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S1 Supplementary Methods: Data Analysis

S1.1 Data acquisition and analysis overview.

In this work, we use the conventional half-amplitude thresholding method, described in the next section,
to quantify looped and unlooped state durations (“lifetimes,” also referred to in the literature as dwell
times) in the tethered particle motion (TPM) data of (1, 2). These data were obtained with Lac repressor
purified in-house and used at a final concentration of 100 pM except as indicated in Fig. S3 below. DNA
constructs consisted of loop lengths ranging from roughly 90 to 120 bp, composed of the five sequences
described in Fig. S1a: The synthetic, random E8 sequence (3, 4), the synthetic, strong nucleosome posi-
tioning sequence 601TA which we abbreviate “TA” (3–5), the strong naturally occurring 5S nucleosome
positioning sequence (6), a poly(dA:dT)-rich DNA from a nucleosome-free region of a yeast promotor
that we call “dA” (7), and a CG-rich sequence from humans that we call “CG” (8). The loop sequence is
flanked by various combinations of operators that are known to have different affinities for the Lac repres-
sor: Oid, the strongest, O1, roughly 4 times weaker, or O2, about 5 times weaker than O1. The affinities
of the Lac repressor for these operators as measured by TPM are within those measured by traditional
ensemble biochemical assays, as described in our previous work (1, 2). In the main text we focus on the
very strong, synthetic Oid operator and the weaker naturally occurring O1 operator; data with additional
operators are discussed briefly below. Roughly 150 bp of DNA separated the operators and the bead or
the microscope slide, for total tether lengths of around 450 bp. Details of these constructs can be found
in Fig. S1a and in Refs. (1, 2); in figure legends constructs are referred to as <operator><loop sequence
and length><operator>.

To summarize our previous work with these constructs, a DNA’s sequence and length affect its bend-
ing and torsional rigidities and its helical repeat, which in turn affects the relative phasing of the two
operators, and, it has been proposed, the conformation of the repressor protein in the looped state (9–14).
Thus by fine-tuning DNA sequence and loop length systematically, we were able to generate a library of
looping J-factors (Jloop) for this work. (For comparison with our theoretical framework, we focus here on
simply the total looped state lifetimes, although we discuss briefly below subtleties arising from possible
additional repressor conformations and/or loop structures.)

Details of our implementation of the half-amplitude thresholding procedure used to quantify looped
and unlooped lifetimes are given in the next section. For each data point in the figures in this work (that
is, data for a particular DNA construct at a particular repressor concentration), we obtain distributions
of looped and unlooped lifetimes from roughly 30-50 tethers, observed from 10 to 100 minutes. Examples
of these distributions are given in Sec. S3.1 below. We report the means of these distributions and the
standard errors on the means. A comparison of our results to those in previous studies using TPM to
measure Lac repressor looping and unlooping rates, showing good agreement between our results and
these previous studies, is given in Sec. S3.2.

S1.2 Kinetic analysis by half-amplitude thresholding.

In this work we used the conventional half-amplitude thresholding method (13, 17, 19–23) to obtain
kinetic parameters from TPM data. An outline of this method is shown in Fig. S1. The basic concept
of this method is to define thresholds, or root-mean-squared (RMS) values of the bead’s motion, that
delineate different states (for example, that define the difference between “unlooped” and “looped”), and
then to define the lifetime of a particular state as the time during which a bead’s RMS does not cross a
threshold. The subtleties in this method arise from dealing with spurious events (for example, short-lived
sticking events), and the limited time resolution of the Gaussian filter that is applied to the RMS trace
before the lifetime analysis is done (see details in (1)). Our treatment of these subtleties is described
below.

Trajectories were thresholded as described in (1), using the minima between Gaussians fit to the RMS
histogram to define preliminary thresholds, which were manually adjusted as needed. The result of this
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Figure S1: Half-amplitude thresholding for obtaining kinetic information from TPM traces. a, In tethered
particle motion, single DNA molecules tether microscopic beads to the surface of a slide. The formation of a loop between
two Lac repressor binding sites (operators) by the Lac repressor protein causes the motion of the bead to be reduced. By
calculating the time-averaged root-mean-squared (“〈R〉”) motion of the bead over time, we can detect looping and unlooping
events (1, 15–18) (more precisely, 〈R〉 is our shorthand for the Gaussian-filtered root-mean-squared motion [sqrt(x2t + y2t )] of
the bead, where xt and yt are a bead’s (x, y) position at time t). The constructs used in this work contain varying lengths
of DNA in the tunable DNA region, composed of five different sequences (the synthetic, random E8 sequence (3, 4), the
synthetic, strong nucleosome positioning sequence 601TA which we abbreviate “TA” (3–5), the strong naturally occurring
5S nucleosome positioning sequence (6), a poly(dA:dT)-rich DNA from a nucleosome-free region of a yeast promotor that
we call “dA” (7), and a CG-rich sequence from humans that we call “CG” (8)), and flanked by various combinations of
operators that are known to have different affinities for the Lac repressor: Oid, the strongest, O1, roughly 4 times weaker,
or O2, about 5 times weaker than O1 (1, 2). b, A sample TPM trajectory from a single bead, one that exhibits three
genuine states (unlooped plus “middle” and “bottom” looped states) and several spurious states (both tracking errors and
sticking events). The righthand panel shows a histogram of the 〈R〉 values for this trajectory. Red lines indicate a fit of
three Gaussians to the histogram; thresholds (green lines) are chosen as the minima between Gaussians, except for the
bottommost line, which is set at 80 nm for all traces (the shortest 〈R〉 that we can distinguish from sticking events), and the
topmost line, which is set to the sum of the mean 〈R〉 in the absence of repressor (black dashed line) plus three standard
deviations of the Gaussian fit to the 〈R〉 histogram in the absence of repressor. c, As described in the text, the thresholds
defined as shown in (a) are used to assign a state (unlooped, black; middle loop, magenta; or bottom loop, red) to each
point in the trajectory. Time spent in spurious states is reassigned to genuine states as described in the text. Note that this
figure describes the analysis for calculating middle and bottom looped states separately; for the analyses used in the main
text, trajectories were thresholded into unlooped, looped and spurious only.

4



thresholding allowed every time point in an RMS trace to be assigned a state: “U”, unlooped; “M”,
middle looped state; “B”, bottom looped state; or “Sp”, spurious. Time points were labeled spurious
where the RMS value exceeded the highest threshold (and was therefore most likely due to a tracking
error, for example if a free bead in solution passed through the field of view), or where it fell beneath the
bottom threshold (and was therefore most likely due to a sticking event). The “bottom” and “middle”
looped states refer to the two different looped states, defined as two distinct tether lengths (differing
in RMS by about 10 nm), that we and others have observed in looping studies with the Lac repressor
(1, 2, 10, 13, 24–29). However, for most of the constructs studied here the occurrence of the bottom state
was too infrequent to allow reliable estimates of its mean lifetime. For this reason, and for consistency
with the model derived in the main text, the lifetimes shown in the figures in the main text are derived
from an analysis in which the threshold between the middle and bottom looped states was ignored, such
that trajectories were divided into only unlooped or looped states (and spurious states). Results for the
middle state stemming from an analysis in which the bottom and middle looped states were separated
out are given in Sec. S3.3 below.

Following the convention in the field (13, 17, 19, 20), we ignored any dwells shorter than twice the
dead time of the filter (defined in the next section), treating them as follows: if a transition occurred to
a state whose duration lasted shorter than twice the filter dead time, and the states just before and just
after this too-short dwell were the same, we counted the flanking dwells plus the time in the too-short
dwell as one long lifetime in the flanking state. If the states before and after the too-short dwell were
different, however, we split the too-short dwell between the preceding and succeeding dwells. Excluding
too-short dwells was performed before the removal of spurious states (so too-short spurious states, as well
as too-short genuine states, were ignored).

