of the vitelline vein,

but not the vitelline artery) (e); and anterior part including

the heart, neck, and head (AP). We found that all trunk sec-

tions (except umbilical cord and tip of tail) below the heart

level were able to generate dHSCs following 7-day coaggre-

gation culture (Figure 1E).
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Figure 1. Pro-HSC Maturation into dHSCs
(A) While dHSCs from E10.5 precursors appeared after 4 days in culture (green diamonds), E9.5 caudal part precursors matured into dHSCs
only by day 7 in culture (red diamonds) (two independent experiments).
(B) Pro-HSCs are localized to the caudal part of the embryo body, but not in other intra- or extraembryonic tissues (three independent
experiments).
(C) The yolk sac, but not the caudal part, contains large numbers of CFU-C (comparisons between yolk sac and caudal parts of individually
staged embryos are shown; two independent experiments).
(D) Dissection strategy for E9.5 embryo (24 sp): a, umbilical cord; b, tip of the tail; c, posteriormost one-third of the caudal part excluding
the tail tip; d, intermediate one-third of the caudal part; and e, rostralmost one-third of the caudal part immediately below the heart level;
anterior part (AP) including the heart, neck, and head.
(E) Subdissected regions from individual embryos were separately cocultured with OP9 cells. Presence of pro-HSCs in different regions
(x axis) and level of donor-derived engraftment (y axis) is indicated. Age of individual embryos (24–28 sp) is indicated (z axis). Each color
depicts one embryo (four independent experiments).
(F) Pro-HSCs stably emerge in the embryonic caudal part from 24 sp stage. On rare occasions, dHSCs developed in embryos between 15 and
23 sp (three independent experiments).
Diamond symbols represent individual recipients. Number of e.e. transplanted per recipient (ee/rec) is shown. Dissection scheme shown
on CD41Cre::sGFP embryo for better orientation (Rybtsov et al., 2011). For multilineage analyses, see Figure S1. Each plot represents two to
four independent experiments.
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Figure 2. Stepwise Phenotypic Progression of the HSC Lineage during E9.5 to E11.5
(A) Sorting strategies for the developing HSC lineage (plots show 7AAD�Lin� cells).
(B) Functional identification of members of the developing HSC hierarchy. Sorting strategy (see also Figure S2) and functional vali-
dation for:
(a and a0) E9 VC+CD45�: repopulation achieved with R2 cells (note that the VC-negative population was also tested and gave no
repopulation), four independent experiments;
(b and b0) E10 VC+CD45�: repopulation achieved with R2 and R3 cells, two independent experiments;
(c and c0) E11 VC+CD45�: repopulation achieved only with R1 cells, three independent experiments;
(d and d0) E11 VC+CD45+: repopulation achieved only with R2 cells, three independent experiments;

(legend continued on next page)
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Effective Emergence of Pro-HSCs Occurs from 23/

24 Sp Stage

To determine the exact stage at which pro-HSCs appear,

embryos were grouped in accordance with their age (sp)

and coaggregated with OP9 cells. A few embryos in E9.5

litters were found to be retarded and had only 15–17 sp,

normally detected in E8.5 litters. Each adult recipient was

transplanted with 2–1–2 e.e. (embryo equivalents) of

cultured cells from each stage. Although on rare occasions,

embryos from 15–17 sp to 23 sp were able to generate

dHSCs, only 24 sp and older embryos showed consistent

presence of pro-HSCs (Figure 1F). Indeed, only 5 out of 33

recipients of younger than 24 sp caudal parts showed he-

matopoietic repopulation (of total 66 e.e. transplanted),

whereas 26 of 30 recipients transplanted with cultured

24–29 sp caudal parts (in total 30 e.e.) achieved high-level

long-term hematopoietic engraftment.

Pro-HSCs are CD41+CD43� and Upregulate CD43

during HSC Lineage Development

To identify the phenotype of pro-HSCs, the Lin-VC+CD45�

population isolated from the E9.5 (24–29 sp) caudal part

was sorted into four fractions based on CD41 and CD43

staining. After coaggregation with OP9 cells and 7-day cul-

ture, cells were transplanted into irradiated recipients (Fig-

ure S2A). Only the VC+CD45�CD41loCD43� fraction gave

rise to dHSCs (Figures 2Aa and 2Ba0). By the beginning of

E10 (30–34 sp), not only the CD41+CD43� but also the

CD41+CD43+ subsets within the VC+CD45� population

were capable of maturing into dHSCs (Figures 2Ab and

2Bb0). By E11.5, both type I and type II pre-HSCs were

exclusively CD43+ (Figures 2Ac, 2Bc0, 2Ad, and 2Bd0,
respectively). Of note, CD43 expression increases during

transition from type I pre-HSCs into type II pre-HSCs and

upregulates further in adult bone marrow HSCs (Figures

S2B and S2C). Of note, E11.5 VC+CD43+ populations en-

riched for both types of pre-HSCs are very efficient at gener-

ating CFU-C (Figure 2H).

We thenmonitored phenotypic progression of pro-HSCs

maturing ex vivo. Stepwise transition of pro-HSCs

(VC+CD45�CD41loCD43�Lin�) into the CD45�CD43+

(type I pre-HSCs) phenotype and subsequently into the
(C and D) Tracking CD43 and CD45 upregulation in cultured pro-HSCs. S
E9 caudal parts (C, left). Sorting purity of this population (C, right)
upregulation of CD43 in cultured during 7 days ex vivo (note that CD
experiments).
(E and F) By the end of culture, E9 caudal parts produce definitiv
demonstrated by transplantation of sorted live cells (F) (two indepen
(G) Demonstration of coexpression of CD41 and RUNX1 in E9 live VC+C
(H) CFU-C potential of sorted E11 populations. (a) CFU-C are generat
experiments). Error bars represent SD. (b) CFU-C are generated predo
ments). Error bars represent SD.

