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Supplementary Methods 
Comparative risk assessment (CRA) methods were used to estimate the burden of 
disease attributable to shifts in temperature associated with climate change1-3, using as 
a baseline previous estimates of the 2008 burden of disease attributable to unsafe WSH 
in China4 derived from data sources detailed below. The analysis was carried out for 31 
provincial level administrative districts within China, consisting of 22 provinces, 5 
autonomous regions, and 4 municipalities. Projections of the burden of WSH-
attributable disease were adjusted to account for population growth, urbanization, and 
changes in provincial age distribution. In order to account for uncertainty in both future 
climate conditions and future infrastructure development, we constructed 12 storylines 
(main manuscript text, Table 1) by combining output from four representative 
concentration pathways (RCPs)5 and three projections of access to improved water and 
sanitation infrastructure, as we describe in detail the sections below. 
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To project the burden of WSH-attributable disease in China forward under climate 
change conditions at the provincial scale, we followed standard comparative risk 
assessment methods1,3, carrying out the following analytical steps: 

1. identification of climate sensitive health outcomes 

2. quantitative estimation of the climate-health relationship 

3. definition of exposure scenarios, and 

4. estimation of the attributable burdens of disease 

1. Identification of climate sensitive health outcomes and literature review 
WSH-attributable disease was defined to include diseases resulting from consumption of 
contaminated water; poor personal, domestic, or agricultural hygiene associated with a 
lack of access to clean or adequate water; and direct contact with water-dwelling vectors 
or pathogens, as described previously6. A systematic literature review was conducted to 
identify studies quantifying the relationship between climate components and incidence 
of diarrheal diseases, malaria, dengue fever, and Japanese encephalitis, as well as STH 
and schistosomiasis prevalence. The literature review was performed across medical, 
environmental health, environmental science, and demographic journals using PubMed, 
EBSCO Host, and Google Scholar. In addition to examining prior reviews2,7-9 for 
relevant publications, the search involved the following MeSH terms and keywords: 
‘climate change,’ ‘global warming,’ ‘temperature,’ ‘precipitation,’ ‘rainfall,’ ‘humidity,’ 
‘health’ and ‘diarrhea,’ ‘malaria,’ ‘dengue,’ ‘Japanese encephalitis,’ and ‘risk.’ Studies 
were selected for inclusion if they provided effect measures describing the relationship 
between temperature change and WSH-attributable disease incidence (diarrheal and 
vector-borne diseases) or prevalence (STH and schistosomiasis), allowing for the 
conversion of these effect measures to estimates of , the change in rate ratios for a 1C 
change in temperature. Only studies that provided their sample size and standard error 
were included in the analysis in order to support an aggregation of results using meta-
analysis techniques. Manuscripts describing the relationship between climate variation 
and agent-specific diarrheal disease were excluded, given the many, varied etiologies of 
diarrheal disease and the inability to integrate the results of such studies into the 
current exposure-based analysis. The literature review provided the basis of the 
quantitative estimation of climate-health relationships described below. 

While climate change will impact temperature, precipitation, relative humidity, and 
variability in these and other climate components, the limited availability of 
epidemiological studies accounting for variation in these three variables restricted the 
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current analysis to the response of disease incidence and prevalence to changes in 
temperature (°C). Studies pertaining to observed relationships between diarrheal disease 
incidence and discrete precipitation events10-13, continuous precipitation13,14, and relative 
humidity15,16 were also discovered during the course of the literature review; however, 
due to the difficulty in developing estimates of the compounded impact of more than 
one climate variable on disease incidence, the analysis was restricted to the impact of 
temperature alone. Similarly, for helminthiases the review of the literature identified 
two review articles17,18; one article describing the relationship between schistosomiasis 
infection and modifiable environmental risk factors19; and one analysis carrying out 
predictive risk mapping to identify the probable distribution of schistosomiasis under 
altered climate conditions20. As these articles did not describe the relationship between 
climate variables and the incidence or prevalence of schistosomiasis and soil transmitted 
helminths, these diseases were excluded from the present analysis. Thus the analysis was 
restricted to the impact of temperature variation on diarrheal diseases, malaria, dengue 
fever, and Japanese encephalitis.  

The results of the reviewed literature were used to estimate , the proportional change 
in the rate ratio of each WSH-attributable disease associated with a 1°C increase in 
surface temperature. Because the risk of diarrheal diseases and the impact of climate on 
diarrheal diseases may vary depending on access to water and sanitation infrastructure, 
estimates were stratified by water and sanitation access scenarios. When multiple 
estimates were identified for a given disease and, in the case of diarrheal diseases, water 
and sanitation access scenarios, the results were aggregated using standard random 
effects meta-analysis methods21. The specific methods used for estimating changes in 
disease burden for each disease are described in detail below. 

2. Quantitative estimation of climate-health relationships 
Diarrheal diseases 
Where prior estimates have assumed a limited impact of climate change on diarrheal 
disease in countries where the per capita GDP is greater than US$6,000 per year1, 
studies in North America and Europe indicate that high-income countries are also 
susceptible to the effects of climate change on water and sanitation-attributable 
disease12,22-24. Therefore, our analysis did not include the impact of changing GDP on 
WSH-attributable disease, focusing instead on the potential impact that urbanization, 
changing demographic structure, and varying rates of access to improved water and 
sanitation would have on our outcome. 

Because the impact of increases in temperature on diarrheal disease may vary depending 
on WSH access, each published αestimate for diarrheal diseases was matched to a water 
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and sanitation access scenarios based on the locations in which the research was 
conducted (see Supplementary Table 1). We classified studies into water and sanitation 
access scenarios typically found in China as described in our previous work4. While 
earlier work by Pruss and colleagues (2002) described six water and sanitation access 
scenarios, they noted that scenarios I and III do not occur on a large scale, and are 
therefore negligible in larger scale analyses6. Our 2008 analysis provided China-specific 
rate ratios (RRs) for WSH-attributable disease stratified by water and sanitation access 
scenario for scenarios II, IV, Va, Vb, and VI4. Due to the limited number of available 
studies identified by our review of the literature quantifying the climate sensitivity of 
diarrheal disease, as well as limited data on the water and sanitation access of the study 
populations in reviewed literature, we were unable to confidently distinguish between 
studies fitting scenario Va versus scenario Vb. Thus, we used the more conservative 
(smaller) baseline RR of the two scenarios, as determined by the China-specific 
literature review described previously4, and grouped the populations of scenarios Va and 
Vb into ‘Scenario V’ for the remainder of the present analysis. Due to the challenges of 
matching studies to water and sanitation access scenarios and the small number of 
available studies used to estimate  values within each water and sanitation access 
scenario, a parallel analysis was carried out using a single, aggregate α value obtained 
by combining all effect measures identified in the literature review21. 