We dealt with spurious states in a similar manner to too-short dwells: if a spurious state was preceded
and followed by the same genuine state, then we assumed the underlying genuine state of the system did
not change during the spurious event and considered the flanking dwells plus the time spent in the
spurious state to be one long lifetime. If the flanking states were not the same, however, we counted half
the spurious event’s duration towards the preceding event, and half towards the succeeding event. This
approach is reasonable as long as most dwells in spurious states are significantly shorter than the average
transition rate between genuine states. For example, if a sticking event occurs that lasts several minutes,
and it is preceded and followed by dwells in the unlooped state, but in the rest of the trajectory the
unlooped state transitions back and forth to a looped state(s) every few seconds, then it is unreasonable
to assume that no transitions occurred during the minutes-long sticking event. We find the mean lifetime
of spurious events in our assay to be 30 ± 3 seconds, independent of repressor concentration, loop
sequence, loop length, and flanking operators. As can be seen in Fig. S3 and Figs. S9 and S10 below,
although the mean lifetimes of genuine states for some constructs approach 30 seconds, the majority are
longer. Therefore we consider our treatment of spurious events to be reasonable.1

The result of this thresholding procedure is a series of states and times spent in these states, for
each trajectory in a data set. The mean and standard error of the lifetimes for a particular state were
calculated over all trajectories in a data set. We note here one final subtlety to the calculation of these
mean lifetimes, which is whether or not to include the first and last dwells in a given trajectory, whose
observed duration is bounded not by transitions to new states, but on one side by the limitation of the

1We explored two additional approaches to dealing with spurious events that derive from an alternate assumption, that
because we have no information about the true state of the system during a spurious event, we should excise the time
spent in spurious states. Then the preceding and succeeding dwells can either be concatenated, as if the spurious event
never occurred; or they can be counted as separate, regardless of whether they were the same or different states. Because
most spurious states are relatively short-lived, the first approach, that of concatenating trajectories around excised spurious
events, yields mean lifetimes that are comparable to those calculated by our chosen approach described above. However, the
second approach, that of counting dwells before and after spurious events as entirely separate, leads to calculated lifetimes
that are on average about half as long as those calculated from the other methods, because of the introduction of what we
believe to be false transitions when no such transition actually occurred. We conclude that the method we followed gave the
most reasonable estimate of the true lifetimes in genuine states.

5



observation time. If the dwells in each genuine state were exponentially distributed, then because of the
property of memorylessness of single exponentials, we could include these first and last dwells. However,
as noted below in Section S3.1, we find that almost none of the lifetime distributions are exponential.
Therefore we excluded the first and last dwell of every trajectory from our analysis. In practice, most
data sets contain so many dwells that the inclusion of these two extra dwells per trace did not change the
mean lifetimes we calculated, with the exception of data sets for which the looping probability is either
very high or very low, where our ability to obtain meaningful information about average lifetimes in the
unlooped state (if looping is rare) or the looped state (if the looping probability is very close to 1, for
example for the Oid-TA94-O1 construct at most repressor concentrations) is limited regardless of how
we treat first and last dwells.

As an additional test of our algorithm for calculating lifetimes, we compared the mean lifetimes that
we obtained for the Oid-E8107-O1 construct, at all five repressor concentrations, with mean lifetimes
computed using a variational Bayes/hidden Markov model (vb-HMM) approach (30) similar to a method
previously described for FRET (31) and single-particle tracking (32). This vb-HMM approach is entirely
orthogonal to the thresholding method described here, making use of maximum likelihood estimates of
the true state at every point in a trajectory, yet results in comparable mean lifetimes to those shown in
Figs. S3a and S3b below. We conclude that, while the vb-HMM approach is preferable for constructs
with fast transitions and/or closely spaced states, or, as we argue in (30), for demonstrating that the
looped states we observe are composed of multiple microstates, for our purposes here the half-amplitude
approach sufficed.

S1.3 Calculating the dead time of a filter.

The “dead time” of a filter refers to the duration of an event (looping or unlooping) that gives a half-
amplitude response from the filter (33, 34). The convention in the field is then to assume that the
temporal resolution is twice the dead time (13, 17, 19, 20), that is, events shorter than twice the dead
time cannot be resolved as true transitions between states instead of noise. In this section we will derive
an expression for that dead time for the Gaussian filters that were discussed above.2

In this derivation we will consider the true signal from TPM to be a step function, and neglect the
noise that is superimposed on this signal (though that noise also contributes to the temporal resolution
of the experiment, it is ignored when calculating the filter dead time). For simplicity consider a two-state
system, and let state 1 be at RMS = 0, and state 2 at RMS = A. For an event from state 1 to state
2 back to state 1, where the dwell in state 2 lasts time T and is centered at t = 0, we can write the
corresponding raw, unfiltered TPM trace as

x(t) = A · sT (t), (S1)

where sT (t) is 1 between t = −T/2 and t = +T/2, and zero elsewhere. Then, by the definition above,
the dead time of the filter will be an event duration T that produces a half-amplitude response in the
filtered signal, i.e. such that the amplitude of the filtered signal becomes A/2, when the amplitude of
the unfiltered signal is A.

If we apply a Gaussian filter g(t) with some standard deviation σg to the step-function “trace”, the
sharp transitions from states 1 to 2 at t = −T/2 and from state 2 to 1 at t = T/2 will be smoothed,
with the maximum of the filtered signal at t = 0, when the filter and underlying trace are aligned.
Mathematically, we define “applying a filter” as convolving the filter g(t) with the signal x(t), such that
the filtered signal filt x(t) can be written as

filt x(t) =

∫ +∞

−∞
g(t− τ)x(τ)dτ. (S2)

2Thanks to Matthew Johnson at MIT for the outline of this derivation.
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Because a Gaussian is an even function, that is, symmetric about t = 0 such that g(t) = g(−t), we know
that at time t = 0,

filt x(0) =

∫ +∞

−∞
g(−τ)x(τ)dτ (S3)

becomes

filt x(0) =

∫ +∞

−∞
g(τ)x(τ)dτ (S4)

In order to find the dead time of the filter, we want to find the signal width T such that the maximum
of filt x(t), which, as noted above, occurs in this example at t = 0, is equal to A/2. So the definition of
the dead time of the filter, Tdead, becomes the condition that when the length of the dwell T = Tdead,

filt x(0) =

∫ +∞

−∞
g(τ)x(τ)dτ =

A

2
, (S5)

or

filt x(0) =

∫ +∞

−∞
g(τ) ·A · sT (τ)dτ =

A

2
. (S6)

Note that A can be cancelled from both sides, so the dead time is independent of the signal’s amplitude.
That is, the dead time of the filter does not depend on the difference in RMS between states.

Since sτ (τ) is zero except between −Tdead/2 and Tdead/2, Eq. (S6) becomes∫ +
Tdead

2

−Tdead
2

g(τ)dτ =
1

2
(S7)

where we have already cancelled A from both sides.
Because g(τ) is a Gaussian, we can rewrite the integral on the left-hand side of Eq. (S7) in terms of

the cumulative distribution function of a Gaussian, usually given the variable Φ, where

Φ(x) =

∫ x

−∞
g(t)dt, (S8)

and whose solution is given by ∫ x

−∞
g(t)dt =

1

2

[
1 + erf

(
x√
2

)]
. (S9)

Note that Φ is defined for a Gaussian whose standard deviation is 1; but we are considering a Gaussian
with standard deviation σg. So when we write the integral in Eq. (S7) in terms of Φ(x), we must write
it as ∫ Tdead

2

−∞
g(τ)dτ −

∫ −Tdead
2

−∞
g(τ)dτ = Φ(Tdead/(2σg))− Φ(−Tdead/(2σg)), (S10)

expressing Tdead in terms of the σg of our filter. Given the solution to Φ(x) above, we have our final
result for the condition on Tdead,

Φ

(
Tdead

2σg

)
− Φ

(
−Tdead

2σg

)
=

1

2

[
1 + erf

(
Tdead/(2σg)√

2

)]
− 1

2

[
1 + erf

(
−Tdead/(2σg)√

2

)]
=

1

2
, (S11)

which simplifies to [
erf

(
Tdead/(2σg)√

2

)]
−
[
erf

(
−Tdead/(2σg)√

2

)]
= 1. (S12)

We can look up that the solution to this expression involving the error function (erf(x)) occurs when
Tdead
2σg
≈ 0.67, or that

Tdead ≈ 2 · 0.67 · σg. (S13)
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Eq. (S13) gives us an expression for the dead time in terms of the standard deviation of the Gaussian
filter that we apply to our data. We apply the filter in Fourier space (such that the process becomes
a multiplication between the filter and the Fourier-transformed data, instead of a convolution in time-
space). In Fourier space the filter we use has the form

G(f) = e−0.3466(f/cfG)2 . (S14)

The factor of 0.3466 in the exponent is chosen to give 3 dB of attenuation at the cutoff frequency (33).
That is, when f = cfG, the attenuation is half (3 dB corresponds to a change in power ratio of a factor
of 2). For this to be the case, we must have a pre factor in the exponent of ln 2/2 = 0.3466. cfG is a
rescaled cutoff frequency of the filter based on how we define our frequency axis. We choose to establish
our frequency axis from −num. frames/2 to +num. frames/2, where “num. frames” is the number of
image frames in a trajectory. If we want a cutoff frequency for the filter at fcG Hz, then we must define

cfG =
num. frames

fps× f−1
cG

, (S15)

where fps is the frame rate of the camera (30 Hz in our case). This is essentially a unit conversion,
since our frequency axis is unitless but fcG is in Hz. This conversion coincides with the convention of the
Matlab fft command (by which we Fourier transform our data), which returns a vector the same length
as the input vector, in frequencies from 0 to fps/2.

