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Algorithm Description

Here, we explain the method used in RAIN, starting with the well-known Mann-Whitney Statistic and
extend it through several steps to the special case capable of detecting oscillations. Series of data
measurements are expected to be regular, equally spaced, and to come in temporal order. Repeated
measurements are grouped together for each time point.

Let (X11, . . . , X1m1), . . . , (Xn1, . . . , Xnmn) be a set of n samples of size m1, . . . , mn taken from different
populations F1(x), . . . , Fn(x) with a total number

N =
n

∑
c=1

mc . (1)

Empty sets with mc = 0 are also allowed and do not affect the statistic.
There are many methods for testing special relations between these populations against H0 : Fi =

Fj (i 6= j ∈ 1, ..., n). Many of them use a method described by Mann and Whitney, and independently
Wilcoxon, to compare two samples of different populations i and j, defining

qik ,jl =

{
1 if Xik < Xjl

0 else
, (2)

and

Uij =
mi

∑
k=1

mj

∑
l=1

qik ,jl , (3)

which is the Mann-Whitney U-statistic for comparison of two samples. There are alternative definitions
of qik ,jl where equality of Xik and Xjl gives 0.5, but we use the stricter definition, as the following
calculations of discrete probability densities are constructed for discrete values.

This Mann-Whitney U-statistic serves as a core element used for the following tests, dealing with
complexer problems.

Jonckheere-Terpstra Test

First, the problem of two sets with different populations is extended to a series of populations. The
Jonckheere-Terpstra Test (Jonckheere, 1954; Terpstra, 1952) concerns the alternative hypothesis

H1 : F1(x) < F2(x) < . . . < Fn(x), (4)

with test statistic

s =
n−1

∑
i=1

n

∑
j=i+1

Uij. (5)

To gather exact p-values, an efficient algorithm for the calculation of the exact probabilities for all
possible scores s under the null hypothesis F1(x) = F2(x) = . . . = Fn(x) for a given set of samples
(m1, . . . , mn) must be constructed.

The total number of possible permutations for each score f (s), the frequency distribution, has to be
determined. It is limited by the minimal and maximal values of the given statistic s ∈ [0, smax]. From
the f (s) the probability distribution p(s) is given as

p(s) =
f (s)

smax
∑

si=0
f (si)

. (6)

The calculation of f (s) for distinct sample set be facilitated by the use of a generating function G(z)
which holds the values of f (s) as coefficients:
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G(z) =
smax

∑
s=0

zs · f (s) (7)

This generating function allows us to calculate the frequency distribution of combinations of indepen-
dent tests. If two independent tests with f1(s1) and f2(s2) and generating functions G1(z) and G2(z) are
combined by summation of the scores, the combined frequency distribution fc(s1 + s2) can be recovered
from the product of the generating functions:

Gc(z) =
smax

∑
s=0

zs · fc(s) = G1(z) · G2(z) (8)

Following Kendall and Stuart (1961), we write the generating function for the Mann-Whitney U-
statistic for two samples m1and m2 as

G(z) =
∏m1+m2

u=1 (1− zu)

∏m1
v1=1(1− zv1) ·∏m2

v2=1(1− zv2)
. (9)

The same authors state the formula for the Jonckheere-Terpstra test:

G(z) = ∏N
u=1(1− zu)

∏n
d=1 ∏md

v=1(1− zv)
. (10)

G(z) in this form (Equation (9) or (10)) has to be expanded into the polynomial form of Equation
(7), where the coefficients of G(z) represent f (s). An efficient way to to do this was presented by
Harding (1984). G(z) in the form of Equation (9) or (10) is a product of a finite number of factors
and only two different kinds of factors occur, (1− zu) and (1− zu)−1. The expansion is carried out by
a successive multiplication of these factors. After each multiplication a new intermediate polynomial
Gr(z) is obtained. To simplify the calculation of each step, the polynomial is represented by a series of
integers. Each number represents a coefficient of the polynomial.

Example: 1 2 3 2→ Gr(z) = 1z0 + 2z1 + 3z2 + 2z3

It is possible to simplify the calculation by only operating on these coefficients. The successive multi-
plications with the factors can be conducted by simple shifting and adding operations on this series of
integers:

multiplication by (1− zu): Subtract from every element the element which is u positions to its left.

multiplication by (1− zu)−1: For this operation add to every element the sum off every uth element to
the left. This operation follows from the Taylor series (1− x)−1 = ∑∞

n=0 xn with zu = x.

The series of integers, although in general infinite, could be limited to dsmax/2e for this algorithm, as no
other elements are necessary for the calculation.