The α estimates were used to adjust scenario-specific RRs of diarrheal diseases 
attributable to unsafe water and sanitation determined by our 2008 analysis (termed 
‘RRbaseline’; see equation 1.1)4. The result was an adjusted rate ratio (RRadjusted) 
describing the RR of diarrheal diseases associated with exposure to the projected change 
in temperature (T, °C; see Definition of climate exposure scenarios), within a specific 
province, , for a population in a given water and sanitation access scenario, : 

RRadjusted, = RRbaseline,(1 + T)       (1.1) 

The total population in each province was allocated proportionally into water and 
sanitation access scenarios () based on each of the three development paths used to 
project changes in water and sanitation access and changing demographics (see 
Estimation of the climate change attributable burden of disease, below). As described in 
our prior work4, we assumed all urban populations had water and sanitation access 
corresponding with scenario II (main text Table 2). The RRadjusted, values (equation 
1.1) were combined with the proportion of the provincial population experiencing each 
scenario (F) to calculate the population-weighted, WSH-attributable adjusted rate 
ratio of diarrheal diseases for the province () under climate change conditions 
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(equation 1.2). To estimate the projected incidence rate of diarrheal diseases 
(IRprojected,), each province’s population-weighted RRadjusted, was then applied to the 
baseline IR (IRbaseline,; equation 1.2), which was estimated for 2020 and 2030 using 
projected province-specific age distributions25 and the rate of diarrheal diseases observed 
in established market economies4,26. 

 , , , , , 1projected baseline adjustedIR IR F RR     


             (1.2) 

The IRprojected, of WSH-attributable diarrheal diseases was calculated for each 
province in 2020 and 2030, and age- and sex-specific estimates of incidence and 
mortality were estimated (see Estimation of the climate change attributable burden of 
disease, below). China-wide incidence and mortality rates were drawn from our previous 
work4. 

Vector-borne disease 
Similar to equation 1.1, we used estimates of  extracted from the literature review to 
estimate an adjusted incidence rate (IRadjusted) expressing the incidence of either malaria, 
dengue fever, or Japanese encephalitis associated with exposure to the projected change 
in temperature (T, °C; see Definition of climate exposure scenarios) for the population 
in a specific province, : 

IRadjusted,  = IRbaseline, (1+T)       (1.3) 

The baseline WSH-attributable incidence rates of malaria, dengue fever, and Japanese 
encephalitis in 2020 and 2030 were calculated using projected population25,27 and age 
distributions25 for each province (see Estimation of the climate change attributable 
burden of disease, below), while assuming that the province- and age-specific incidence 
rates of WSH-attributable vector-borne disease from our prior work were held constant4. 
The analysis did not account for vector range expansion or contraction, and instead 
simply considered the climate change attributable change in incidence anticipated in the 
provinces and age categories where malaria, dengue fever, and Japanese encephalitis are 
currently observed. 

3. Definition of climate exposure scenarios 
Climate exposure scenarios accounted for changing temperatures associated with climate 
change and simultaneous shifts in China’s total and regional populations. The years 
2020 and 2030 were chosen as time horizons for our analysis in order to provide 
estimates that could be used to inform the upcoming 13th Five-Year Plan for China, as 
well as subsequent development planning. We chose to focus on shifts in temperature 
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due to the difficulty in developing estimates of the compounded impact of more than 
one climate variable on disease incidence. 

Monthly temperature projections generated by the HadGEM2-ES (1.25° latitude x 
1.875° longitude) global climate model28 were obtained from the CMIP5 database29. 
Output was acquired for model runs representing the four RCPs used by the 
Intergovernmental Panel on Climate Change (IPCC) in the fifth assessment report 
(RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5)5,28. These RCP scenarios were developed 
for use in climate simulation to provide information on possible development trajectories 
and their impact on major greenhouse gases, in a fashion comparable to the previously 
used Special Report on Emissions Scenarios (SRES) scenarios5,30. RCP 2.6 is consistent 
with a scenario describing stringent climate policies to limit greenhouse gas emissions, 
leading to a very low radiative forcing level, while RCPs 4.5 and 6.0 describe moderate 
stabilization of greenhouse gas emissions. RCP 8.5 is consistent with a very high 
baseline greenhouse gas emission scenario with high population growth and lower 
incomes in developing countries5. 

Depending on the subject of study, reference climates can be defined using relatively 
short (e.g., 3-8 year31-33) or long (e.g., 20-30 year34-36) periods. In this study, human 
health impacts of near-term changes in climate were evaluated in order to facilitate 
policy-making in China, and thus a short reference period was selected—centered on the 
year (2008) for which baseline estimates of disease were available4—and used to examine 
proximate impacts in 2020 and 2030. The reference climate was calculated by averaging 
the model-specific monthly temperatures for 2006 through 2010 to produce semi-decadal 
mean temperature values for each month of the year, centered around 2008. For each 
RCP, the projected monthly temperatures in 2018, 2019, 2020, 2021, and 2022 were 
subtracted from these 2008 semi-decadal mean monthly temperatures in each grid cell 
(1.25° latitude x 1.875° longitude), and the resulting temperature differences were then 
averaged both temporally and spatially, over the 5-year period and across each province, 
to produce the semi-decadal mean monthly surface temperature deviation from the 2008 
reference climate in each province, Td, °C; equation 2.1). An evaluation was 
carried out using 53 members of 33 CMIP5 models to assess the degree to which the 
five-year reference period was representative of the entire decade, and to evaluate how 
results of a health model based on the HadGEM2-ES member r2i1p1 used here may 
differ from those based on other CMIP5 models/members (see Supplementary Results). 
The spatially averaged difference between the 2008 mean monthly surface temperature 
and the semi-decadal mean monthly surface temperature projected in 2020 and 2030, 
Tdρ,20X0, was calculated as: 
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Tn(an/A)] = Td,20X0        (2.1) 