Stem Cell
CD45+CD43+ (dHSCs) phenotype could be followed over

time in culture (Figures 2C and 2D). The CD45+CD43+

phenotype of dHSCs emerging in culture was further

confirmed by the functional transplantation analysis (Fig-

ures 2E and 2F).

Pro-HSCs Are Present in the Dorsal Aorta, but Not in

Other Large Vessels

In E9.5 embryos, the VC+CD45�CD41+ population en-

riched for pro-HSCs coexpresses RUNX1, as shown by

intracellular antibody staining (Figure 2G). The E9.5 VC+

aortic lining almost completely lacks CD43 expression

but shows RUNX1 expression (predominantly in its ventral

domain), suggesting the presence of pro-HSCs in this loca-

tion (Figures 3A and 3A0, yellow arrow). Small vessels

branching from the ventral domain of the aorta also

contain individual VC+CD43�RUNX1+ cells (Figures 3A0

and 3B, yellow arrowheads). In contrast, the omphalome-

senteric (OA) and vitelline and umbilical arteries (UA)

contain strings of large prominent clusters composed of

VC+CD43+RUNX1+ cells (Figures 3B, 3B0, and S3A–S3C).

Rare VC�CD43+RUNX1+ cells can also be detected in the

E9.5 circulation (Figure S3D).

Cell clusters emerge inthedorsal aortaonlybyE10contain

mainly VC+CD43+CD45� cells and some VC+CD43+CD45+

cells (Figures 3C and 3D). Some cells in clusters also coex-

press RUNX1 (Figure 3 E). Similar to intra-aortic clusters,

intra-UA and intra-OA clusters by E10–E10.5 are mainly

composed of CD43+ cells, some of which start upregulating

CD45 (Figures S3A–S3C). Most of the CD45+ cells scattered

in the embryo body lack CD43 expression and are likely to

be mature macrophages (Figures 3C and 3D).

To more precisely determine the location of pro-HSCs,

we subdissected the E9.5 caudal part (Figures 3F and 3G).

After separation of the yolk sac, somites, and lateral

body walls (‘‘ribs’’), we isolated and cultured the OA, the

UA, the vitelline vein with surrounding mesenchyme

(including liver rudiment), and the dorsal aorta. We found

that dHSCs predominantly developed from the aortic re-

gion, which has smooth endothelial lining, and practically

none were generated by the OA (Figure 3H), despite the

presence of large CD43+ clusters.
orting strategy of pro-HSCs (Lin�VC+CD41loCD43�CD45�) from fresh
. Pure, sorted, Lin�VC+ CD41loCD43�CD45� pro-HSCs show gradual
45 upregulation occurs with a slight delay) (D) (two independent

e HSCs with the CD43+CD45+ phenotype (E) (located in R1), as
dent experiments).
D45� population shown by intracellular RUNX1 antibody staining.
ed predominantly by R1 cells sorted as in (Ac) (three independent
minantly by R2 cells sorted as in (Ad) (three independent experi-
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Pro-HSCs and CFU-C in the E9.5 Embryo Are

Distinguishable by CD43 and cKIT Expression Levels

The above experiments determined that pro-HSCs reside

within the VC+CD45�CD41+CD43� population. To test

whether CFU-C also reside in this fraction, VC+CD45� pop-

ulations were sorted from the E9.5 caudal parts on the basis

of CD41 and CD43 staining and plated in a methylcellu-

lose assay (Figure 4A). The absolute majority of CFU-C

(20CFU-C/e.e.) were detected in theCD41+CD43+ fraction,

whereas the CD41+CD43� population, which is enriched

for pro-HSCs, contained only 1 CFU-C/e.e. (Figure 4B).

This suggests that CFU-C are localized mainly to UA and

OA. To test this, we dissected and separately examined

the dorsal aorta and UA + OA in the methylcellulose assay

and found approximately 2- to 5-fold more CFU-C in UA +

OA than in the dorsal aorta (depending on the exact age of

the embryo) (Figure 3I). These data suggest that large

CD41+CD43+ clusters within the OA and UA are the sour-

ces of CFU-C.

We then investigated cKIT (SCF receptor) expression on

CFU-C and found that the entire VC+CD45�CD41+CD43+

population expresses cKIT at a high level. Meanwhile, the

VC+CD45�CD41loCD43� population enriched for pro-

HSCs express cKIT at lower levels (Figure 4C). Thus, pro-

HSCs and CFU-C are phenotypically distinct and tend to

be spatially segregated in the embryo.

Pro-HSCs Are Devoid of Endothelial Potential

We have previously shown that type I and II pre-HSCs do

not produce endothelial colonies in the clonogenic endo-

thelial assay (Rybtsov et al., 2011; Taoudi et al., 2005). As

expected, the main endothelial potential in E9.5 embryos
Figure 3. Phenotypic Mapping of Pro-HSC Localization
(A) VC+CD43+RUNX1+ cells localize to the ventral floor of the E9 dor
indicate cells with pro-HSC phenotype. Red arrows show RUNX1+VC+ p
(B) Hematopoietic development in the E9 omphalomesenteric artery (
VC+CD43+RUNX1+ clusters. Note the presence of VC+CD43�RUNX1+cel
heads). Zoomed image of the boxed area is shown in (B0). Yellow arrow
cells.
(C) Small ventrally located intra-aortic clusters appearing at E10 con
(D) E10 rare VC+CD43+ cells in small intra-aortic clusters show expressio
contains large clusters of VE-cad+CD45�CD43+ (blue arrow) not assoc
(E) E10 intra-aortic clusters are VE-cad+CD43+RUNX1+.
(F) Fine spatial localization of pro-HSCs in the caudal part of the body
UA as indicated schematically by double dotted line in (G) (green dot
red color. Violet color depicts vitelline veins (VV).
(H) Dorsal aorta is the main site of pro-HSC residence. Dissected subr
with OP9 cells and transplanted into irradiated recipients.
(I) CFU-C contents in UA + OA and DA. UA + OA contains significantly m
of individually staged embryos are shown).
Abbreviations: OA, omphalomesenteric artery; DA, dorsal aorta; UA, um
somites; Hrt, heart. Crossed double-headed arrows indicate dorsoven
arrow indicates the lumen of dorsal aorta (DA). Each plot represents

