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Appendix. Confidence intervals, hypothesis tests, and model selection for the Ornstein-4 

Uhlenbeck state-space model. 5 

 The Ornstein-Uhlenbeck state-space (OUSS) model is given by 𝑌 𝑡! = 𝑋 𝑡! +   𝐹!, 6 

𝑑𝑋 𝑡 =   𝜃 𝜇 − 𝑋 𝑡 𝑑𝑡 +   𝛽𝑑𝑊 𝑡 , where 𝑌 𝑡!  is the observed or estimated log-abundance of 7 

the population at time 𝑡!, 𝑋 𝑡!  is the actual (unobserved) log-abundance, where 𝐹! has a normal 8 

distribution with mean 0 and variance 𝜏!, with 𝐹!, 𝐹! uncorrelated (𝑖 ≠ 𝑗), 𝑑𝑊 𝑡  has a normal 9 

distribution with a mean of 0 and a variance of 𝑑𝑡 (where the correlation between 𝑑𝑊 𝑡!  and 10 

𝑑𝑊 𝑡!  is equal to 0 if 𝑡! ≠ 𝑡!), 𝜇 is a real-valued parameter, and 𝜃, 𝛽!, and 𝜏! are positive real-11 

valued parameters. 12 

 Confidence intervals for the model parameters are readily obtained using parametric 13 

bootstrapping. For the OUSS model, parametric bootstrapping involves simulating 2000 or so 14 

data sets from the estimated OUSS model (the OUSS model equations evaluated at the maximum 15 

likelihood (ML) or restricted maximum likelihood (REML) estimates) and reestimating the 16 

model parameters for each simulated data set. Percentiles (or alternatively, median-adjusted 17 

percentiles) of the 2000 bootstrap parameter values form the ends of the confidence intervals (see 18 

Manly 1997). 19 

 Confidence intervals obtained with parametric bootstrapping are in general not symmetric 20 

and tend to have better coverage properties than intervals based on large sample ML theory 21 

(Pawitan 2001). Also, parametric bootstrap intervals are easily obtained for functions of 22 

parameters (such as the stationary variance of 𝑋 𝑡  given by 𝛽!/ 2𝜃 ) just by calculating the 23 



value of the particular function for each set of bootstrap parameter values. One of the R 1 

programs accompanying this paper (Supplementary Material online) calculates parametric 2 

bootstrap confidence intervals. 3 

 A statistical hypothesis test of density independence versus density dependence can be 4 

performed for the OUSS model with parametric bootstrapping. The exponential growth state-5 

space (EGSS) model serves as the null hypothesis of density independence, and the OUSS model 6 

serves as the alternative hypothesis of density dependence. The procedure represents an 7 

extension of the method of Dennis and Taper (1994), which used only process noise and equal 8 

time intervals. The procedure is to simulate 2000 or more data sets from the EGSS model that 9 

has been fitted to the data with ML estimates (as described in Humbert et al. 2009). The EGSS 10 

and the OUSS model are then fitted to each simulated data set with ML estimation, and a 11 

likelihood ratio statistic ( −2  log   𝐿EGSS 𝐿OUSS  ) is then calculated for each simulated data set. 12 

Here 𝐿 represents a multivariate normal likelihood maximized under the EGSS or OUSS model. 13 

The proportion of the 2000 (or more) simulated likelihood ratio values that exceed the value of 14 

likelihood ratio statistic calculated for the data constitutes the P-value for the test. One of the R 15 

programs accompanying this paper (Supplementary Material online) calculates the parametric 16 

bootstrap likelihood ratio test of the EGSS model versus the OUSS model. The procedure 17 

basically tests for the presence of a tendency toward equilibration (or stationarity), and the 18 

ecological interpretation of such a test as biological density dependence requires caution (Wolda 19 

and Dennis 1993) in the absence of other biological information about the population. 20 

 Model selection can be performed among submodels, or among alternative model forms, 21 

with information criteria such as AIC and its variants (Burnham and Anderson 2002). The model 22 

selection indexes typically require the values of the maximized log-likelihoods for the various 23 



models under question (or at least the differences of the maximized log-likelihoods for every pair 1 

as in Ponciano et al. 2009). For the OUSS model and its submodels, the maximized log-2 

likelihood values are readily available as byproducts of model-fitting. However, one should not 3 

compare models with likelihoods arising from fundamentally different data, such as the raw 4 

observations for ML estimates and the differenced observations for REML estimates (or even 5 

first differences for OUSS/REML and second differences for EGSS/REML). Rather, the 6 

likelihoods for the models being compared should be defined for the same unique observations, 7 

which usually means comparing ML with ML.  8 

LITERATURE CITED 9 

Burnham, K. P. and D. R. Anderson, D. R.  2002. Model selection and multimodel inference: a 10 

practical information-theoretic approach, 2nd ed. Springer-Verlag, New York, New York, USA. 11 

Dennis, B., and M. L. Taper. 1994. Density dependence in time series observations of natural 12 

populations: estimation and testing. Ecological Monographs 64:205-224. 13 

Humbert, J.-Y., L. S. Mills, J. S. Horne, J. S., and B. Dennis. 2009. A better way to estimate 14 

population trend. Oikos 118:1940-1946. 15 

Manly, B. F. J. 1997. Randomization, bootstrap and Monte Carlo methods in biology. Second 16 

edition. Chapman and Hall, London, UK. 17 

Pawitan, Y. 2001. In all likelihood: statistical modelling and inference using likelihood. Oxford 18 

University Press, Oxford, UK. 19 

Ponciano, J.M., M. L. Taper, B. Dennis and S. R. Lele. 2009. Hierarchical models in ecology: 20 

confidence intervals, hypothesis testing and model selection using data cloning. Ecology 90:356-21 

362. 22 

Wolda, H., and B. Dennis. 1993. Density dependence tests, are they? Oecologia 95:581-591. 23 