As an example, we calculate f (s) for a Mann Whitney statistic m1 = m2 = 2 which gives smax = 4.
Using Equation (9), we derive the product form of G(z):

∏4
u=1(1− zu)

∏2
v=1(1− zv) ·∏2

v=1(1− zv)
=

∏4
u=3(1− zu)

∏2
v=1(1− zv)

= z0 · (1− z3) · (1− z4) · (1− z1)−1 · (1− z2)−1 (11)

Thereby, the factor z0 = 1 at the beginning of the product acts as a first iteration to initiate the series:

Go(z) = z0 = 1z0 + 0z1 + 0z2 + . . .→ 1 0 0 . . . (12)

Now we calculate the next iterations of the series stepwise for each factor, ending up with the represen-
tation of G(z):

3



1 0 0 0 0 z0 = G0(z)
1 0 0 −1 0 (1− z3) · G0(z) = G1(z)
1 0 0 −1 −1 (1− z4) · G1(z) = G2(z)
1 1 1 0 −1 (1− z1)−1 · G2(z) = G3(z)
1 1 2 1 1 (1− z2)−1 · G3(z) = G(z)

Thus, the generating function for the example is G(z) = 1 · z0 + 1 · z1 + 2 · z2 + 1 · z3 + 1 · z4, and in turn
the probability distribution function is p(0) = 1/6, p(1) = 1/6, p(2) = 1/3, p(3) = 1/6, p(4) = 1/6.

With this algorithm for the calculation of the null distribution, tests against the alternative hypothesis
of strictly rising or falling trends in a time series can be formulated, but moreover with reordering of
the evaluated data, also other relationships could be evaluated as done by JTK_CYCLE for sinusoidals
(Hughes et al., 2010). There is, however, a remaining problem with this approach: Every time point is
tested against all other time points, so in the oscillating case, the rising and falling part of the oscillation
are tested against each other according to a specific pre-determined wave form (a sinusoid in the default
implementation). This limitation is alleviated by the umbrella approach using a combination of two
almost independent Jonckheere-Terpstra tests.

Umbrella Alternatives

General Umbrella

Mack and Wolfe (1981) constructed the test for umbrella alternatives as an extension of the Jonckheere-
Terpstra test with the alternative hypothesis that an index 1 < e < n exists such that

H1 : F1(x) < F2(x) < . . . < Fe(x) > . . . > Fn(x) (13)

For this case, the statistic is calculated as the sum of two independent Jonckheere-Terpstra statistics

s =
e−1

∑
i=1

e

∑
j=i+1

Uij +
n−1

∑
i=e

n

∑
j=i+1

Uji. (14)

With Equation (8) and Nij = ∑
j
k=i mk, the generating function is the product of the generating functions

of two independent Jonckheere-Terpstra tests:

G(z) =
∏N1e

u1=1(1− zu1)

∏e
d=1 ∏md

v=1(1− zv)
·

∏Nen
u2=1(1− zu2)

∏n
d=e ∏md

v=1(1− zv)
(15)

The calculation of p(s) follows the Harding algorithm, as the factors are the same as for the Jonckheere-
Terpstra test.

This is the general principle used in RAIN: An oscillation is modeled as a time series consisting of a
rising part followed by a falling part. Some more refinements of the method are necessary to correctly
handle the trough of the oscillation and to fit different phases.

Ring Shaped Alternatives

The general umbrella can be generalized to variable “partial order alternatives”, as described by Steit-
berg and Röhmel (Streitberg and Röhmel, 1988). In particular, a ring-shaped extension of the umbrella
alternatives is described, where there is no only a largest Fe(x) but also a smallest population F1(x),
which extends the alternate hypothesis to

H1 : F1(x) < F2(x) < . . . < Fe(x) > . . . > Fn(x) > F1(x). (16)

The statistic is extended by a Mann-Whitney test between all groups of the falling part except Fe(x)
and the smallest element F1(x).
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s =
e−1

∑
i=1

e

∑
j=i+1

Uij +
n−1

∑
i=e

n

∑
j=i+1

Uji +
n

∑
j=e+1

Uj1. (17)

This additional Mann-Whitney test reflects as an additional factor in the generating function:

G(z) =
∏N1e

u1=1(1− zu1)

∏e
d=1 ∏md

v=1(1− zv)
·

∏Nen
u2=1(1− zu2)

∏n
d=e ∏md

v=1(1− zv)
·

∏
N(e+1)n+m1
u3=1 (1− zu3)

∏m1
v=1(1− zv) ·∏

N(e+1)n
v=1 (1− zv)

(18)

To detect rhythms based on the ring shaped alternatives the original data are regrouped into sets
F1(x) . . . Fn(x). The period is given by the length n of this set, the shape of the peak by e, and different
phases by the data put into the group Fe(x). The preceding and following data are put into the preceding
and following groups, in a circular manner (Fn+i(x) → Fi(x)). Thereby, if data series cover more than
one period, the groups contain data from more than one time point.

This approach is used in RAIN as the preset ’individual’, as it provides a quite good power for
different curve shapes in simulations. It has proved to be the most stable and strongest approach for
individual measured data with the benefit that the rising and the falling part are treated independently
from each other, so that no particular symmetry is assumed. For longitudinal data with strong additional
time dependent effects, e.g. damping or underlying trends, a different approach could be used, as
outlined in the next section.