Stem Cell
is associated with the VC+CD45�CD41�CD43� population

as shown by clonogenic endothelial assays where approxi-

mately 100 endothelial colonies (CFU-C_En) were detected

per 1 e.e. (Figure 4B). Even though 6 e.e. were taken for each

experiment, the VC+CD45�CD41+CD43+ populations en-

riched for CFU-C produced no CFU-C_En. We then tested

the endothelial potential of pro-HSCs (VC+CD45�CD41+

CD43�) and found that this population produces very

few endothelial colonies (�10 CFU-C_En/e.e.) represented

mainly by single tubules that were spatially segregated

from rare CFU-C hematopoietic colonies (Figure 4B).

SCF Alone Is Sufficient to Induce Maturation of

Pro-HSCs and Type I Pre-HSCs into dHSCs

Previous studies showed that IL-3, on its own or in combi-

nation with other factors (SCF and FLT3L), is capable of

inducing maturation of dHSCs from the E10.5–E11.5

AGM region (Robin et al., 2006; Taoudi et al., 2008). We

have shown above that 3GF combination is also effective

for induction of E9.5 pro-HSCs (Figures 1A–1C.) and

further tested which of these factors are essential for this

process. In contrast to Il3, Scf is expressed at a substantial

level in the E9.5 dorsal aorta and increases 2.5-fold by

E10.5 (Figure 5C). Given the expression of cKIT in pro-

HSCs (Figure 4C) and the increase in Scf expression in vivo

(Figure 5C), we tested whether SCF can induce maturation

of pro-HSCs in vitro. Indeed, the addition of soluble SCF

induced efficient production of dHSCs (in seven out of

nine recipients repopulated) with high engraftment capac-

ity (range of blood chimerism, 45%–84%) (Figure 5A).

In contrast, the effect of IL-3 was much weaker. Only 3 of

11 recipients transplanted with IL-3-treated cultures of
sal aorta. Zoomed boxed area is shown in (A0). Yellow arrowheads
ro-HSCs localized to the ventral endothelium.
OA). The OA, but not the dorsal aorta (DA), contains strings of large
ls in small vessels connecting OA and DA (shown by yellow arrow-
indicates a large cluster inside the OA composed of VC+CD43+RUNX1+

tain cells expressing CD43, but not CD45.
n of CD45 (yellow arrow). Subendothelial (aortic) mesenchyme (SM)
iated with vessels.

. Dissection strategy shown on a thick transverse slice in the area of
ted line indicates subdissections). DA, OA, and UA are indicated by

egions of E9.5 caudal part (as shown in (F) and (G) were cocultured

ore CFU-C than dorsal aorta (comparisons between UA + OA and DA

bilical artery; VV, vitelline vein; SCM, subcardiac mesenchyme; Som,
tral (D-V) and posterior-arterial (P-A) orientations. Double-headed
two independent experiments.
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Figure 4. CFU-C in the E9.5 Embryo Are
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(A) Gating strategy for identification of CFU-
C and endothelial progenitors in E9.5 caudal
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the basis of CD41 and CD43 expression.
(B) Four sorted populations (as indicated
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multilineage colonies, CFU-GEMM gener-
ated), CFU-En resided in R4. Error bars
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(C) CFU-C population (R2) shows high level of cKIT expression, whereas pro-HSCs (R3) express cKIT at intermediate levels (cKIT expression
and control FMO are depicted by blue and red colors, respectively). Each plot represents two independent experiments.

Stem Cell Reports
Pro-HSCs: Earliest Members of the HSC Lineage
pro-HSC showed donor-derived hematopoietic engraft-

ment at relatively modest levels (7%–25% blood chime-

rism) (Figure 5A). Incubation with SCF and IL-3 together

showed a moderate potentiating effect (13 out of 13 recip-

ients with 8%–86% donor-derived engraftment in blood)

(Figures 5A and 5D). FLT3L on its own showed little or prac-

tically no effect and in combination with SCF or/and IL-3

only slightly improved engraftment, if at all (data not

shown). Of note, combined incubation with SCF and IL-3

tends to increase myeloid donor-derived contribution

(Figure 5D).

We then tested whether the next stage (type I pre-HSCs)

retains the predominant responsiveness to SCF. Sorted

E11.5 AGM type I pre-HSCs were cocultured with OP9 cells

in the presence of either SCF or IL-3.While cultures supple-

mented with exogenous SCF repopulated seven out of

eight recipients (three low and four high) (Figure 5B, left),

cultures supplemented with IL-3 gave repopulation in

only one of seven recipients. Again, SCF and IL-3 in combi-

nation showed a potentiating effect on dHSC development

(Figures 5A and 5B).