The Fourier transform of a Gaussian is a Gaussian, so in time space the Gaussian filter defined in
Eq. (S14) becomes

g(t) =
1√

2πσg
e
− t2

2σ2g , (S16)

where σg defines the width of the filter and is related to fcG by (33)

σg =

√
ln 2

2πfcG
. (S17)

We use fcG = 0.0326 Hz, which corresponds to a Gaussian-shaped smoothing profile with a 4 second
standard deviation in time space. Given this 0.0326 Hz cutoff frequency, according to Eq. (S13) we
calculate that the dead time of our filter is 5.5 seconds.

S1.4 Fitting data of lifetimes versus J-factors.

Fitting was performed using the built-in lsqnonlin function in Matlab, with the standard errors on the
mean lifetimes as the weights. Individual data sets (unlooped state vs. looped state, and data flanked
by Oid-O1 vs. Oid-O2) were fit to a generic power law of the form 〈τ〉 = a × Jbloop, or all four data sets
(the two state and the two pairs of flanking operators) were fit simultaneously to Eqs. S75 amd S76 in
Sec. S2.3.4. That is, for the global fit to all four data sets below, the m parameter was forced to be the
same for all four data sets, but the proportionality constant was allowed to vary between data sets.

As in (1), we believe that the largest source of error in the data is the variability between tethers;
therefore, as in (1), errors on the fit parameters were calculated according to a bootstrapping scheme, in
which the trajectories that comprise each data set were resampled with replacement 10,000 times, and
from these resampled sets, 10,000 new mean lifetimes, standard errors on the lifetimes, and J-factors were
computed. The fits were then redone 10,000 times using these new mean lifetimes and J-factors, and the
errors on the fit parameters taken to be the standard errors of the 10,000 new fit parameters. The fit
parameters and their errors we obtain for the additional data are in reasonable agreement with that of
Fig. 3 in the main text.
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Figure S2: Kinetic scheme for looping. In thermal equilibrium, for a DNA (yellow line) with two Lac repressor binding
sites A and B (orange and red boxes) exposed to a solution of Lac repressor molecules (blue shapes), the system transitions
between the four unlooped states and the looped state discussed in the text. Kinetic rates governing each transition are
labeled above the arrows indicating that transition. Each transition is either first-order (characterized by one rate constant
k with unit 1

time
) or pseudo-first-order (characterized by a rate [R]k with units 1

time
). We assume that the concentration of

repressor is much larger than the concentrations of its binding sites, such that the concentration of free repressor in solution
is effectively constant over the course of the experiment (see (1) for details and a discussion of when this assumption breaks
down). Therefore the second-order binding steps of the form R+A→ RA can be simplified to pseudo-first-order. Examples
for the forbidden pathways discussed in (iv) are shown in green arrows.

S2 Supplementary Methods: Theoretical Analysis

In these sections we describe in detail the kinetics scheme we introduce in the main text, and give a fuller
account of its reconciliation with our experimental results.

S2.1 Kinetics scheme for protein-mediated looping.

S2.1.1 States of the looping system and assumptions in our derivation.

We start by setting up some basic parameters of the system and stating some assumptions required for
our derivation. As described in our previous work in which we derived a statistical mechanical model for
the probability of loop formation by the Lac repressor (1, 24), our system can adopt five coarse-grained
states, illustrated in Fig. S2: no protein bound on DNA, either operator (i.e. binding site) A or B being
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bound, both operators bound, and the looped state. Their relative statistical weights are given by

w0 = 1, (S18)

wA−bound =
[R]

KA
, (S19)

wB−bound =
[R]

KB
, (S20)

wAB =
[R]2

KAKB
, (S21)

wloop =
[R]Jloop
2KAKB

. (S22)

The relationship between the looping probabilities measured in TPM, ploop, the repressor-operator
dissociation constants for the two operators that flank the loop, KA and KB, and the looping J-factor of
the DNA in the loop, Jloop, can be described as

ploop =
wloop

w0 + wA−bound + wB−bound + wAB + wloop
(S23)

=

[R]Jloop
2KAKB

1 + [R]
KA

+ [R]
KB

+ [R]2

KAKB
+

[R]Jloop
2KAKB

. (S24)

where [R] is the concentration of Lac repressor. Jloop is related to the looping free energy by Jloop =
1 M e−β∆F . “1 M” is the standard state calculated by discretizing the solution volume to molecular size
lattice and the exponential factor is the occupation number given by Boltzmann distribution. KA, KB

and [R] are also in molar. Generally, the “looping free energy” contains contributions from the bending,
twisting energy change and entropic change from both the DNA and the protein. Figure S2 summarizes
our kinetic model for the transition state theory. We use several simplifications as follows.

(i) We assume that two LacI binding to operator A and B are independent, although we know the
binding of LacI does bend the operators and has a small effect on the tether RMS (as reported in (1)),
and in principle binding of two LacI could couple. (Some researchers discussed protein-protein coupling
through both binding to DNA.)

(ii) We assume at all the LacI concentrations we work with, there is negligible nonspecific binding
of LacI to DNA. In fact, the dissociation constant of the LacI for its specific binding sites (operators)
is about 10−9 times smaller than non-specific binding (35). The dissociation constant for non-specific
binding is in the 10−5M range, which is much higher than the highest repressor concentration we use
(10−8M). Non-specific binding, if it occurred, might shorten the DNA tethers and result in higher local
concentration of adsorbed LacI available to bind to DNA. Ref. (36) reported that nonspecific binding of
phage Lambda cI protein to DNA shortens loop length and broadens its distribution in a concentration-
dependent manner. This also changes and broadens the observed kon and koff of cI to an operator (which
are supposed to be independent of cI concentration). However, in our system the shortening of tether by
protein binding is small and is not concentration dependent, as shown in (1). Our LacI looping system
therefore does not suffer from non-specific binding at the concentrations we work with, and we do not
need concentration-dependent correction terms for the rate constants.

(iii) No depletion of LacI from the solution. In our experiments, LacI is present in excess over the
DNA, so the LacI concentration in solution is essentially constant. Hence, the second-order reaction of a
repressor binding to an operator (for example, R+A→ RA) becomes a pseudo-first-order reaction. All

10



the reaction steps in Figure S2 are thus first-order or pseudo-first-order reactions.

The above assumptions were also used in the statistical mechanical model for looping probability (see
further discussion of these issues in (1)). The observed looping probabilities fit well to this statistical
mechanical model (see Ref. (1)), and gives us confidence that assumptions (i), (ii) and (iii) are indeed
valid for our experimental conditions. We next consider the kinetics that govern the transition among
these states and adopt a few assumptions commonly used in chemical kinetics analysis.

(iv) We assume transitions occur at one molecular junction at a time (with the probability of order
kδt, where k is a reaction rate and δt is an infinitesimal time interval). Simultaneous actions at two
junctions would be very unlikely (because for two events to happen at the same time the probability
would be of order kk′(δt)2). For example, the probability of both heads of LacI grabbing the operators
simultaneously while the loop forms is negligible. One of its ends always has to bind first and wait for
the polymer fluctuation to bring the other end close to the other operator. Similarly, two LacI binding
to two operators simultaneously is a process of negligible significance. The same is true for simultaneous
dissociation at two junctions or any other high-order transitions. The two example forbidden pathways
are shown in Figure S2 in green arrows.

(v) As discussed in Sec. S1.2 and Fig. S1 above, with TPM we actually observe two different looped
states, with distinct RMS values, that we call the “bottom” and “middle” looped states. They are likely
looped states with different geometries and they may interconvert (see Ref. (30)). However, for the most
part here we consider only the coarse-grained total looped state, because, as described in Ref. (2), the
bottom state is rare, and we do not have much data on bottom state lifetimes for most constructs. Hence,
our kinetic analysis focuses on the switching rates between the unlooped state and the dominant looped
state.

S2.1.2 Master equations.

From the kinetics pathways shown in Figure S2, the master equations of the system are given by

dp0

dt
= −([R]kAon)p0 + kAoffpA−bound − ([R]kBon)p0 + kBoffpB−bound, (S25)

dpA−bound
dt

= −(kAoff + [R]kBon + kβon)pA−bound + [R]kAonp0 + kBoffpAB + kβoffploop, (S26)

dpB−bound
dt

= −(kBoff + [R]kAon + kαon)pB−bound + [R]kBonp0 + kAoffpAB + kαoffploop, (S27)

dpAB
dt

= −(kAoff + kBoff )pAB + [R]kAonpA−bound + [R]kBonpB−bound, (S28)

(S29)

and
dploop
dt

= −kβoffploop + kβonpA−bound − kαoffploop + kαonpB−bound. (S30)

These probabilities must add up to one, that is,

p0 + ploop + pAB + pA−bound + pB−bound = 1. (S31)
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S2.1.3 Application of detailed balance.

Before turning to a derivation of expressions for average lifetimes in terms of the rate constants in Fig. S2
and Fig. S2, we next establish some basic relationships between the statistical weights introduced in the
previous section and the kinetic parameters in Fig. S2, which will be used in the next section.