where Tn is the difference between the 2008 semi-decadal mean monthly surface 
temperature and the projected semi-decadal mean monthly surface temperature in grid 
cell n in the years 2020 or 2030 (where X=2 or X=3, respectively); an is the surface area 
of a population grid cell n; A is the surface area of the province , and the summation is 
taken over the n population grid cells that fall within the boundaries of province . 
Td was calculated in an analogous fashion. The Td and Td values thus 
represent the spatially averaged differences between the 2008 semi-decadal mean 
monthly surface temperature and the semi-decadal mean monthly surface temperatures 
projected for 2020 and 2030, respectively, across all grid cells. 

To account for the uneven distribution of population across provinces, a population-
weighted exposure to changing temperature, T (°C), was calculated for each province, 
. In brief, to calculate T each population grid cell (1.0 x 1.0 km) was assigned the 
projected temperature change of the overlying climate grid cell (1.25° lat x 1.875° long; 
approximately 100km x 200km) using ArcGIS 10.1 (ESRI, 2012). The temperature 
change in each grid cell was then multiplied by the proportion of the provincial 
population inhabiting that cell, and these values were summed across all population grid 
cells to generate T20X0 in each province,  (equation 2.2): 

∑ [Tn (pn/P)] = T, 20X0        (2.2) 

where Tn is the difference between the 2008 semi-decadal mean monthly surface 
temperature and the projected semi-decadal mean monthly surface temperature in grid 
cell n in the years 2020 or 2030 (where X=2 or X=3, respectively); pn is the population 
inhabiting grid cell n in the year 20X0; and P is the total population of province  in 
the year 20X0. The spatially averaged (Td), and the spatially averaged and population-
weighted (T) semi-decadal mean monthly temperature deviations from the 2008 
reference climate were calculated in 2020 based on output from each of the four RCP 
scenarios, and this process was repeated for the years surrounding 2030 (Supplementary 
Tables 2 and 3). The resulting 2020 and 2030 T values were used to obtain province-
specific RRadjusted, and IRadjusted, values (equations 1.1 and 1.3) for diarrheal diseases 
and vector-borne disease. 

4. Estimation of the climate change attributable burden of disease 
Baseline health and infrastructure data and data sources 
Estimates of baseline disease rates and water and sanitation access were drawn from our 
previous work describing the burden of disease attributable to unsafe water and 
sanitation in China in 20084 and adjusted for population growth, urbanization and 
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water and sanitation infrastructure development. Vector-borne disease incidence was 
derived from China’s national infectious disease reporting system (NIDR) and diarrheal 
disease incidence was estimated from an exposure based analysis using methods 
described elsewhere4,6. Baseline incidence rates of these WSH-attributable diseases from 
our previous work4 were adjusted for changes in population growth25,27 and provincial 
age distribution25 before being used as baseline IRs (IRbaseline,p; equations 1.2 and 1.3) in 
the current analysis. Baseline province specific estimates of access to each water and 
sanitation access scenario from our previous work4 were adjusted for urbanization and 
for changes in access to improved water and sanitation infrastructure according to the 
three development paths described below. 

Projection of demographic changes 
Gridded population density projections (1km x 1km) for 2000 were obtained from the 
National Aeronautics and Space Administration’s Socio-Economic Data and 
Applications Center (SEDAC)37 and projected forward using the province specific 
growth and urbanization rates obtained for 2020 and 203025,27. These sources were 
chosen in order to produce results most consistent with the midline UN projections for 
total and urban population for all of China38. While the sex-ratio was held constant at 
the level obtained from 2000 census data4, the province-specific age distributions for 
2030 were provided by projections made by Toth et al. (2003)25. Province-specific age 
distributions for 2020 were not available at the time of this analysis, and thus the 2020 
province-specific age distributions were taken from predictions for 201525; however, the 
province-specific age distributions projected by Toth (2003) for 201525 result in a 
country-wide age distribution that matches the UN midline predictions for China in 
2020 to within three percentage points38. 

China’s population growth and rapid rates of urbanization and internal migration were 
thus accounted for using projections of the overall urban proportion of each provincial 
population for 2020 and 2030 that incorporated province-specific estimates of internal 
migration and urbanization25,27. The resulting population distributions were summed 
across each province to generate total projected provincial populations in 2020 and 2030; 
these were compared and found to be in agreement with United Nations midline 
population projections38 by a margin of 3.8% in 2020 and 2.4% in 2030. The projected 
provincial populations are presented in Supplementary Tables 2 and 3.  

Projection of changes in WSH access 
Since 1990, rapid improvements in access to water in China have been driven by both 
urbanization of the population and improved access in rural areas39. At the same time, 
improved access to sanitation has been dramatic. Yet, while there is now nearly 
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universal access in urban areas, coverage in rural areas is only 70%39. Guided by our 
previous work, we have defined improved water as including water from centralized, 
piped, regularly treated sources, and we have defined improved sanitation as sanitation 
systems able to isolate fecal waste (including sewer connections, triple compartment 
septic tanks, anaerobic biogas digesters, double barrel funnel type septic tanks, and 
urine‐separating toilets with a septic tank)4. To examine the sensitivity of our results to 
assumptions regarding the rate of improvement in water and sanitation access, the 
WSH-attributable incidence of disease in 2020 and 2030 was estimated assuming three 
water and sanitation access development paths (depicted in Supplementary Figure 1): 
(1) maintenance level, where the proportion of the population in each province with 
access to improved water and sanitation infrastructure is unchanged from the levels 
reported for the baseline year (2008)4; (2) a linear rate of increase in the proportion of 
the population with access to improved water and sanitation infrastructure, generated 
by fitting a simple linear model to the data reported by the WHO and UNICEF Joint 
Monitoring Program for Water Supply and Sanitation (JMP) for the years 1990-201239, 
and projecting that model forward to 2020 and 2030 (this path is considered our 
‘midline estimate,’ as it makes minimal assumptions about the future trend in 
infrastructure improvement in China beyond the trend observed from 1990 to 201239); 
and (3) an exponential rate of increase in the proportion of the population with access 
to improved water and sanitation generated by fitting a simple exponential model to the 
JMP data reported for the years 1990-201239, and projecting that model forward to 2020 
and 2030. These three water and sanitation access development paths represent 
increasingly ambitious policy options for China, and they were incorporated into twelve 
storylines (detailed in main text Table 1) for which the development delay attributable 
to climate change was estimated. 