We then tested effects of IL-3 and SCF on type II pre-HSCs

isolated from the E11.5 AGM region and coaggregated with

OP9 cells. Control cultures (no exogenous growth factors)

generated a few dHSCs resulting in repopulation of four

out of seven recipients with modest engraftment levels

(3%–27%) (Figure 5B, right). However, addition of exoge-

nous SCF resulted in engraftment of all six recipient mice

with high-level donor-derived chimerism (10%–54%). In

line with previous reports, incubation with IL-3 was also

effective, with seven out of eight recipients being repopu-

lated at various levels (Figure 5B, right). Culturing with

SCF and IL-3 together showed no improvement over the in-

dividual effects of IL-3 or SCF (Figure 5B). Thus, pro-HSCs

and type I pre-HSCs show strong responsiveness to SCF,

whereas type II pre-HSCs can mature equally well in

response to SCF or IL-3 alone.
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DISCUSSION

Although the first hematopoietic differentiation occurs in

the yolk sac of the E7.5 mouse embryo, definitive HSCs

giving rise to the entire adult hematopoietic system

emerge only by late E10.5–E11.0 (Dzierzak and Speck,

2008; Medvinsky et al., 2011; Swiers et al., 2013b). There

is a strong line of evidence to suggest an endothelial

origin for the adult hematopoietic hierarchy (Bertrand

et al., 2010; Chen et al., 2009; de Bruijn et al., 2002; Kissa

and Herbomel, 2010; Zovein et al., 2008). From early

developmental stages, the HSC lineage shares VE-cadherin

expression with endothelial cells, which is subsequently

downregulated during fetal life (Kim et al., 2005; Taoudi

et al., 2005). Hematopoietic progenitors (CFU-C) in the

early embryo express CD41 and only later become

CD45+ (Mikkola et al., 2003). The HSC lineage evolves

rapidly through sequential developmental stages marked

by upregulation of CD41 (type I pre-HSCs: VC+CD41lo

CD45�) followed by upregulation of CD45 in type II

pre-HSCs (VC+CD45+) before becoming competent

dHSCs (Rybtsov et al., 2011; Taoudi et al., 2008). The anal-

ysis of earlier precursors of HSCs has to date been

hampered by the lack of an adequate in vitro system

that would support HSC development from very early

developmental stages.

Here, we developed an in vitro system which allowed us

to characterize E9.5 dHSCs precursors, termed here pro-

HSCs, preceding the appearance of type I pre-HSCs in

E10.5 embryos (Rybtsov et al., 2011). Pro-HSCs differ

from subsequent stages by two important characteristics:

(1) in agreement with a more immature status, pro-HSCs

require a longer culture period (7 days) to mature into

dHSCs compared to pre-HSCs; and (2) pro-HSCs are

VC+CD41+RUNX1+CD45� but lack expression of the

CD43 marker, which is upregulated at later stages begin-

ning from type I pre-HSCs.
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(A) E9 pro-HSCs mature into dHSCs in
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(B) E11 type I pre-HSCs respond by maturing
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measured by quantitative PCR, increases
2.5-fold between E9.5 and E10.5. Note that
cKit expression remains at the same level
during this period of time. Expression levels
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(D) Long-term donor-derived lymphoid and myeloid contribution in recipient blood derived from E9.5 caudal parts. While SCF on its own
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HSC development is regulated by various transcription

factors and signaling pathways (Bigas et al., 2013; Chanda

et al., 2013; Chen et al., 2009; Guiu et al., 2013; Leung

et al., 2013; Nimmo et al., 2013; Richard et al., 2013). Previ-

ous studies showed that IL-3 is a potent inducer of dHSC

maturation in the E10.5–11.5 AGM region (Robin et al.,

2006); however, we demonstrate that IL-3 has very little ef-

fect on pro-HSCs. By contrast, SCF has a strong maturation

effect on pro-HSCs. Furthermore, SCF is a strong trigger of

dHSC maturation from both type I and type II pre-HSCs.

Scf is clearly expressed in the E9.5 aorta and is significantly

upregulated by E10.5, thus correlating with pro-HSC to pre-

HSC transition. Of note, weak and inconsistent Il3 expres-

sion becomes detectable only in the E11.5 dorsal aorta in

parallel with the emergence of type II pre-HSCs (Gordon-

Keylock et al., 2013). These findings indicate that SCF is

themajor early factor initiatingHSCdevelopment, in agree-

ment with a critical decline in HSC activity in SCFmutants,

which die perinatally (Ding et al., 2012), while IL3 knock-

outs remain viable into adulthood (Lantz et al., 1998; Robin

et al., 2006). Concurrent SCF and IL-3 actionhas only an ad-

ditive or weakly potentiating effect on pro-HSC/pre-HSC

maturation, and a similar interaction between SCF and

IL-3 has been described in mast cells (Dvorak et al., 1994).

The HSC lineage and CFU-C develop in parallel in the

embryo, and their exact relationship is poorly understood

(Medvinsky et al., 2011). Some data indicate that they

emerge from distinct endothelial compartments (Chen

et al., 2011). However, the analysis of mechanistic differ-

ences between these two cell types is hampered by our

inability to reliably distinguish developing HSCs and
Stem Cell
CFU-C by phenotype. Here, we show that CD43 marker

clearly segregates these populations in the E9.5 embryo as

pro-HSCs, in contrast to CFU-C, do not express CD43. In

addition, pro-HSCs express cKIT at significantly lower

levels than E9.5 CFU-C. Low cKITexpression is also charac-

teristic of quiescent adult bone marrow HSCs (Grinenko

et al., 2014; Matsuoka et al., 2011; Shin et al., 2014).

Confocal analysis showed that CD43+ cells reside mainly

within large cell clusters in the OA, but not in the dorsal

aorta, suggesting association of CFU-C activity with intra-

OA clusters. The VE-cad+CD43�RUNX1+ population,

which is enriched for pro-HSCs, is localized to the ventral

endothelial lining of the dorsal aorta and small vessels

branching from the aorta.

Subdissection of E9.5 caudal parts followed by functional

analysis confirmed that pro-HSCs are closely associated

with the dorsal aorta and could be found at different levels

between the heart and the base of the umbilical cord. Thus,

pro-HSCs develop prior to formation of intra-aortic clus-

ters. Contrary to a previous supposition (Zovein et al.,

2010), strings of large VC+CD43+RUNX1+ clusters inside

OA and in extraembryonic vessels at E9.5 are not enriched

for pro-HSCs. Only later do extraembryonic vessels develop

pre-HSCs in fairly low numbers (Gordon-Keylock et al.,

2013). Pre-HSCs can be also found at later stages in suben-

dothelial layers of the dorsal aorta (Rybtsov et al., 2011).