In Fig. S2, kαon, kαoff represent the on and off rate constants for LacI to bind to and dissociate from

operator A, when its other end is bound to operator B. Similarly, kβon, kβoff represent the on and off
rate constants for operator B when the Lac repressor already binds to A with one end. As discussed
above, we assume all the reaction steps are first-order or pseudo-first-order, so the units of kαon, kαoff ,

kβon, kβoff , kAoff , kBoff and [R]kAon, [R]kBon are 1
[time] . Because of DNA looping, we expect the Lac repressor

on rates to operator A and B, kαon and kβon, to differ from the original on rates [R]kAon and [R]kBon. In
earlier work, Jloop was used interchangeably with the effective local concentration of LacI (37). If we
consider the looping reaction at operator A when the LacI has already bound to other site B, in the usual
sense of intermolecular binding using an effective protein concentration [I], we can write the reaction as
I +B − bound→ looping, while the usual binding reaction of LacI onto site A is R+A→ RA. Making
use of the statistical weights given in Eq. S18, S19, S20 and S22, the relative amount of the different
species in these reactions are

[looping]

[B − bound]
=

wloop
wB−bound

=
Jloop
2KA

, (S32)

and
[RA]

[A]
=
wA−bound

w0
=

[R]

KA
. (S33)

Hence, we can identify [I] with
Jloop

2 . This is why the looping J-factor is usually considered an effective
repressor concentration.

Jloop affects how easily the empty site could find a repressor molecule in its close proximity. A large
Jloop means that when one hand of the repressor is bound to one site, it is more easily brought to the

other site because it is coupled to the DNA. Hence, the on rates kαon and kβon, which depend upon the
chance for the operator to see a LacI when the other end of of the LacI has already bound to the other
operator, should be regulated by the dynamics and strain of DNA loop formation. Indeed, loop formation
kinetics have been modeled by diffusion in an effective energy landscape which is governed by the polymer
stiffness and size (38–41). On the other hand, the off rates kαoff and kβoff are in general difficult to model
despite various efforts in the literature, because the detailed dynamical atomic position, orientation and
electrostatic interactions (coupled by solvent) are not known. Here we do not exclude the possibility that

the off rates kαoff and kβoff are also dependent on Jloop and are different from kAoff and kBoff as well.
If we look at the transitions between operator B being bound and the looped state, we can write down

detailed balance as
kαon · pB−bound = kαoff · ploop. (S34)

Similarly, between operator A being bound and the looped state, detailed balance says

kβon · pA−bound = kβoff · ploop. (S35)

Inserting the statistical weights from Eq. S19, S20, and S22 to the above detailed balance relations leads
to

kαon
kαoff

=
ploop

pB−bound
=

wloop
wB−bound

=

[R]Jloop
2KAKB

[R]
KB

=
Jloop
2KA

, (S36)

and

kβon

kβoff
=

ploop
pA−bound

=
wloop

wA−bound
=

[R]Jloop
2KAKB

[R]
KA

=
Jloop
2KB

. (S37)
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On the other hand, we can also relate the dissociation constants KA and KB to the kinetic rate constants.
The detailed balance between the state with nothing bound on DNA and operator A bound by one Lac
repressor is

([R]kAon) · p0 = kAoff · pA−bound. (S38)

The dissociation constant KA by definition is the ratio of concentrations [R][A]
[RA] for the reaction R+A


RA. Since [A]
[RA] is just p0

pA−bound
, KA is given by

KA =
[R]p0

pA−bound
=
kAoff
kAon

. (S39)

Similarly, the detailed balance between the state with nothing bound on DNA and operator B bound by
one Lac repressor is

([R]kBon) · p0 = kBoff · pB−bound. (S40)

Thus KB has the form

KB =
[R]p0

pB−bound
=
kBoff
kBon

. (S41)

S2.1.4 Associate the average lifetimes with rate constants.

Experimentally we cannot distinguish the four unlooped states because they yield similar RMS values.
What are experimentally observable are the lifetimes of the looped state and the unlooped state. For each
construct (specified by loop sequence, length and operators), measured at a particular LacI concentration,
we therefore obtain distributions of the Looped lifetimes p(τlooped) and the Unlooped lifetimes p(τunlooped),
which give average lifetimes < τlooped > and < τunlooped > for each construct, as well as looping proba-
bilities, ploop, which are the total time spent in the looped state divided by the total observation time.
Because the system is either in the looped or unlooped state, the total time spent in each state, as well
as the average lifetime spent in each state, are by definition associated with the probability in each state
and are given by

< τlooped >

< τunlooped >
=

ploop
1− ploop

=
wloop

w0 + wA−bound + wB−bound + wAB
(S42)

=

[R]Jloop
2KAKB

1 + [R]
KA

+ [R]
KB

+ [R]2

KAKB

∝ Jloop. (S43)

We will try to connect the rate constants in the model (because the rate constants are useful when we
talk about transition state theory later) to the experimentally observed lifetimes. From the looped state

to the unlooped states there are two paths, determined by rate constants kαoff and kβoff . The lifetime
distribution assuming a one-step Poisson process (see (42) for an ion channel example) is

p(τlooped) = (kαoff + kβoff )e−(kαoff+kβoff )τlooped . (S44)

Hence the average looped lifetime is

< τlooped >=
1

(kαoff + kβoff )
. (S45)

Now, if the unlooped state is truly one single state, the average unlooped lifetime would be

< τunlooped >
single state=

1

(kαon + kβon)
. (S46)
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The experimentally observed average lifetime has an inverse relationship with the rate constants. More-
over, this inverse relationship actually still holds, up to some proportionality constants, even when the
state is composed of multiple microstates. To show this is the case, we return to the statement above
that the unlooped state involves four indistinguishable states in TPM. Looking at Figure S2 we know
that if the system starts within any of the four unlooped states, before it reaches the looped state, it can
only follow the arrows with the these rate constants: kαon, kβon, [R]kAon, [R]kBon, kAoff , kBoff . Hence, we know
only these rate constants will appear in the functional form of the unlooped lifetime distribution, even
though we do not know the analytical solution. In other words,

p(τunlooped) = Function(kαon, k
β
on, [R]kAon, [R]kBon, k

A
off , k

B
off ). (S47)

We next make use of the fact that lifetimes are associated with the looping probabilities to derive
an expression for the average unlooped lifetime, by combining Eqs. S43, S54, S36, and S37 as follows.
Starting from Eq. S43, < τunlooped > can be written as

< τunlooped >=< τlooped >
1 + [R]

KA
+ [R]

KB
+ [R]2

KAKB
[R]Jloop
2KAKB

. (S48)

We then plug in the expression of < τlooped > given by Eq. S54 to the expression of < τunlooped > above
and obtain

< τunlooped >=
1

(kαoff + kβoff )

1 + [R]
KA

+ [R]
KB

+ [R]2

KAKB
[R]Jloop
2KAKB

(S49)

=
1 + [R]

KA
+ [R]

KB
+ [R]2

KAKB

(
Jloopk

α
off

2KA
)( [R]
KB

) + (
Jloopk

β
off

2KB
)( [R]
KA

)

(S50)

Next, we can use use the detailed balance relations for the α and β rate constants given by Eq. S36
and Eq. S37 and arrive at

< τunlooped >=
1 + [R]

KA
+ [R]

KB
+ [R]2

KAKB

(kαon)( [R]
KB

) + (kβon)( [R]
KA

)
. (S51)

Then we multiply both dividend and divisor with the factor KAKB
[R]2

and arrive at the form

< τunlooped >=

KAKB
[R]2

+ KB
[R] + KA

[R] + 1

kαon
KA
[R] + kβon

KB
[R]

=
(1 + KA

[R] )(1 + KB
[R] )

kαon
KA
[R] + kβon

KB
[R]

. (S52)

We can also replace KA and KB with kinetic rate constants given in Eq. S39 and Eq. S41 and obtain

< τunlooped >=
(1 +

kAoff
[R]kAon

)(1 +
kBoff

[R]kBon
)

kαon(
kAoff

[R]kAon
) + kβon(

kBoff
[R]kBon

)
. (S53)

We see that indeed < τunlooped > can be expressed in terms of only the set of parameters kαon, kβon, [R]kAon,
[R]kBon, kAoff , kBoff . Also, even though we do not have an analytical solution for the probability distribu-
tion of the unlooped lifetime, and this expression we have for the average unlooped lifetime < τunlooped >

is redundant, we confirm that it is inversely proportional to kαon and kβon. This inverse proportionality
between average lifetime and the rate constants is all we need when we apply transition state theory
(which predicts the rate constants’ dependence on the looping J-factor) to explain the power-law-like
dependence of lifetimes on J-factor.
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S2.2 The Concentration Dependence of Kinetics.

Having established a basic framework for the relationships between average lifetimes, repressor concen-
tration, looping probabilities, and rate constants, we next turn to a comparison between our experimental
results and our theoretical framework, starting with experimental observations of the dependence of the
average lifetime on repressor concentration.