The demographic estimates of the overall urban proportion of each provincial 
population for 2020 and 2030 were used to define the proportion of the population 
experiencing the urban water and sanitation access scenario (scenario II). The projected 
rural proportion of the provincial populations were then assigned into the remaining 
water and sanitation access scenarios according to the three water and sanitation 
development paths, following the method used to define the baseline distributions 
reported in our earlier work4. 

Estimating attributable burden and development delays 
The overall burden of WSH-attributable disease (in DALYs per 1,000 population) was 
calculated for each province under each of twelve storylines for 2020 and 2030 (main 
text Table 1) using non-uniform age-weighting, 3% discounting, and age and sex specific 
incidence and mortality counts. Disability weights, and disease durations were drawn 



10 
 

from established sources4,40 to facilitate comparisons. Each storyline was defined by a 
combination of one of the four RCP scenarios and one of three development paths for 
access to improved water and sanitation infrastructure. The burden of WSH-
attributable disease projected under each storyline was then compared to the burden of 
disease anticipated in 2020 and 2030 without the impact of climate change ('reference' 
storylines). 

In order to summarize the impact of climate change on China’s ongoing progress toward 
reducing WSH-attributable disease, a development delay, , at 2020 and 2030 was 
calculated for each province. The development delay expresses the additional time (in 
months) that a province would be required to continue to provide infrastructure 
improvement, health investments and other efforts in order to attain the burden of 
WSH-attributable disease predicted under a scenario without the impact of climate 
change (see Figure 1 in the main manuscript). The delay, , was then calculated as: 

 = (Badjusted-Breference)/ m       (3.1) 
where the burden of disease in 2020 or 2030 is expressed as a proportion of the 2008 
burden of disease, both with (Badjusted) and without (Breference) the impact of climate 
change; and m is the monthly rate of change in the burden of WSH-attributable disease 
over the time period evaluated for each storyline. 

Sensitivity and uncertainty analyses 
Sensitivity analyses were carried out to examine the impact of stratified versus 
combined  estimates for diarrheal diseases. WSH-attributable incidence of diarrheal 
diseases was estimated by replacing the  values stratified by water and sanitation 
access scenario with a single, aggregate  obtained by aggregating all effect measures ( 
values) identified through the review of literature on diarrheal diseases and climate. In 
addition, the 95% confidence intervals of  values identified during the literature review 
were propagated through the analysis using standard, random effects meta-analysis 
techniques21 in order to quantify the impact of the uncertainty in the parent studies on 
our final results. 

Supplementary Results 
Results of literature review and quantitative estimation of climate-health relationships 
The results of the literature review and meta-analysis are presented in Supplementary 
Table 1, and are described for each disease below. 

Diarrheal disease. Perhaps the most well-known of these studies, Checkley (2000) 
observed the daily number of children under the age of 10-years old admitted to a 
Peruvian hospital with diarrhea before, during, and after an El Niño event and 
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described an increase in diarrheal disease incidence of 8% for each 1°C increase in mean 
ambient temperature (relative risk 1.08; 95% CI 1.07, 1.09)15. For patients over the age 
of 13-years old in Lima, Peru, Lama (2004) described a similar increase in the monthly 
incidence of diarrheal disease of 8.1% (95% CI 2.5, 14.1) for every 1°C increase in mean 
monthly temperature41. In Dhaka, Bangladesh, Hashizume (2007) described a 5.6% 
increase in the number of weekly, non-cholera diarrheal cases for every 1°C increase in 
mean weekly temperature (95%CI 3.4, 7.8)13. Focusing on the impact of temperature on 
bacillary dysentery incidence in Jinan, China, Zhang and colleagues (2008) described an 
11.4% increase in incidence for every 1°C increase in maximum ambient temperature 
(95% CI 10.19, 12.69)42; however this study was excluded due to its focus on a single 
etiology of diarrheal disease. Singh and colleagues (2001) observed a 3.0% increase in 
the incidence of diarrhea among infants in Fiji for every 1°C increase in mean monthly 
temperature, on a one-month lag (95%CI 1.2, 5.0)14. Finally, Onozuka (2010) described 
a 7.7% increase in the incidence of infectious gastroenteritis cases with every 1°C 
increase in weekly mean temperature (95%CI 4.6, 10.8), observed in over 120 
institutions across Fukuoka, Japan16. These studies were stratified by the water and 
sanitation access of their respective study populations, and assigned to the water and 
sanitation access scenarios described previously4,6. 

Malaria. Zhang and colleagues (2010) described the results of a 20-year time-series 
analysis of the incidence of malaria in Jinan, China; the results of two SARIMA 
regression models demonstrated a 10.2% (95%CI 7.7, 12.7) increase in malaria incidence 
for every 1°C increase in minimum temperature or a 13.8% (95%CI 11.8, 15.8) increase 
in malaria incidence for every 1°C increase in maximum temperature43. A time-series 
analysis of climate variables and malaria incidence in Yunnan, China demonstrated a 
4.7% (95%CI 4.5, 5.0) increase in malaria incidence for every 1°C increase in mean 
monthly temperature44. Most recently, an analysis of civilian malaria cases from the 
Republic of Korea described a 16.1% (95%CI 15.3, 16.9) increase in malaria incidence 
for every 1°C increase in un-lagged mean weekly temperature, with the effect 
intensifying to a 17.7% (95% CI 16.9, 18.6) increase in malaria incidence for every 1°C 
increase in mean weekly temperature observed at a three week lag45. 