The majority of cells with pro-HSC phenotype (E9.5) are

localized to the endothelium of the dorsal aorta and we

confirmed their nature functionally. However, similar rare

cells can be found at E9.5 both in subaortic capillaries

and in larger vitelline/umbilical arteries. It needs to be
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elucidated further whether pre-HSCs in these sites develop

locally with delay or are colonized later by pre-HSCs from

the dorsal aorta.

CD43 expression allows clear morphological tracking of

intra-aortic cluster formation in E10.5 embryos. During

HSC lineage development, CD43 is progressively upregu-

lated, reaching high expression levels by E11.5 in pre-

type II HSCs. Whether CD43, known to have antiadherent

function (Drew et al., 2005), is involved in release of dHSCs

from the AGM region niche prior to colonization of the

fetal liver needs to be elucidated in future. In the adult

CD43 is implicated in transendothelial migration of T-lym-

phocytes and possibly HSCs through interaction with E-se-

lectin (Manjunath et al., 1995; Winkler et al., 2012;

Woodman et al., 1998).

The prevailing dogma in the field describes emergence of

HSCsdirectly fromhematogenic endothelium.All described

precursors of the HSC lineage express VE-cadherin. Howev-

er, while pro-HSCs are hematopoietically committed

(CD41+RUNX1+) and readily generate hematopoietic col-

onies, they lack endothelial potential. It has recently been

proposed that the hematogenic endothelium expresses

only Runx1 mRNA, but not the protein (Swiers et al.,

2013a); however, pro-HSCs express RUNX1 at the protein

level. Taken together, this places pro-HSCs in an advanced

developmental position and indicates that they have

already segregated from the hematogenic endothelium.
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Based on the level of immaturity, surface immunophe-

notype and responsiveness to SCF/IL-3, E9.5 precursors

identified here are termed pro-HSCs. Based on this under-

standing, we propose a model that includes four consecu-

tive stages of HSC development (Figure 6).

In summary, this study highlights extended hierarchical

organization of the developingHSC lineage.We identify an

E9.5 pro-HSC as an upstream precursor distinct from subse-

quent members of the developing HSC lineage based on

CD43� phenotype, dependence on SCF, but not on IL-3,

and the extended time required for maturation into dHSCs

in culture. We show that SCF is a major effector of HSC

maturation during E9–E10. Interestingly, soluble SCF has

a dramatic enhancing effect on maturation of HSCs,

althoughOP9 cells express high levels ofmembrane-bound

SCF. This study defines both a key cellular intermediate and

appropriate culture conditions thatmay improve protocols

for generating transplantable HSCs from pluripotent cells

for clinical needs, which remains a challenge in the field.

Further studies will need to elucidate molecular mecha-

nisms underlying stepwise HSC development.
EXPERIMENTAL PROCEDURES

Animals
Staged embryos were obtained by mating C57BL/6 (CD45.2/2) or

C57BL/6 enhanced GFP mice. The morning of discovery of the

vaginal plugwas designated as day 0.5.More accurate embryo stag-

ing was performed by counting somite pairs (sp) and grouped as

E9.0 (15–24 sp), E9.5 (25–29 sp), E10.0 (31–34 sp), E10.5 (35–39

sp), and E11.0–E11.5 (>40 sp). All experiments with animals

were performed under Project License granted by the Home Office

(UK), University of Edinburgh Ethical Review Committee, and

conducted in accordance with local guidelines.

Long-Term Repopulation Assay
CD45.2/2 (or GFP+) cells were injected into adult irradiated

CD45.1/2 heterozygous recipients along with 100,000 CD45.1/1

nucleated bone marrow carrier cells per recipient. Recipients were

Ɣ-irradiated by split dose (600 + 550 rad) with a 3 hr interval.

Numbers of cells injected are expressed in embryo equivalents

(e.e.), where 1 e.e. corresponds to a cell population sorted from

one embryo after adjustment for dead cells. Percentage donor-

derived chimerism was evaluated in peripheral blood at 6.5 weeks,

14 weeks, and 12 months posttransplantation using FACSCalibur

or Fortessa (BD Biosciences). Erythrocytes were depleted using

PharM Lyse (BD Bioscience), and cells were stained with anti-

CD16/32 (Fc-block) followed by anti-CD45.1-APC (cloneA20) and

anti-CD45.2-PE (clone 104) monoclonal antibodies (eBioscience).

HSC numbers were assessed using ELDA analysis (Hu and Smyth,

2009). Multilineage donor-derived hematopoietic contribution in

recipient blood and organs was determined by staining with anti-

CD45.1-V450, anti-CD45.2-V500 and lineage-specific anti-Mac1

fluorescein isothiocyanate (FITC), Gr1-PE CD3e-APC, B220-PE-

Cy7 monoclonal antibodies (BD Pharmingen).
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E9.5 Embryo Dissection
Fine needles suitable for microdissection of E9 embryos were pre-

pared by electrolysis of tungsten wire in 2 M NaOH with one or

two drops of Decon 60 (Ekvall et al., 1999), using an engineered

automated programmable machine built in-house. Embryo isola-

tion and dissection were performed in Dulbecco’s PBS (+Ca+Mg)

(GIBCO) supplemented with 7% heat-inactivated fetal bovine

serum (FBS) (PAA Laboratories), 100 U/ml penicillin (Life Technol-

ogies), and 100 mg/ml streptomycin (Life Technologies). Tissues

were incubated with collagenase/dispase (1 mg/ml collagenase/

dispase, Roche) at 37� and washed with fluorescence-activated

cell sorting (FACS) buffer (Ca2+ and Mg2+-free PBS, Sigma) supple-

mentedwith 5% FBS and dissociated in FACS buffer. Yolk sacs were

carefully separated from the vitelline/omphalomesenteric arteries

and umbilical cords.