The effects of repressor concentration and flanking operator affinity on looped and unlooped lifetimes
are shown in Fig. S3. Based on the kinetic scheme in Fig. 2 and the definition of ploop, the loop breakdown

rates kαoff and kβoff are related to the experimentally observed mean looped lifetime 〈τlooped〉 by

〈τlooped〉 =
1(

kαoff + kβoff

) . (S54)

The loop formation rates kαon and kβon are related to the mean unlooped lifetime 〈τunlooped〉 by

〈τunlooped〉 =

(
1 +

kAoff
[R]kAon

)(
1 +

kBoff
[R]kBon

)
kαon

kAoff
[R]kAon

+ kβon
kBoff

[R]kBon

(S55)

= 〈τlooped〉
(

1

ploop([R])
− 1

)
. (S56)

S2.2.1 Looped state lifetimes are independent of repressor concentration.

According to Eq. S54, < τlooped >= 1

(kαoff+kβoff )
. Also, both rate constants kαoff and kβoff are determined

by DNA-protein interaction and are independent of [R]. As a result, the looped state lifetimes should
exhibit no dependence on repressor concentration [R]. As shown in Fig. S3b, our data are reasonably
consistent with this prediction.

The value of < τlooped > does depend on operator binding site identity, however: the four constructs

have one common binding site (say they have the same kβoff ), so the values of < τlooped > will depend
on the different kαoff . We see that from Figure S3b, constructs with stronger binding sites have longer
< τlooped > and hence smaller kαoff . (The order of LacI-operator binding affinities is Oid > O1 > O2.) As

we will see in section S2.3.2 in Eq. S66, there is a e−βEA term in kαoff . This could possibly qualitatively
explain why construct with stronger binding site (bigger EA, here we use positive values of binding
energies) would have smaller kαoff . However, we do not know the pre-factors for different constructs, and
we do not have a definitive model to predict the operator dependence of rate constants, so we cannot
conclude definitively that this e−βEA term is the source of the variation in average lifetime between
constructs.

S2.2.2 The unlooped lifetime depends on repressor concentration via a shifted equilibrium.

On the other hand, the unlooped lifetime given by Eq. (S55) does depend on [R], and in this case the data
shown in Fig. S3a is consistent with the predicted [R] dependence. Briefly, the shape of this dependence
on R is consistent with the prediction of Eq. S56: since 〈τlooped〉 is [R]-independent, the [R]-dependence
of 〈τunlooped〉 comes from the [R]-dependence in the looping probability and is captured by the ratio of
unlooped and looped probabilities, or the “relative unlooped frequency” 1

ploop([R]) − 1 ≡ ω in Eq. (S56) as

explained below. That is, 〈τunlooped〉 should scale linearly with ω, as shown in Fig. S3c.
The unlooped lifetime depends on [R] as shown in Figure S3a. We can explain this dependency by
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Figure S3: Mean state lifetime as a function of repressor concentration and flanking operators. All of these
constructs contain the E8 sequence in the loop, but two (black and green) have the same flanking operators but different
loop lengths, while the rest have the same loop length as the black data but different flanking operators. Naming convention
details are given in the Methods. a, Mean unlooped state lifetimes versus repressor concentration [R]. b, Mean looped
state lifetimes versus repressor concentration. Horizontal dashed lines represent the average looped state lifetime over all
concentrations for a particular construct, weighted by the error at each concentration. As discussed in the text, the mean
lifetime of the looped state should be invariant with concentration; see also Fig. S4 and Sec. S3.1 below. c, Mean unlooped
state lifetimes versus the relative unlooped frequency ω, defined as the term that multiplies 〈τlooped〉 in Eq. (S56). The
minimum unlooped mean lifetime for each construct in panel a corresponds to the minimal relative unlooped frequency
and maximal looping probability. Dashed lines show 〈τunlooped〉 = b ∗ ω, with slope b for each construct corresponding to
the weighted-average looped state lifetimes shown as horizontal dashed lines in panel b. Given the relationship between
〈τunlooped〉 and ω derived in Eq. (S56), which predicts a linear relationship with a slope corresponding to the mean looped
state lifetime, the dashed lines in this panel are therefore a parameter-free ”fit” demonstrating that the relationship between
〈τunlooped〉, 〈τlooped〉 and ω are in good agreement with the predictions of our model.
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Figure S4: Looping probability (a,b) and looping dwell time (c) as a function of repressor concentration. Data
in a, b are mean looping probabilities and are adapted from (1); errors are standard errors on the mean. Curves are fits to
our statistical mechanical model (see Eq. S24) with Jloop, KA and KB for each sequence as the fit parameters. Note that the
two constructs represented by filled circles have the same flanking operators but different loop lengths; the other constructs
have the same loop length and sequence as the black data but have different flanking operators. The difference between
a and b is that b shows the looping probabilities for the two looped states, the “middle” (M) and “bottom” (B) states
described in Sec. S1.2 above, for the one of these four constructs that has both states. The other three constructs shown in
a have only the “middle” state. In c, the mean dwell times of the looped states whose probabilities are shown in a, b are
plotted. Data are the same as in Fig. S3 above, except here we have plotted the dwell times of the two looped states of the
Oid-E8107-O1 construct separately. Note that when the dwell times of the two states are plotted separately, the invariance
with repressor concentration that our theoretical framework predicts is more clear. It is possible, then, that the looped state
in the Oid-E894-O1 (and possibly that of O1-E894-O1 as well), which appears as a single tether length in our data, is in
fact composed of different microstates, which, if plotted separately, would then appear invariant with concentration. This
hypothesis is supported by the fact that the distributions of the looped state dwell times whose mean values are plotted here
are not singly exponentially distributed (see Fig. S8 below), and by the conclusions of the vb-HMM analysis mentioned in
Sec. S1.2 above (see Ref. (30)).

Eq. S55,

< τunlooped >=
(1 +

kAoff
[R]kAon

)(1 +
kBoff

[R]kBon
)

kαon(
kAoff

[R]kAon
) + kβon(

kBoff
[R]kBon

)
. (S57)

We expect all the rate constants k’s to be independent of repressor concentration [R] (because they are
determined by local interactions between molecules and will not be affected by other repressor molecules
present in the system). However, < τunlooped > depends on [R] explicitly. [R] shifts the equilibrium
among the internal unlooped states—if we look at the looping probability as a function of repressor
concentration, given in Figure S4, we see some similarity between it and Figure S3a.

We do not know the rate constants in Eq. S57, but it is identical to Eq. S48 which says

< τunlooped >=< τlooped >
1 + [R]

KA
+ [R]

KB
+ [R]2

KAKB
[R]Jloop
2KAKB

. (S58)

Since the values of KA, KB and Jloop are constants for each construct, and also we know that < τlooped >
is independent of [R], this tells us how < τunlooped > depends on [R].

Compare Eq. S58 with looping probability given in Eq. S24, we see that the way < τunlooped >
depend on [R] is entirely governed by how ploop depend on [R]. The repressor concentration [R] shifts
the equilibrium and hence controls the looping probability and the unlooped lifetime. We can rewrite
Eq. S58 in the form

< τunlooped >=< τlooped >
1 + [R]

KA
+ [R]

KB
+ [R]2

KAKB
[R]Jloop
2KAKB

=< τlooped > (
1

ploop([R])
− 1). (S59)
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Since < τlooped > is constant over [R], < τunlooped > should scale as 1
ploop([R]) − 1 =

punlooped([R])
ploop([R]) ≡ ω.

We compute this relative unlooped frequency ω, i.e. the odds of being in the unlooped state, from the
measured looping probabilities given in Figure S4, with the errors on ω calculated using our standard
bootstrapping procedure (see (1) and Sec. S1.4 above), and show in Figure S3c that < τunlooped > and ω
indeed are correlated linearly.

S2.3 The J-factor Dependence of Kinetics.

S2.3.1 Looped and unlooped lifetimes scale with looping J-factor.

Figure 3 in the main text show the lifetimes plotted as a function of looping J-factors. We see that
< τlooped > and < τunlooped > both scale with Jloop, without loop sequence or helical period dependence,
despite the fact that the looping boundary conditions are different for the sequences we measured. (When
looping probabilities are close to 0 or when J-factor is small, the state transition events are rare. Less
lifetime data is available from the same amount of total observation time and the average lifetimes will
have bigger error bars.) The two plots shown in Figure 3a,b show opposite trends in looped lifetime and
unlooped lifetime with respect to the looping J-factor. Comparing the trends in Figure 3a,b with those
in Figure S3a,b, we see that the interpretation of Jloop as effective repressor concentration fails to capture
the opposite dependencies of looped and unlooped lifetimes with Jloop.