Dengue fever. Lu and colleagues (2009) described a risk ratio of 1.42 (95% CI 1.27, 1.57) 
associated with every 1°C increase in mean monthly temperature in Guangzhou City, 
China46, while Pham (2011) observed a risk ratio of 1.21 (95%CI 1.10, 1.34) associated 
with every 2°C increase in mean monthly temperature in Dak Lak, Vietnam47. In 
addition to these studies, Chen (2010) observed a risk ratio of 1.15 associated with a 
1°C increase mean weekly minimum temperature in Taipei, Taiwan, as well as a risk 
ratio of 1.705 associated with a 1°C increase mean weekly minimum temperature in 
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Kaohsiung, Taiwan48, and Hi (2009) described a risk ratio of 1.23 associated with every 
10°C increase mean weekly temperature in Singapore49. However, the studies by Chen 
(2010) and Hii (2009) provided neither confidence intervals nor standard errors for their 
effect measures and therefore could not be aggregated using the random effects meta-
analysis technique utilized here21. 

Japanese encephalitis. One study by Bi (2007) performed in Jinyi City, China described 
a 7.9% (95% CI 3.3, 12.6) increase in the incidence of Japanese encephalitis for every 
1°C increase in mean maximum monthly temperature50. A similar study by Bi (2003) in 
Jieshou City, China observed a 7.68% increase in incidence for every 1°C increase in 
mean maximum monthly temperature51; however this latter study failed to include 
confidence intervals or standard errors and was therefore excluded from the analysis. 

Schistosomiasis and soil transmitted helminths. A review of the literature describing the 
climate sensitivity of schistosomiasis and STHs identified two review articles17,18; one 
article describing the relationship between schistosomiasis infection and modifiable risk 
factors19; and one analysis carrying out predictive risk mapping to identify the probable 
distribution of schistosomiasis under altered climate conditions20. These studies did not 
provide an estimate of α describing the relationship between climate variables and the 
incidence or prevalence of schistosomiasis nor soil transmitted helminths, and thus these 
diseases were excluded from the present analysis. 

Anticipated climate change 
The Fifth Assessment Report (AR5) of the IPCC projected 0.5-2.0°C of warming for 
China during the 2016-2035 time period52 compared to the 1986-2005 baseline. China is 
warming approximately 0.22°C per decade53, and thus the AR5 projection cited above, 
also developed using the four RCP scenarios, amounts to approximately 0.3-1.8°C of 
warming from 2008 to 2035, which is consistent with our estimated warming of 0.82 to 
1.39°C during this time period52. By 2030, the population and GDP projections of 
RCP2.6, RCP4.5 and RCP6.0 do not differ from each other significantly. However, the 
‘Peak-Decline’ pattern in radiative forcing experienced under RCP 2.65 yields a peak 
forcing level of 3.1 W/m2 in the mid-21st century. Thus, we note that our projections 
have captured a timeframe where the projected Td (°C) for China is greater under RCP 
2.6 than under RCPs 4.5 or 6.0 (see Supplementary Figure 4), before the projected 
decline in radiative forcing occurs5. The HadGEM2-ES member performed well against 
observed temperatures, and in fact outperformed most of the CMIP5 models (see 
below). Additionally, the 5-year periods used in this study exhibited no systematic 
biases when compared with 10-year periods (see below). 
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Assessing the representativeness of climate model and semi-decadal analysis 
To evaluate whether HadGEM2-ES r2i1p1 (member 2) performed well in reproducing 
the climatological mean temperature, in Supplementary Figure 6 we compare 
HadGEM2-ES r2i1p1 (member 2), the HadGEM2-ES ensemble mean and a CMIP5 
ensemble mean based on 33 CMIP5 models with a total of 53 members (Supplementary 
Table 5), with observational data 
(http://www.esrl.noaa.gov/psd/data/gridded/data.UDel_AirT_Precip.html). We also 
compared the bias of HadGEM2-ES with the ensemble mean of each CMIP5 model 
(Supplementary Figure 6). When compared to other CMIP5 models and members, 
HadGEM2-ES r2i1p1 (member 2) performed well against observed temperatures, and in 
fact outperformed most CMIP5 models (Supplementary Figure 6). The biases from 
HadGEM2-ES r2i1p1 (member 2), HadGEM2-ES ensemble mean and CMIP5 mean 
were comparable when both 5-year and 10-year periods were evaluated, although the 
models tend to underestimate the temperature in western China (Supplementary Figure 
5). The 5-year periods used in this study exhibited no systematic biases when compared 
with 10-year periods (Supplementary Figure 5). 

In order to further illustrate the degree to which the model used was representative of 
anticipated climate change, we compared the 5-year and 10-year mean changes of 
temperature from HadGEM2-ES r2i1p1 (member 2), HadGEM2-ES ensemble mean and 
CMIP5 mean for RCP 4.5 (Supplementary Figure 7) and RCP 8.5 (Supplementary 
Figure 8). HadGEM2-ES r2i1p1 (member 2) is generally consistent with CMIP5, with 
projected warming slightly stronger than the CMIP5 mean over parts of western China 
under RCP 4.5, and parts of eastern China under RCP 8.5. 

Sensitivity analyses 
We analyzed the sensitivity of the results to employing an aggregate  as well as  
values stratified by four water and sanitation access scenarios. As described briefly in 
the main text, compared with using the aggregate , stratified values generally yielded 
slightly higher estimates for diarrheal disease burden. Estimates for 2020 ranged from 
0.04% smaller to 1.19% larger and estimates for 2030 ranged from 0.44% smaller to 
2.85% larger. Using stratified values made the smallest difference in estimates under 
storyline 3.1 (estimates using a stratified  are 0.04% smaller in 2020 and 0.14% smaller 
in 2030). Using stratified values yielded the largest difference for 2020 estimates under 
storyline 4.2, where estimates are 1.19% larger, and for 2030 estimates under storyline 
4.3, where estimates are 2.85% larger. 
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Supplementary Table 1: Results of literature review regarding the sensitivity of WSH-disease to 
climate change. 