HSC Ex Vivo Maturation
Cells from E9.5 caudal parts dissociated by collagenase/dispase

were sorted and either reaggregated or coaggregatedwithOP9 cells.

To this end, cell suspension containing 1 e.e. caudal part or sorted

cells and 105 OP9 cells in 30 ml volume of media (Iscove’s modified

Dulbecco’s medium [IMDM], Invitrogen-GIBCO, 20% of prese-

lected, heat-inactivated FBS, PAA Laboratories, L-glutamine, peni-

cillin/streptomycin) were centrifuged at 450 3 g/12 min in

200 ml pipette tips sealed with parafilm (Taoudi et al., 2008).

When appropriate, the IMDM was supplemented with murine re-

combinant cytokines in concentration 100 ng/ml (all from Pepro-

Tech). Coaggregates were cultured on floating 0.8 mm AAWP

25 mm nitrocellulose membranes (Millipore) for 24 hr followed

by complete replacement of medium followed by additional

4–6 days culture. E11.5 pre-HSCs were assayed as previously

described (Rybtsov et al., 2011). Cultured aggregates were dissoci-

ated using collagenase/dispase. All experiments were performed

at least twice independently.

CFU-C and Endothelial Assays
Dissociated cells were plated in methylcellulose culture (Metho-

Cult3434 medium; STEMCELL Technologies) according to the

manufacturer’s instructions. For endothelial hematopoietic clono-

genic assays, we used an OP9-based assay (Taoudi et al., 2005).

Briefly, a cell population was plated on OP9 cells in the methylcel-

lulose medium supplemented with 100 ng/ml SCF and 50 ng/ml

vascular endothelial growth factor (PeproTech). After 11 days, cul-

tures were stained with anti-CD31 antibodies to assess formation

of hematopoietic and endothelial colonies.

Fluorescence-Activated Cell Sorting and Analysis
The following antibodies were used: anti-CD41-BV421 (brilliant

violet 421) or Alexa Fluor 488 (clone MW30reg) anti-CD45 FITC

(clone 30-F11), anti-CD43-PE (clone eBioR2/60), and biotinylated

anti-VE-cadherin (clone 11.D4.1) followed by incubation with

streptavidin-APC (all purchased from BD Pharmingen or Bio-

legend). Anti-mouse VE-cadherin antibody was biotinylated in-

house using FluoReporter Mini-Biotin-XX Protein labeling kit

(Invitrogen). For depletion of differentiated hematopoietic cells

(Lineage, Lin), anti-mouse B220, CD3, and Ter119 antibodies con-

jugated with PerCP-Cy5.5 were used (eBioscience). Cell popula-
Stem Cell
tionswere sorted using a FACSAria-II sorter (BD) followed by purity

checks. Gating of negative populations was performed on the basis

of fluorescence minus one (FMO) staining where one of the anti-

bodies was replaced with isotype control (IC) (BD Pharmingen).

Dead cells were excluded by 7AAD staining. For intracellular

staining, cells labeled with antibodies to surface antigens were

incubated with 0.5 mg/mL ethidium monoazide bromide (EMA)

solution (Sigma-Aldrich) to exclude dead cells. The cells were

then washed twice and fixed and stained with BD Cytofix/Cyto-

perm Kit and anti-RUNX1 rabbit monoclonal antibody (clone

EPR3099, Epitomics) followed by anti-rabbit Alexa Fluor 488 stain-

ing. Rabbit isotype control was used as FMO control. Data acquisi-

tion and data analysis were performed by Fortessa (BD) using

FlowJo software (Tree Star).

Confocal Microscopy
Whole-mount immunostaining was performed as previously

described (Yokomizo et al., 2012), with slight modifications. Em-

bryos dissected from the yolk sac and amnion were fixed with

cold acetone and, following dehydration by increasing concentra-

tions of methanol, the head, limbs, and one body wall were

removed. After rehydration in 50% methanol, washing with PBS

and blocking in 50% fetal calf serum/0.5% Triton X-100, the sam-

ples were incubated overnight with antibodies. For staining with

antibodies from the same species, incubations were performed

sequentially. Primary antibodies used were unconjugated goat

anti-mouse CD43 (cloneM19, Santa Cruz), rat anti-mouse VE-cad-

herin (clone 11D4.1, BD Pharmingen), rat anti-mouseCD45 (clone

30-F11, BD Pharmingen), rabbit anti-mouse RUNX1 (clone

EPR3099, Abcam), and these were detected by the secondary anti-

bodies anti-goat NL557 (R&D), anti-rat Alexa Fluor 647 (Invitro-

gen), or anti-rat Alexa 488 (Invitrogen) and anti-rabbit Alexa Fluor

647 (Abcam). After washing, the embryos were dehydrated with

methanol and cleared with BABB (one part benzyl alcohol, two

parts benzyl benzoate) solution (Yokomizo and Dzierzak, 2010).

Images were acquired with an inverted confocal microscope (Leica

SP8) and processed using Volocity software.

Statistics
Data on histograms presented as average ± SD and difference eval-

uated using t test. Numbers of pro-HSCs or HSCs were validated by

single-hit Poisson model using ELDA software (Hu and Smyth,

2009).

SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures and can be found

with this article online at http://dx.doi.org/10.1016/j.stemcr.2014.

07.009.