It is especially intriguing that not only loop formation kinetics, but also loop breakdown kinetics,
are controlled by the looping J-factor, which is a function of DNA and protein bending and torsional
flexibilities and the geometry of these polymers. The kinetics of loop formation are usually modeled by
diffusion in a one-dimensional energy landscape governed by the polymer stiffness (38–41), from which
the first passage time from unlooped to looped state is calculated. Hence, it is not surprising that the
loop formation process is dependent on the J-factor, which is a function of DNA flexibility. On the other
hand, the loop breakdown process is less addressed and the off rate constants of chemical reactions are
usually considered to be only dependent on local bimolecular interaction strength, which can be tuned by
ionic concentration and temperature in the environment. It is surprising that our data reveals that the
long-distance DNA looping plays a role in the loop breakdown process. The DNA looping system gives
an novel example where both on and off rate constants are modulated by the same, action-at-a-distance
mechanical quantity. We will try to explain this scaling in the following arguments.

S2.3.2 Transition state theory.

We use transition state theory to phenomenologically model the fact that both looped and unlooped
lifetimes are dependent on Jloop, and that < τlooped > and < τunlooped > have opposite trends with
respect to Jloop. Transition state theory in chemical kinetics assumes a transition state with a higher
energy between the initial and final states of the reaction. The transition state is short-lived and its
detailed conformation and energy are usually unknown. (First-principle simulations can be helpful in
obtaining information about the structure and free energy of the transition state, and have been attempted
for protein-mediated looping. However, in the case of repressor-mediated DNA looping, the boundary
conditions of the loop are not yet well-established, so simulations of the looping J-factor can yield quite
diverse results, depending on the assumptions made about these boundary conditions (1). On the other
hand, in the case of ligase-mediated DNA cyclization, there is an exact solution for the free energy of the
cyclized DNA because the boundary conditions are well-defined, and we expect the transition state for
cyclization reactions to be easier to model than repressor-mediated looping. The same lifetime scaling
with free energy should hold true for the opening and closure dynamics in cyclization, and could serve as
a way to check the simulated transition state free energy.)

If the activation energy of a path is Eact, the rate constant would have the form k = k0e
−βEact . k0

is determined by the detailed atomic orientations and the short-ranged electrostatic interactions of the
molecules. In principle, the forward and reverse paths and the transition states for them do not need to be
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the same, but in this case of looping and unlooping, assuming the same forward and reverse paths would
be the first order approximation. In fact, as will be seen below, the assumption that the forward and
reverse reactions follow the same path naturally explains both dependencies of the looped and unlooped
lifetimes to the looping J-factors.

We summarize our hypothesized free energy landscape in Figure 2c in the main text. From the
dissociation constants KA and KB we can obtain EA and EB, the binding energy of the LacI molecule to
the operators A and B. In Figure 2c, we consider the transition between the state in which only binding
site A is bound by LacI, and the looped state. We denote ∆F ‡loop as the configurational free energy change
to the highly distorted DNA and possibly also bending of the Lac repressor in the transition state. (Ref.
(13) suggests that the Lac repressor itself has configurational change during looping). The free energy of
the unlooped, looped and the transition states are thus given by

Funlooped = −EA + F0. (S60)

Flooped = −EA − EB + ∆F + F0. (S61)

Ftransition = −EA + F0 + ∆F ‡unloop. (S62)

Here, F0 is the reference state configurational free energy of the unlooped state. Hence, the activation
energy of the forward path is (Ftransition − Flooped) = ∆F ‡loop. The activation energy of the reverse path

is (Ftransition − Funlooped) = ∆F ‡unloop. As a result, the on and off rate constants for operator B are given
by

kβon = kβ0 e
−β∆F ‡unloop . (S63)

kβoff = kβ0 e
−β∆F ‡loop ∝ e−β(∆F ‡unloop−∆F−EB) ∝ e−β(∆F ‡unloop−∆F ). (S64)

Similarly, if we consider the transition between the state that only binding site B is bound and the looped
state, we can obtain the rate constants for operator A as

kαon = kα0 e
−β∆F ‡unloop . (S65)

kαoff = kα0 e
−β∆F ‡loop ∝ e−β(∆F ‡unloop−∆F−EB) ∝ e−β(∆F ‡unloop−∆F ). (S66)

The above relationships automatically satisfy the detailed balance constraints given in Eq. S36 and S37

that kαon
kαoff
∝ e−β∆F ∝ Jloop and kβon

kβoff
∝ Jloop.

Comparing the above on-rates in Eq. S63 and Eq. S65 with the relationship between unlooped lifetime
and kinetic rates given in Eq. S55, we see that the experimentally measured unlooped lifetimes are
governed by

< τunlooped >=
(1 +

kAoff
[R]kAon

)(1 +
kBoff

[R]kBon
)

kαon(
kAoff

[R]kAon
) + kβon(

kBoff
[R]kBon

)
=

(1 +
kAoff

[R]kAon
)(1 +

kBoff
[R]kBon

)

kα0 e
−β∆F ‡unloop(

kAoff
[R]kAon

) + kβ0 e
−β∆F ‡unloop(

kBoff
[R]kBon

)
∝ eβ∆F ‡unloop .

(S67)
On the other hand, comparing the above off-rates in Eq. S64 and Eq. S66 with the relation between looped
lifetimes and kinetic rates given in Eq. S54, we see that the experimentally measured looped lifetimes are
governed by

< τlooped >=
1

(kαoff + kβoff )
=

1

(kα0 e
−β(EA+∆F ‡unloop−∆F ) + kβ0 e

−β(EB+∆F ‡unloop−∆F ))
∝ eβ(∆F ‡unloop−∆F ).

(S68)
The lifetimes also satisfy the constraint from the looping probability given in Eq. S43 that

<τlooped>
<τunlooped>

∝
e−β∆F ∝ Jloop.
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S2.3.3 The transition state depends on the polymer construct.

For a polymer or a DNA-protein polymer system, the free energy of the closed or looped conformation
involves an increase in elastic energy and a change in entropy due to constrained polymer fluctuations.
The looped conformation and its elastic energy depend on the construct—specifically, the size, geometry
and rigidities of the polymer system. The entropy change is also governed by the looped conformation
and hence depends on the construct. As a result, the looping free energy and its structure are determined
by the polymer system construct, even if the exact solution is not available for systems like protein-
mediated DNA looping. On the other hand, despite the unknown structure of the transition state, we
have some hints about what it should be. In computing the first passage time to polymer ring closure,
the landscape of configurational free energy is usually calculated based on the polymer rigidities and size,
and the system is modeled as diffusion in the free energy landscape (or effective potential) (38). The time
scale to looping is thus given by the rate to cross a barrier whose height is determined by the polymer
construct, applying some variations of the transition state theory (such as Kramer’s theory). This scheme
is identical to using transition state theory in our looping system, and the barrier height bears the same
concept as what would be the transition state in our system. Hence, we argue that in our system the
transition state free energy is also governed by the polymer construct. Since both the transition state
free energy and the looping free energy are governed by the polymer construct, their values are related.

In other words, we argue that the transition state configurational free energy change ∆F ‡unloop is
related to the looping free energy change ∆F , since they are both determined by the polymer construct.
For a given construct whose ∆F is known, the value of ∆F ‡unloop is uniquely determined. There is a

mapping from ∆F to ∆F ‡unloop,

∆F ‡unloop = ∆F ‡unloop(∆F ). (S69)

Then the unlooped and looped lifetimes given in Eq. S67 and S68 become

< τunlooped >∝ eβ∆F ‡unloop(∆F ), (S70)

and
< τlooped >∝ eβ(∆F ‡unloop(∆F )−∆F ). (S71)

This means that the kinetic rates as well as the looped and unlooped lifetimes have to scale with Jloop ∝
e−β∆F . In particular, since ∆F ∝ ln Jloop

−β ,

< τunlooped >∝ eβ∆F ‡unloop(∆F ) ∝ eβ∆F ‡unloop[
ln Jloop
−β ]

(S72)

and

< τlooped >∝ eβ(∆F ‡unloop(∆F )−∆F ) ∝ eβ(∆F ‡unloop(∆F ) · e−β∆F ∝ eβ(∆F ‡unloop[
ln Jloop
−β ]) · Jloop, (S73)

showing that the lifetimes are functions of Jloop and hence the data collapse we observe in Figure 3a, b.

S2.3.4 Approximate power-law-like scaling.