Diarrheal 
disease 

Location   Population  Wat/san scenario 

(, 95% CI) 
% Increase in 
incidence per 
1°C increase in 
temp. (95% CI) 

Variables in model  Duration of 
study 

Source

   Fukuoka, 
Japan 

All patients  II  
0.077 (0.046, 0.108) 

7.7 (4.6, 10.8) Relative humidity, 
seasonality 

1999‐2007  Onozuka et al, 
201016 

          
   Lima, Peru  <10yo  IV 

0.08 (0.070, 0.090) 
8 (7.0, 9.0) Relative humidity 01/1/1993‐

11/15/1998 
Checkley et al, 
200015 

          
   Lima, Peru  Adults  IV 

0.08 (0.070, 0.090) 
8.1 (2.5, 14.1) Presence of cholera 

cases, presence of 
weak or strong El 
Nino effect 

1/1/1993‐
6/30/1998 

Lama et al, 
200441 

          
   Fiji  Infants  V 

0.030 (0.012, 0.05) 
3 (1.2, 5.0) Rainfall, seasonality  1978‐1989  Singh et al, 

200114 
          
   Bangladesh  All patients  VI 

0.056 (0.034, 0.078) 
5.6 (3.4, 7.8) Rainfall, seasonality  1/1996‐

12/2002 
Hashizume et 
al, 200713 

          

Malaria  Location   Population   % Increase in incidence per 1°C 
increase in temp. (95% CI) 

Variables in model Duration of 
study 

Source

   Jinan, China  All patients   10.2 (7.7, 12.7) Seasonality, maximum 
temperature 

1959‐1979  Zhang et al, 
201043 

   Jinan, China  All patients   13.8 (11.8, 15.8) Seasonality, maximum 
temperature 

1959‐1979  Zhang et al, 
201043 

   Yunnan, 
China 

All patients  4.7 (4.5, 5.0) Seasonality, monthly 
rainfall, provincial mean 
temporal trend 

01/1991‐
12/2006 

Clements et al, 
200944 

   Republic of 
Korea 

All civilian 
patients 

 17.7 (16.9, 18.6) Seasonality, interannual 
variation, relative 
humidity, precipitation, 
DTR 

2001‐2009  Kim et al, 
201245 

   Republic of 
Korea 

All civilian 
patients 

16.1 (15.3, 16.9) Seasonality, interannual 
variation, relative 
humidity, precipitation, 
DTR 

2001‐2009  Kim et al, 
201245 

             

Dengue fever  Location   Population   % Increase in incidence per 1°C 
increase in temp. (95% CI) 

Variables in model Duration of 
study 

Source

  

Guangzhou 
City, China 

All patients   1.42 (1.27, 1.57) Monthly minimum temp, 
monthly wind velocity, 
incidence of previous 
month 

2001‐2006  Lu et al,200946

  

Dak Lak, 
Vietnam 

All patients   1.105 (1.05‐1.17) Household index, 
household mosquito, mean 
tem., rainfall 

2004‐2008  Pham et al, 
201147 

             

Japanese 
encephalitis 

Location   Population   % Increase in incidence per 1°C 
increase in temp. (95% CI) 

Variables in model Duration of 
study 

Source

  

Linyi City, 
China 

All patients   7.9 (3.3, 12.6) Mean max monthly 
temperature, mean 
monthly air pressure, 
monthly mean relative 
humidity, monthly total 
rainfall, year 

1956‐2004  Bi et al, 200750
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Supplementary Table 2: Estimated temperature deviation from 2008 baseline (Td, °C) by province 
and by RCP in 2020. 
 

Province  2020 
population 
(thousands) 

RCP 
2.6 Tdρ 

RCP 
4.5 Tdρ 

RCP 
6.0 Tdρ 

RCP 
8.5 Tdρ 

Anhui  55,848  0.70  ‐0.07  0.46  1.06 

Beijing  21,492  0.26  ‐0.06  0.09  1.32 

Chonqing Shi  28,326  0.72  0.28  0.03  0.72 

Fujian  36,732  0.65  0.10  0.40  0.98 

Gansu  27,386  0.63  0.42  0.48  1.10 

Guangdong  172,296  0.99  0.21  0.25  1.10 

Guanxi  43,105  0.92  0.08  0.25  0.97 

Guizhou  40,006  0.69  0.22  0.17  0.74 

Hainan  9,500  1.00  0.21  ‐0.03  1.01 

Hebei  75,419  0.26  ‐0.07  ‐0.35  1.20 

Heilongjiang  35,296  ‐0.11  0.54  0.65  1.35 

Henan  94,604  0.46  0.12  ‐0.09  1.28 

Hubei  58,722  0.72  0.00  0.06  0.83 

Hunan  55,761  0.81  0.03  0.15  0.85 

Jaingsu  77,439  0.58  ‐0.05  0.49  1.28 

Jiangxi  36,295  0.71  0.06  0.37  0.84 

Jilin  25,212  ‐0.11  ‐0.40  0.64  1.37 

Liaoning  39,762  0.23  ‐0.33  0.28  1.23 

Neimenggu  24,438  0.03  0.08  0.09  1.49 

Ningxia  7,006  0.42  0.35  0.03  0.97 

Qinghai  5,630  0.83  0.60  ‐0.06  0.74 

Shaanxi  38,823  0.48  0.31  ‐0.42  0.83 

Shandong  91,447  0.41  ‐0.07  0.17  1.79 

Shanghai  22,566  0.24  0.02  0.46  0.94 

Shanxi  40,026  0.45  0.11  ‐0.61  0.90 

Sichuan  72,247  0.90  0.54  0.17  0.58 

Tianjin  12,034  0.32  ‐0.11  ‐0.02  1.34 

Xinjiang  23,546  0.55  0.49  0.52  1.10 

Xizang  2,938  0.93  0.65  0.34  0.64 

Yunnan  52,390  1.03  0.56  0.30  0.42 

Zhejiang  52,302  0.45  0.05  0.49  0.925 

                 

China  1,378,595  0.57  0.33  0.25  1.00 
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Supplementary Table 3: Estimated temperature deviation from 2008 baseline (Td, °C) by province 
and by RCP in 2030. 
 