Series of Umbrellas for Longitudinal Time Series

It is possible to define a series of inflections 1 = e0 ≤ e1 . . . < eg = n defining alternate rising and falling
slopes, effectively representing a series of umbrellas:

H1 : F1(x) < . . . < Fe1(x) > . . . > Fe2(x) < . . . (19)

In the case of an initial falling series e0 = e1 = 1, the first rising part is skipped and the following
formulas are still valid. The calculation of the statistic is the summation of multiple Jonckheere-Terpstra
statistics:

s =
g

∑
α=1

eα−1

∑
a=eα−1

eα

∑
b=a+1

{
Uab if α odd
Uab if α even

. (20)

Analogously, the calculation of the generating function extends to a product of the generating functions
for the individual slopes

G(z) =
g

∏
α=1

∏
Neα−1eα

u2=1 (1− zu2)

∏eα
d=eα−1

∏mn
vd=1(1− zvd)

. (21)

To test for an oscillation, the measurement groups are the groups in their original order. The oscilla-
tion itself is defined by the series of inflections. Thereby, all odd inflections (e1, e3, . . .) represent peaks
and all even inflections (e2, e4, . . .) troughs. The oscillatory behavior is tested by a strict periodic setup
of these inflections. The phase is represented by the first peak position, the period length by the space
between peaks and the peak shape is the time from peak to trough.

Although this ’longitudinal’ approach is weaker as the ’individual’ approach, it was implemented
in the R package, because disturbances by damping, underlying trends and the like, are better dealt
with, and in some data sets we found some data missed by the previous algorithm. On the other
hand, the differentiation between strong asymmetric behavior and pure trends is weak when using
the ’longitudinal’ mode.

5



Implementations for Oscillation Detection

When testing a time series for oscillatory behavior, a number of different parameters (phases, ampli-
tudes, and peak shapes) are possible and have to been considered. All the tests for different parameter
settings are done independently from each other. For each of these tests, a probability distribution
function p(s) is calculated in order to obtain the exact p-value. Thus, we can choose the best p-value
and thereby the best matching parameter set. For the returned p-value, we have to take into account
that we do multiple testing on the data, but that the different tests are not independent from each
other. To correct for multiple testing, RAIN uses the adaptive BH algorithm presented by Benjamini
and Hochberg (2000) for partially dependent multiple testing. The corrected p-value together with the
phase, period and peak shape are returned by RAIN.
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Supplementary Figures

Figure S1
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Coefficients of variation (CVs) for mouse liver microarray data. Noise standard deviations were
estimated for each of the 25,817 genes in a microarray study encompassing 24 time points (Hughes
et al., 2012), as described in the Methods section. The CV (standard deviation divided by mean) lies
around 0.1 for most genes, regardless of expression level.
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Figure S2
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ROC curves and false discovery rates. ROC curves gauge the true positive rate as a function of the
false positive rate (horizontal arrows). These pertain to test outcomes only and are independent of the
prevalence, i.e. the proportion of true positives in the data. The false discovery rate (FDR, vertical
arrow) measures the proportion of false positives in the true test outcomes, and is dependent on the
prevalence: A lowered prevalence will increase the FDR for a given TPR, or decrease the TPR if the FDR
is held constant.

Figure S3
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Amplitude/Noise ratio for microarray data. Circadian relative amplitudes and noise standard devia-
tions were estimated for each of the 25,817 genes in a microarray study encompassing 24 time points
(Hughes et al., 2012), as described in the Methods section. Amplitude/noise ratios, i.e. amplitudes
divided by the noise standard deviations, were computed for each gene and the resulting density
estimate is plotted.
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Figure S4 (separate PDF file)

ROC curves for different sampling rates and amplitude/noise ratios. We generated artificial data for
noise standard deviation 0.1 and sine curve and sawtooth-shaped curve amplitudes 0 (control) 0.1, 0.2,
and 0.3, respectively, as well as with “native” amplitudes sampled from the distribution estimated from
microarray data (Methods and Figure S3). In addition, outliers (one random time point in each series
is altered to y(t) + 20) were present or absent, and different sampling rates were evaluated: 2 hours
(24 samples), 3 hours (16 samples), and 4 hours (12 samples), resulting in 24 different diagrams, where
the results for RAIN and JTK_CYCLE for sine curves as well as sawtooth-shaped curves are plotted.
Each curve is based on 100,000 artificial time series and 100,000 controls (amplitude 0). The light gray
straight lines correspond to an FDR of 0.1 and prevalences (proportions of true positives) of 0.05, 0.1,
and 0.25, respectively (Equation 2), or alternatively to a prevalence of 0.1 and FDRs of 0.05, 0.1, and 0.25
(by the symmetry of the equation). The obtained true positive rate for a given FDR and prevalence is
the intersection point between the straight line and the ROC curve.

Supplementary Tables

Table S1

DAVID output for the 61 proteins detected by RAIN in both proteomics studies (Mauvoisin et al.,
2014; Robles et al., 2014). This file can be opened directly in most common spreadsheet programs, or
imported to data analysis software directly as plain text. DAVID detects overrepresented clusters of
related biological functions, the specific functions are to be found in the second column.
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