Without knowing the exact form of ∆F ‡unloop = ∆F ‡unloop(∆F ), we can still estimate how ∆F ‡unloop and
∆F are related numerically. We ask what their relative numerical values are, quantified by the ratio n
such that

∆F ‡unloop(∆F ) = n∆F. (S74)

Within a small perturbation of parameter space (in our case, the DNA constructs share a similar range
of loop lengths and have similar helical repeats; their measured looping J-factors also fall within similar
ranges), we can assume n is approximately constant over this range.
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If we then insert Eq. S74 into the lifetimes given by Eq. S70 and Eq. S71, we get

< τunlooped >∝ eβ∆F ‡unloop(∆F ) = eβ(n∆F ) ∝ J−nloop, (S75)

and
< τlooped >∝ eβ(∆F ‡unloop(∆F )−∆F ) = eβ(n−1)∆F ∝ J−(n−1)

loop . (S76)

Thus, we expect to see approximate power-law-like scaling of the lifetimes with respect to the looping
J-factor, given by

log (< τunlooped >) = (−n) log (Jloop) + constant, (S77)

and
log (< τlooped >) = (1− n) log (Jloop) + constant. (S78)

As noted above, protein-mediated DNA looping is complicated because of as-yet poorly-established
boundary conditions. We propose this approximate power-law-like scaling observation as a way to probe
looping transition state free energies, and that it may be useful in future simulation efforts. The devel-
opment of the transition state theory has laid the groundwork to understand the dependence of both
the loop formation and breakdown kinetics on the polymer properties encapsulated within the looping
J-factor.

S2.4 Development of a molecular-level model for the transition state

S2.4.1 Defining the free energy landscape

In order to better incorporate the polymer elastic properties and understand how they uniquely contribute
to the looped and unlooped lifetimes, we develop a molecular model that captures the competing effects of
polymer deformation free energy and bonding energy. We approximate the DNA-Lac repressor complex
(when one binding head of the repressor is bound at one of the binding sites on the DNA, leaving the other
binding head of the repressor free and the other binding site empty ) by an ”effective polymer chain”, which
we describe with the wormlike chain model. For simplicity, hereafter we refer to the effective polymer
chain as DNA. As for the bonding energy between the free repressor binding head and the empty DNA
binding site, we consider a realistic energy profile with finite interaction length. The interplay between
the bonding interaction length and the typical polymer deformation length scale determines the transition
state. Since our experiments suggested a key role of the looping J-factor in determining the lifetimes of
the looped and unlooped states, we wish to explore the properties of the polymer chain that fed into the
J-factor and better understand how the lifetimes scale with these properties.

To begin, we consider the DNA as a wormlike chain that has a bending modulus kBTLp (43). The
persistence length, Lp, captures how long the polymer chain would prefer to extend in one direction. For
double-stranded DNA, this is typically around 155 bp, or about 53 nm (44). The tangent vector as you
move along the chain is (~u = d~r

ds). The bending energy for this continuous chain is given by

βEbend =
Lp
2

∫ L

0
dsκ(s)2 (S79)

and depends on the square of the local curvature κ(s) = |d~uds |. The local curvature is equivalent to the
inverse of the radius of a circle that is tangent to the curve (e.g. a straight chain segment has zero
curvature and a tangent circle with infinite radius). The local curvature captures the change in the
tangent vector as you move along the chain, with a larger κ(s) indicating that the the chain is more
highly bent at location s.

We next calculate the resulting free energy of a polymer chain that has this elastic bending penalty,
including both entropic effects and elastic deformation. To start, we find the Green function G(r)tobe

G(r) =

∫
D [~r(s)] exp (−βEbend) , (S80)
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which is the probability of finding the two ends or binding sites to be a distance r apart. The Green
function is an average over all chain configurations, with each appropriately weighed by a Boltzmann
term of the bending energy, with ~r(s) the position in space of the chain at point s. This is the partition
function for the wormlike chain, and we have previously derived its exact result analytically (45). We
calculate the Green function for a given chain length L and persistence length Lp using the methods
outlined in Mehraeen et al. (2008) (46). The free energy Fconf (r) of this chain is related to the Green
function G(r) as

Fconf (r) = −kBT log
[
r2G(r)

]
. (S81)

The term in the logarithm represents the probability of finding the polymer with end-to-end distance
between r and r+dr. At long end-to-end distances r, the fully elongated chain will have few conformations
that it can access, carrying a high entropic penalty. When the two ends are close, there will also be a
strong entropic penalty as well as an elastic penalty for bending the chain.

The DNA strand has an intrinsic twist, and since the Lac repressor binding interface is specific for a
certain orientation of the DNA, the DNA strand will need to twist to bind the protein. The resistance
to twisting is captured by an energetic penalty for twist deformation. The intervening DNA length, i.e.
the length of the loop L, determines the undeformed orientation of the DNA helix at the operator, and
proper alignment for binding incurs twist deformation upon rotating the DNA into its proper orientation.
We define the twist angle θ to be the angle of rotation about the DNA axis at the unbound operator
away from the ground-state untwisted angle (i.e. θ = 0 is untwisted). We consider a simple model for
the twist free energy, where

Ftwist(θ) = [kBTLt/(2L)]θ2, (S82)

which is quadratic in the local twist deformation and evenly distributes the twist deformation over the
length of the DNA between the operators. The twist persistence length Lt captures the resistance to
twist deformation, and has typically been measured for DNA as 110 nm (47). This model neglects the
geometric coupling between twist and writhe of the chain, which becomes more relevant at longer chains
where out-of-plane conformations are not prohibited by the bending deformation energy (48). More
detailed models incorporating twist require knowledge of the entry and exit angles of the DNA as it binds
the Lac repressor (45). This model also neglects any entropic contributions to the orientation. These
simplifications to the model for twist could result in differences between our measured parameter values
for Lt and the canonical values.

The binding free energy, which drives the formation of the looped state is modeled as a potential well
with depth ε0 and an interaction length scale δ. The favorable binding energy increases as the operators
are brought to closer proximity, with the length-scale δ determining at what distance the energy begins to
be felt. Given the size of the Lac repressor arms as well as their ability to non-specifically bind the DNA
the value of δ should be expected to be a few nanometers (14, 49, 50). The binding energy between the
DNA operator and Lac repressor has previously been measured around 15-18 kBT , so we would expect
ε0 to fall close to this range (51). The binding energy is also sensitive to the orientation of the binding
sites. This effect can be introduced by calculating the distance of separation between two operators at
the surface of DNA, which is illustrated in Fig. S5, given by

ra(r, θ) =
√

(r − a)2 + a2 − 2(r − a)a cos(θ − θop). (S83)

Here, as shown in Fig. S5, r is the end-to-end distance of the two DNA strands, θ is the twist angle at
the unbound operator, θop is the preferred twist angle for binding, and a is the radius of the DNA helix
(assumed to be a = 1 nm) (52). Thus, when the orientation is away from the preferred binding angle,
the unbound operator will be farther away from the Lac repressor due to the geometry of the DNA helix.
The preferred twist angle θop = 2π(L/Lturn) + θ0 gives the twist angle that orients the operator to face
the Lac repressor binding site, where θ0 defines the twist angle of the Lac repressor binding site. The
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Figure S5: Illustration of reaction coordinates. Here we show the cross sectional view of the DNA strands (gray objects)
with radius a and are separated by an end-to-end distance r. In order for the binding event to occur, the two operators A
and B must be brought together by strand rotation to compensate θop. The rotational reaction coordinate about the DNA
axis is θ, and in this illustration we show the θ = 0 conformation for simplicity. Importantly, the binding energy Fbind(r, θ)
has to do with the separation of operators at the DNA surface, hence is parametrized by ra. The size of the repressor is
neglected here, or, effectively, is absorbed into a.

binding free energy Fbind is given by

Fbind(r, θ) =

{ −2ε0

1+exp
[
ra(r,θ)
δ

] , r > 2a,

∞, r ≤ 2a,
(S84)

which includes a steric cutoff at r = 2a to account for the overlap of DNA segments. This simple binding
model aims to capture the basic interaction between the DNA operator and Lac repressor by introducing
only the binding affinity ε0 and the interaction length δ to capture the physical interaction. More
detailed models of interaction could capture more molecular detail, but our goal is to give the simplest
representation of binding without introducing additional parameters that do not have well-defined values.

The three thermodynamic contributions Fconf (r), Ftwist(θ), and Fbind(r, θ) combine to give the total
free energy landscape Ftotal(r, θ), as shown in Fig. 4a of the main text, for L = 101 bp and parameters
ε0 = 23.5 kBT , δ = 1.3 nm, Lp = 48 nm, Lt = 15 nm, and θ0 = 0.003π. We next find the minimum
free energy path from the looped state in point X, over the transition state Y, to the unlooped state Z
to reduce the two-dimensional free energy landscape down to a one-dimensional reaction along the end-
to-end distance r. This minimum path is found by determining the value of θ that corresponds to the
minimum of Ftotal for a given value of r. This is equivalent to use of the zero-temperature string method,
which finds the minimum energy path by numerically moving along the surface along the gradient into
valley which forms the minimum energy path. We used code adapted from E, Ren, and Vanden-Eijnden
(2002) for this calculation (53). Using the minimum values of θ(r), we then plot each of the three energies,
as well as the total, in Fig. 4b of the main text.