ACKNOWLEDGMENTS

The authors thank Suling Zhao, J. Verth, C. Manson, R. McInnis,

and BRR staff for assistance with mouse maintenance and

breeding; C.Watt., C. Flockhart, C. Forrest, J. Agnew, and K. Ander-

son for irradiations; and S. Monard and O. Rodriguez for cell

sorting. We thank Drs. Sabrina Gordon-Keylock, Paul Travers, Val

Wilson, Celine Souilhol, and Jennifer Easterbrook for helpful
Reports j Vol. 3 j 489–501 j September 9, 2014 j ª2014 The Authors 499

http://dx.doi.org/10.1016/j.stemcr.2014.07.009
http://dx.doi.org/10.1016/j.stemcr.2014.07.009


Stem Cell Reports
Pro-HSCs: Earliest Members of the HSC Lineage
comments and Andrejs Ivanovs for technical assistance. This work

was supported by BBSRC, LLR, MRC, and the Wellcome Trust.

Received: June 13, 2014

Revised: July 21, 2014

Accepted: July 21, 2014

Published: August 28, 2014
REFERENCES

Bertrand, J.Y., Giroux, S., Golub, R., Klaine, M., Jalil, A., Boucontet,

L., Godin, I., and Cumano, A. (2005). Characterization of purified

intraembryonic hematopoietic stem cells as a tool to define their

site of origin. Proc. Natl. Acad. Sci. USA 102, 134–139.

Bertrand, J.Y., Chi, N.C., Santoso, B., Teng, S., Stainier, D.Y., and

Traver, D. (2010). Haematopoietic stem cells derive directly from

aortic endothelium during development. Nature 464, 108–111.

Bigas, A., Guiu, J., and Gama-Norton, L. (2013). Notch and Wnt

signaling in the emergence of hematopoietic stem cells. Blood

Cells Mol. Dis. 51, 264–270.

Chanda, B., Ditadi, A., Iscove, N.N., and Keller, G. (2013). Retinoic

acid signaling is essential for embryonic hematopoietic stem cell

development. Cell 155, 215–227.

Chen, M.J., Yokomizo, T., Zeigler, B.M., Dzierzak, E., and Speck,

N.A. (2009). Runx1 is required for the endothelial to haemato-

poietic cell transition but not thereafter. Nature 457, 887–891.

Chen, M.J., Li, Y., De Obaldia, M.E., Yang, Q., Yzaguirre, A.D., Ya-

mada-Inagawa, T., Vink, C.S., Bhandoola, A., Dzierzak, E., and

Speck, N.A. (2011). Erythroid/myeloid progenitors and hemato-

poietic stem cells originate from distinct populations of endothe-

lial cells. Cell Stem Cell 9, 541–552.

Cumano, A., Dieterlen-Lievre, F., and Godin, I. (1996). Lymphoid

potential, probed before circulation in mouse, is restricted to

caudal intraembryonic splanchnopleura. Cell 86, 907–916.

de Bruijn, M.F., Ma, X., Robin, C., Ottersbach, K., Sanchez, M.J.,

and Dzierzak, E. (2002). Hematopoietic stem cells localize to the

endothelial cell layer in the midgestation mouse aorta. Immunity

16, 673–683.

Ding, L., Saunders, T.L., Enikolopov, G., and Morrison, S.J. (2012).

Endothelial and perivascular cells maintain haematopoietic stem

cells. Nature 481, 457–462.

Drew, E., Merzaban, J.S., Seo,W., Ziltener, H.J., andMcNagny, K.M.

(2005). CD34 and CD43 inhibit mast cell adhesion and are

required for optimalmast cell reconstitution. Immunity 22, 43–57.

Dvorak, A.M., Seder, R.A., Paul, W.E., Morgan, E.S., and Galli, S.J.

(1994). Effects of interleukin-3 with or without the c-kit ligand,

stem cell factor, on the survival and cytoplasmic granule forma-

tion of mouse basophils and mast cells in vitro. Am. J. Pathol.

144, 160–170.

Dzierzak, E., and Speck, N.A. (2008). Of lineage and legacy: the

development ofmammalianhematopoietic stem cells. Nat. Immu-

nol. 9, 129–136.

Ekvall, I., Wahlstrom, E., Claesson, D., Olin, H., and Olsson, E.

(1999). Preparation and characterization of electrochemically

etched W tips for STM. Meas. Sci. Technol. 10, 11–18.
500 Stem Cell Reports j Vol. 3 j 489–501 j September 9, 2014 j ª2014 The A
Ferkowicz, M.J., Starr, M., Xie, X., Li, W., Johnson, S.A., Shelley,

W.C., Morrison, P.R., and Yoder, M.C. (2003). CD41 expression

defines the onset of primitive and definitive hematopoiesis in

the murine embryo. Development 130, 4393–4403.

Gekas, C., Rhodes, K.E., Van Handel, B., Chhabra, A., Ueno, M.,

and Mikkola, H.K. (2010). Hematopoietic stem cell development

in the placenta. Int. J. Dev. Biol. 54, 1089–1098.

Gordon-Keylock, S., Sobiesiak,M., Rybtsov, S.,Moore, K., andMed-

vinsky, A. (2013). Mouse extraembryonic arterial vessels harbor

precursors capable of maturing into definitive HSCs. Blood 122,

2338–2345.

Grinenko, T., Arndt, K., Portz, M., Mende, N., Günther, M., Cos-

gun, K.N., Alexopoulou, D., Lakshmanaperumal, N., Henry, I.,

Dahl, A., and Waskow, C. (2014). Clonal expansion capacity

defines two consecutive developmental stages of long-term he-

matopoietic stem cells. J. Exp. Med. 211, 209–215.

Guiu, J., Shimizu, R., D’Altri, T., Fraser, S.T., Hatakeyama, J., Bres-

nick, E.H., Kageyama, R., Dzierzak, E., Yamamoto, M., Espinosa,

L., and Bigas, A. (2013). Hes repressors are essential regulators of

hematopoietic stem cell development downstream of Notch

signaling. J. Exp. Med. 210, 71–84.

Hu, Y., and Smyth, G.K. (2009). ELDA: extreme limiting dilution

analysis for comparing depleted and enriched populations in

stem cell and other assays. J. Immunol. Methods 347, 70–78.