Province  2030 population 
(thousands) 

RCP 
2.6 
Tdρ 

RCP 
4.5 
Tdρ 

RCP 
6.0 
Tdρ 

RCP 
8.5 
Tdρ 

Anhui  49,994  1.22  0.29  0.65  1.64 

Beijing  24,710  0.75  ‐0.05  0.67  1.34 

Chonqing Shi  32,540  1.18  0.72  0.62  1.19 

Fujian  44,566  1.28  1.03  1.18  1.44 

Gansu  30,813  1.15  0.55  0.96  1.52 

Guangdong  180,129  1.41  1.16  1.25  1.59 

Guanxi  39,300  1.37  0.94  1.31  1.58 

Guizhou  34,628  1.25  0.87  1.02  1.27 

Hainan  10,739  1.24  0.90  0.79  1.64 

Hebei  74,319  0.69  0.00  0.32  1.39 

Heilongjiang  31,077  ‐0.08  1.43  0.91  0.64 

Henan  88,900  1.00  0.22  ‐0.30  1.94 

Hubei  65,164  1.27  0.35  0.42  1.40 

Hunan  56,894  1.38  0.62  0.85  1.53 

Jaingsu  78,510  1.15  0.44  0.65  1.53 

Jiangxi  41,011  1.42  0.74  1.08  1.58 

Jilin  29,542  ‐0.09  1.07  0.72  0.72 

Liaoning  40,951  0.36  0.70  0.61  0.91 

Neimenggu  24,543  0.49  0.63  0.85  1.03 

Ningxia  8,506  1.36  0.02  1.04  1.76 

Qinghai  6,103  1.18  1.17  0.44  1.46 

Shaanxi  35,123  1.14  0.35  0.06  1.44 

Shandong  98,308  0.75  0.19  ‐0.26  2.05 

Shanghai  28,308  0.97  0.40  0.87  1.31 

Shanxi  41,435  1.01  ‐0.01  0.20  1.51 

Sichuan  69,328  1.32  1.13  0.64  1.22 

Tianjin  12,708  0.61  0.29  0.37  1.55 

Xinjiang  26,606  1.11  0.59  1.36  1.78 

Xizang  2,804  1.20  1.35  0.87  1.36 

Yunnan  54,460  1.28  1.25  0.71  1.09 

Zhejiang  57,125  1.10  0.83  1.06  1.49 

                 

China  1,419,143  0.99  0.82  0.83  1.39 
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Supplementary Table 4: Distribution of the total burden of WSH-attributable disease by scenario and 
disease etiology, using mean  values. 
Storyline  Disease  2020 2030  

     
Burden of disease 
(DALYs)  (% of total) 

Burden of disease 
(DALYs)  (% of total) 

0.1  Diarrhea  2,404,506 99.2 2,086,911 99.2 
   Malaria  551  0.02 543 0.03 
   Dengue fever  6  0.00024 6 0.00029
   Japanese encephalitis  19,255 0.79 16,225 0.77 

0.2  Diarrhea  1,340,410 98.5 1,001,160 98.4 
   Malaria  551  0.04 543 0.05 
   Dengue fever  6  0.00042 6 0.00060
   Japanese encephalitis  19,255 1.42 16,225 1.59 

0.3  Diarrhea  1,186,367 98.4 799,682 97.9 
   Malaria  551  0.05 543 0.07 
   Dengue fever  6  0.00048 6 0.00075
   Japanese encephalitis  19,255 1.60 16,225 1.99 

1.1  Diarrhea  2,507,733 99.2 2,244,860 99.2 
   Malaria  541  0.02 564 0.02 
   Dengue fever  4  0.00017 6 0.00025
   Japanese encephalitis  19,061 0.75 17,145 0.76 

1.2  Diarrhea  1,420,533 98.6 1,115,166 98.4 
   Malaria  541  0.04 564 0.05 
   Dengue fever  4  0.00030 6 0.00049
   Japanese encephalitis  19,061 1.32 17,145 1.51 

1.3  Diarrhea  1,260,803 98.5 908,926 98.1 
   Malaria  541  0.04 564 0.06 
   Dengue fever  4  0.00034 6 0.00060
   Japanese encephalitis  19,061 1.49 17,145 1.85 

2.1  Diarrhea  2,426,497 99.2 2,178,420 99.2 
   Malaria  510  0.02 537 0.02 
   Dengue fever  4  0.00015 5 0.00024
   Japanese encephalitis  18,329 0.75 16,538 0.75 

2.2  Diarrhea  1,358,818 98.6 1,067,438 98.4 
   Malaria  510  0.04 537 0.05 
   Dengue fever  4  0.00027 5 0.00049
   Japanese encephalitis  18,329 1.33 16,538 1.52 

2.3  Diarrhea  1,202,194 98.5 864,404 98.1 
   Malaria  510  0.04 537 0.06 
   Dengue fever  4  0.00030 5 0.00061
   Japanese encephalitis  18,329 1.50 16,538 1.88 

3.1  Diarrhea  2,433,866 99.2 2,184,012 99.2 
   Malaria  516  0.02 526 0.02 
   Dengue fever  4  0.00015 5 0.00024
   Japanese encephalitis  18,301 0.75 16,480 0.75 

3.2  Diarrhea  1,362,770 98.6 1,071,767 98.4 
   Malaria  516  0.04 526 0.05 
   Dengue fever  4  0.00027 5 0.00049
   Japanese encephalitis  18,301 1.32 16,480 1.51 

3.3  Diarrhea  1,207,904 98.5 867,375 98.1 
   Malaria  516  0.04 526 0.06 
   Dengue fever  4  0.00030 5 0.00060
   Japanese encephalitis  18,301 1.49 16,480 1.86 

4.1  Diarrhea  2,577,765 99.2 2,303,071 99.2 
   Malaria  568  0.02 593 0.03 
   Dengue fever  4  0.00017 6 0.00025
   Japanese encephalitis  19,247 0.74 17,410 0.75 

4.2  Diarrhea  1,479,594 98.7 1,158,197 98.5 
   Malaria  568  0.04 593 0.05 
   Dengue fever  4  0.00029 6 0.00048
   Japanese encephalitis  19,247 1.28 17,410 1.48 

4.3  Diarrhea  1,314,245 98.5 949,184 98.1 
   Malaria  568  0.04 593 0.06 
   Dengue fever  4  0.00032 6 0.00059
   Japanese encephalitis  19,247 1.44 17,410 1.80 
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Supplementary Table 5: CMIP5 models used in model validation/comparisons. 
	