Ivanovs, A., Rybtsov, S., Anderson, R.A., Turner, M.L., andMedvin-

sky, A. (2014). Identification of the niche and phenotype of

the first human hematopoietic stem cells. Stem Cell Reports 2,

449–456.

Kim, I., Yilmaz, O.H., and Morrison, S.J. (2005). CD144 (VE-cad-

herin) is transiently expressed by fetal liver hematopoietic stem

cells. Blood 106, 903–905.

Kissa, K., and Herbomel, P. (2010). Blood stem cells emerge from

aortic endothelium by a novel type of cell transition. Nature 464,

112–115.

Lantz, C.S., Boesiger, J., Song, C.H., Mach, N., Kobayashi, T., Mul-

ligan, R.C., Nawa, Y., Dranoff, G., and Galli, S.J. (1998). Role for

interleukin-3 inmast-cell and basophil development and in immu-

nity to parasites. Nature 392, 90–93.

Leung, A., Ciau-Uitz, A., Pinheiro, P., Monteiro, R., Zuo, J., Vyas, P.,

Patient, R., and Porcher, C. (2013). Uncoupling VEGFA functions

in arteriogenesis and hematopoietic stem cell specification. Dev.

Cell 24, 144–158.

Li, Z., Lan, Y., He, W., Chen, D., Wang, J., Zhou, F., Wang, Y., Sun,

H., Chen, X., Xu, C., et al. (2012). Mouse embryonic head as a

site for hematopoietic stem cell development. Cell Stem Cell 11,

663–675.

Manjunath, N., Correa, M., Ardman, M., and Ardman, B. (1995).

Negative regulation of T-cell adhesion and activation by CD43.

Nature 377, 535–538.

Matsuoka, Y., Sasaki, Y., Nakatsuka, R., Takahashi,M., Iwaki, R., Ue-

mura, Y., and Sonoda, Y. (2011). Low level of c-kit expressionmarks

deeply quiescent murine hematopoietic stem cells. Stem Cells 29,

1783–1791.

McKinney-Freeman, S.L., Naveiras, O., Yates, F., Loewer, S., Phili-

tas, M., Curran, M., Park, P.J., and Daley, G.Q. (2009). Surface
uthors



Stem Cell Reports
Pro-HSCs: Earliest Members of the HSC Lineage
antigenphenotypes of hematopoietic stem cells from embryos and

murine embryonic stem cells. Blood 114, 268–278.

Medvinsky, A., andDzierzak, E. (1996). Definitive hematopoiesis is

autonomously initiated by the AGM region. Cell 86, 897–906.

Medvinsky, A., Rybtsov, S., and Taoudi, S. (2011). Embryonic origin

of the adult hematopoietic system: advances and questions. Devel-

opment 138, 1017–1031.

Mikkola, H.K., Fujiwara, Y., Schlaeger, T.M., Traver, D., and Orkin,

S.H. (2003). Expression of CD41 marks the initiation of definitive

hematopoiesis in the mouse embryo. Blood 101, 508–516.

Moore, T., Huang, S., Terstappen, L.W., Bennett, M., and Kumar, V.

(1994). Expression of CD43 onmurine and human pluripotent he-

matopoietic stem cells. J. Immunol. 153, 4978–4987.

Muller-Sieburg, C.E., Sieburg, H.B., Bernitz, J.M., and Cattarossi, G.

(2012). Stem cell heterogeneity: implications for aging and regen-

erative medicine. Blood 119, 3900–3907.

Nimmo, R., Ciau-Uitz, A., Ruiz-Herguido, C., Soneji, S., Bigas, A.,

Patient, R., and Enver, T. (2013).MiR-142-3p controls the specifica-

tion of definitive hemangioblasts during ontogeny. Dev. Cell 26,

237–249.

North, T.E., de Bruijn, M.F., Stacy, T., Talebian, L., Lind, E., Robin,

C., Binder, M., Dzierzak, E., and Speck, N.A. (2002). Runx1 expres-

sionmarks long-term repopulating hematopoietic stem cells in the

midgestation mouse embryo. Immunity 16, 661–672.

Richard, C., Drevon, C., Canto, P.Y., Villain, G., Bollérot, K., Lem-
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Suppl. Fig. 1 Long-term multi-lineage haematopoietic repopulation with definitive HSCs matured from pro-
HSCs.  
A. Maturation of pro-HSCs requires co-culture with OP9. Note that reaggregation of the caudal part on itself or 
explant cultures have not generated HSCs (All transplantations were performed with 1 e.e./recipient).  
B. Donor-derived engraftment in secondary recipients after 6 months (each secondary recipient received 107 
nucleated bone marrow cells from primary recipients);  
C. Stable donor-derived haematopoietic repopulation of secondary recipients observed over 12 months’ period.  
D. Multi-lineage long-term repopulation in blood, bone marrow, spleen and thymus of primary recipients (6 months 
post-transplantation). Donor-derived TCRβ+ cells are detectable in the thymus. 
E. Donor derived myeloid and lymphoid contribution in blood of individual recipients (shown by individual bars). 
Each experiment was repeated at lease twice. 
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Suppl Fig. 2.  Gating strategy for sorting pro-HSCs and phenoptype of adult HSC. 
A. Gating strategy for isolation of pro-HSCs from E9.5 embryos followed by co-culture with OP9 cells and 
transplantation into adult irradiated recipients (cell duplets, erythroid cells and dead cells excluded). 
B. High expression levels of CD43 is observed in the adult bone marrow LSK population. 
C. Adult bone marrow HSCs reside mainly within single CD41-CD43+Lin- fraction. Some HSC with low level 
repopulation potential reside within the CD41+CD43+ fraction. Other cell fractions are devoid of HSC activity. 
Green triangles represent short-term repopulation; red circles represent long-term repopulation;  
m, months (two independent experiments).  
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