Model  Institution 
NO. of 
members 

Spatial Resolution 
(Lon×Lat, degree) 

1. ACCESS1.0  Commonwealth Scientific and Industrial Research 
Organization (CSIRO), Australia and Bureau of 
Meteorology (BOM), Australia 

1  1.875×1.25

2. ACCESS1.3  1  1.875×1.25 

3. BCC‐CSM1.1 
Beijing Climate Center, China Meteorological 
Administration 

1  2.81×2.77 

4. BNU‐ESM   Beijing Normal University, China 1  2.81×2.77

5. CanESM2 
Canadian Centre for Climate Modelling and Analysis, 
Canada 

1  2.81×2.79 

6. CCSM4  National Center for Atmospheric Research, USA 6  1.25×0.9

7. CESM1‐BGC  National Science Foundation, Department of Energy, 
NCAR, USA 

1  1.25×0.9

8. CESM1‐CAM5  3  1.25×0.9

9. CMCC‐CM 
Euro‐Mediterraneo sui Cambiamenti Climatici, Italy 

1  0.75×75

10. CMCC‐CMS  1  1.875×1.86

11. CNRM‐CM5 
Centre National de Recherches Meteorologiques,
Meteo‐France, France 

1  1.41×1.40 

12. CSIRO‐Mk3.6.0 
Commonwealth Scientific and Industrial
Research Organization (CSIRO), Australia 

6  1.875×1.86 

13. EC‐EARTH  European Earth System Model 3  1.125×1.12

14. FGOALS_g2 
Institute of Atmospheric Physics, Chinese Academy
of Sciences, China 

1  2.81×2.79 

15. GFDL‐ESM2M 
NOAA Geophysical Fluid Dynamics Laboratory, USA 

1  2.5×2.0

16. GFDL‐ESM2G  1  2.5×2.0

17. GISS‐E2‐R 
NASA Goddard Institute for Space Studies, USA 

1  2.5×2.0

18. GISS‐E2‐H  1  2.5×2.0

19. HadGEM2_AO 

Met Office Hadley Centre, UK 

1  1.875×1.25

20. HadGEM2_CC  1  1.875×1.25

21. HadGEM2_ES  4  1.875×1.25

22. INM‐CM4  Institute for Numerical Mathematics, Russia 1  2.0×1.5

23. IPSL‐CM5A‐LR 

Institut Pierre‐Simon Laplace, France 

3  3.75×1.875

24. IPSL‐CM5A‐MR  1  2.5×1.25

25. IPSL‐CM5B‐LR  1  3.75×1.875

26. MIROC‐ESM  Atmosphere and Ocean Research Institute (The University 
of Tokyo), National Institute for Environmental Studies 
and Japan Agency for Marine‐Earth Science and 
Technology 

1  2.81×1.77

27. MIROC‐ESM‐CHEM  1  2.81×1.77

28. MIROC5  2  1.41×1.39 

29. MPI‐ESM‐LR 
Max Planck Institute for Meteorology, Germany 

1  1.875×1.85

30. MPI‐ESM‐MR  1  1.875×1.85

31. MRI‐CGCM3  Meteorological Research Institute, Japan 1  1.125×1.125

32. NorESM1‐M 
Norwegian Climate Centre 

1  2.5×1.875

33. NorESM1‐ME  1  2.5×1.875
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Supplementary Figure 1: Proportion of total (a) and number of people (b) with 
access to both improved water and sanitation (Scenario II) by development path. At 
bottom (c), the proportion of population in each Scenario (II, IV, V, VI) is shown for 
the exponential and linear development paths. See Table 2 in the main manuscript for 
scenario definitions.  
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Supplementary Figure 2: Temperature deviations from reference climate to 2020, 
Td. 
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Supplementary Figure 3: Temperature deviations from reference climate to 2030, 
Td. 
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Supplementary Figure 4: Distribution of population-weighted provincial temperature 
deviations, T, from 2008 under RCP 2.6, 4.5 6.0 and RCP 8.5. The y-axis represents 
the proportion of provinces across China experiencing a given T value. 
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Supplementary Figure 5. Evaluation of 5-year and 10-year mean from HadGEM2-ES 
r2i1p1 (member 2), HadGEM2-ES ensemble mean and CMIP5 mean. The OBS shows 
the climatology mean in the 5-year (2006-2010) and 10-year (2001-2010) period, and the 
other panels display the biases (model results – OBS) for HadGEM2-ES r2i1p1 (member 
2), HadGEM2-ES ensemble mean and CMIP5 mean. All models and observations have 
been interpolated to 2.5 by 2.5 degrees for ease of comparison. 
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Supplementary Figure 6. The bias of HadGEM2-ES r2i1p1 (member 2), HadGEM2-
ES ensemble mean and the other CMIP5 models using 10-year mean of observations 
from 2001-2010, calculated as model-OBS per Supplementary Figure 5. 
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Supplementary Figure 7. Mean temperature deviations under RCP 4.5 from 
HadGEM2-ES r2i1p1 (member 2), HadGEM2-ES ensemble mean and the CMIP5 
ensemble mean using 5-year and 10-year periods. The 5-year periods were referenced to 
2006-2010; the 10-year periods were referenced to 2001-2010. 
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Supplementary Figure 8. Mean temperature deviations under RCP 8.5 from 
HadGEM2-ES r2i1p1 (member 2), HadGEM2-ES ensemble mean and the CMIP5 
ensemble mean using 5-year and 10-year periods. The 5-year periods were referenced to 
2006-2010; the 10-year periods were referenced to 2001-2010. 
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Supplementary Figure 9. Province-specific delay values in 2030 shown as a function 
of the rate of change in the number of people with water and sanitation access. 
Projected temperature change 2008-2030 is also indicated, as is the water and sanitation 
development path (panel b). Delays calculated for Shanghai, Beijing, Tianjin, and 
Guangdong are shown in top panel (a) in relation to projected temperature change. 
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Supplementary Figure 10: Map of development delay values (in years) in 2030 under 
RCP 4.5. 
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