S2.4.2 Deriving the lifetimes and the looping J-factor

With our one-dimensional free energy landscape, Ftotal(r), we can now proceed to calculate the exper-
imentally determined quantities of the looping J-factor and the looped and unlooped lifetimes. The
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Jloop calculated in the experiments corresponds to the free energy difference ∆F between the looped and
unlooped states. This free energy difference includes the contributions to the polymer, but does not
including the binding energy. To calculate Jloop, we first calculate F looppoly , which is

F looppoly = − logQloop −
∫ rY

2a drFbind(r) exp [−βFtotal(r)]
Qloop

, (S85)

where the partition function Qloop =
∫ rY

2a dr exp [−βFtotal(r)]. The first term represents the total free
energy of the looped state, defined from r = 2a to r = rY at the transition state Y, and the second term
subtracts the binding energy Fbind(r) over that region. We can similarly define F unlooppoly for the unlooped
state from r at the transition state to r = L as

F unlooppoly = − logQunloop −
∫ L
rY
drFbind(r) exp [−βFtotal(r)]

Qunloop
, (S86)

where here Qunloop =
∫ L
rY
dr exp [−βFtotal(r)]. The looping J-factor can then be calculated from the

polymer free energy difference,

Jloop = (1 M) exp(−β∆F ) = (1 M) exp
[
−β(F looppoly − F

unloop
poly )

]
, (S87)

where we have as in the experiments assumed a standard state of 1 M (1, 2).
We calculate the lifetimes of the looped and unlooped sate by use of the Fokker-Planck equation. The

equation defines the motion of an object over a free energy landscape, and is given by{
∂

∂t
− ΓR

}
GR(r′, t|r, 0) = 0, (S88)

where

ΓR = Deff

(
∂2

∂r2
+
∂βFtotal
∂r

∂

∂r

)
. (S89)

By solving Eq. S88 for our free energy landscape Ftotal(r), we can calculate the flux of particles that cross
the transition state in either direction and from that the time that is spent in either the looped or the
unlooped state. We note that this is a more exact treatment to calculate the reaction rates given that we
have a full free energy landscape defined at each point of the reaction coordinate r. From basic transition
state theory, the looped and unlooped lifetimes will in general be dependent on the barrier heights given
in Fig. 4b, and are proportional to exp(−β∆F ‡loop) and exp(−β∆F ‡unloop), respectively. Kramers theory
improves on this approximation by defining the proportionality based on the curvatures at the minima
and maximum of the free energy path, and is an approximation of the more complete Fokker-Planck
treatment we use. We solve Eq. S88 numerically for a given set of model parameters. To begin, we define
the mean passage time T (r) as the time to go from end-to-end distance r to the barrier at the transition
state, where r = rY . Following from Eq. S88, T (r) is governed by

ΓRT (r) = −1, (S90)

with boundary conditions of T (r = a) = 0 and ∂T
∂r (r = 0) = 0. Solving this equation for T (r), and

averaging over all end-to-end distances in the looped state (which goes from r = 2a to r = rY ), yields
the mean looped lifetime

< τlooped >= Deff

∫ rY
2a dr

∫ rY
r dr′

∫ r′
2a dr

′′ exp [−βFtotal(r) + βFtotal(r
′)− βFtotal(r′′)]

Qloop
. (S91)
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Similarly, we can find the mean unlooped lifetime

< τunlooped >= Deff

∫ L
rY
dr
∫ r
rY
dr′
∫ L
r′ dr

′′ exp [−βFtotal(r) + βFtotal(r
′)− βFtotal(r′′)]

Qunloop
, (S92)

where the unlooped state ranges from r = rY to r = L. More details on this solution can be found in an
upcoming manuscript that will expand upon the theory developed in this work.

To compare our results to the experiments, we must find model parameters for the elastic parameters
Lp, Lt, which could vary by sequence, and the binding parameters ε0, δ, and θ0, which should be consistent
across all sequences with the same operators. When looking at the Jloop data versus loop length, a peak
occurs between 104 and 105 bp for all five sequences . At this peak, no twisting (i.e. θ = 0) is needed to
align the untwisted conformation angle (2πL/Lturn) to the preferred binding orientation θ0. We chose a
value of θ0 = 0.003π, which fit the peak value across all five sequences well and which corresponds to a
peak occurring at a loop length of approximately 104.6 bp. Fixing this parameter, we calculated looping
J-factors, looped and unlooped lifetimes for a range of the other four parameters. We then compared
this output to the experimentally determined scaling law, calculating a sum of the squares deviation
from this power law for each parameter realization of the model. Since a range of a parameter values
could reproduce the basic scaling behavior, we chose the best fit to the power laws that fell within the
experimental values of Jloop. Note that we had one free parameter Deff that allowed us to rescale the

lifetimes, and we determined Deff = 1.2 × 10−5 nm2

s to be the best fit to the data. Our selected values
of ε0 = 23.5 kBT and δ = 1.3 nm provided a good fit to the data across all five sequences. Then, for each
sequence, we chose the Lp and the Lt that were the best fit for those sequences given that ε0 = 23.5 kBT
and δ = 1.3 nm. This resulted in values of the persistence length Lp ranging from 48 to 51 nm and the
twist persistence length Lt ranging from 10 to 70 nm. The model using the values for each sequence are
shown compared to the experimental data in Fig. S6. We used the values from sequence TA in Fig. 4 in
the main text.
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Figure S6: WLC model for the energetics of DNA looping and its predictions. The looped and unlooped lifetimes
are shown for two of the five sequences. The parameters ε0 = 23.5 kBT , δ = 1.3 nm, and θ0 = 0.003π rad are the same for
all five sequences. The coloration varies from red (smallest) to blue (largest) based on the loop length. a,b, Looped and
unlooped lifetime data (dots) and theory (lines) for sequence E8, with Lp = 50 nm and Lt = 5 nm, and lengths varying
from 89 to 115bp. c,d, Looped and unlooped lifetime data (dots) and theory (lines) for sequence dA, with Lp = 46 nm and
Lt = 50 nm, and lengths varying from 101 to 108bp.
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Figure S7: Example lifetime histograms for the construct Oid-E894-O1 in the presence of 100 pM repressor. Red curves
are single exponential fits. This construct has only the middle looped state, whose lifetime distribution is shown in the
right-hand panel. It is difficult to tell from these fits if a single exponential describes these distributions of lifetimes well,
especially since we have found the results of the fits to vary significantly based on the size of the bins chosen. Here the
bin size is 15 seconds. (Another way of avoiding binning is by plotting cumulative probability distributions, as in (22, 23),
though we prefer the P-P plots described below for comparison to exponential distributions.)

S3 Additional Results

S3.1 Characteristics of the lifetime distributions.

In the main text we plot the means and standard errors of the lifetimes that we obtain for various data
sets. Here we ask what the full distributions of these lifetimes look like, and in particular, whether they
are exponentially distributed.

A state will have exponentially distributed lifetimes if it is composed of only one microstate, such that
transitions out of the state are governed by a single rate constant. As shown in Fig. S2, we know there are
4 microstates that contribute to what we observe as the unlooped state (no repressor bound, a repressor
bound at one operator, a repressor bound to the second operator, or both repressors bound by different
operators—all of which should have comparable tether lengths). We would therefore expect that the
lifetimes of the unlooped state would not be exponentially distributed; and indeed a kinetic analysis by
Wong and coworkers on similar constructs to those used here (13), as well as one by Revalee and coworkers
with longer loops and some intrinsically curved sequences (23), found the unlooped lifetime distributions
to be best fit by a mixture of two exponentials. On the other hand, we might expect the middle and/or
bottom looped states that we observe to be singly exponentially distributed, if they contain only one
microstate, which is in fact what Wong and coworkers found (13). (Revalee and coworkers described only
one looped state, which they found to be best fit by a biexponential distribution (23).)

A common method for determining whether lifetime distributions are exponentially distributed is
to make histograms of the lifetimes, and fit exponentials to them (e.g., (13, 17, 22)). An example of
such histograms with a single-exponential fit is shown in Fig. S7. However, we have found the fidelity
of this method to be subject to a significant amount of variability depending on the size of the bins
chosen for the histogram, so instead here we use P–P (“percent–percent”) plots to compare the empirical
cumulative distribution functions (CDF) of the measured lifetimes we obtain to the CDF of an exponential
distribution fit according to maximum likelihood.3

As shown in Fig. S8, we find most of the states we observe are not exponentially distributed. The
only lifetimes that we find to be exponentially distributed are those of the unlooped state at or above
500 pM repressor concentration. As discussed in (1), at high repressor concentrations (that is, above the
concentration at which looping is maximal, which includes 500 pM) we expect the unlooped state to be
dominated by the microstate in which both operators are bound by separate repressors; the construct
shown in Fig. S8b has the added advantage that its two flanking operators are the same, which collapses

3We are grateful to Matthew Johnson for the suggestion to use P–P plots and for the code to do the analysis, which can
be freely downloaded from https://gist.github.com/mattjj/2356182 and https://gist.github.com/mattjj/5604903#file-qq-py.
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Figure S8: P-P plots of the lifetimes that we obtain demonstrate that only one of our lifetime distributions is
singly-exponentially distributed. a, A P-P plot with randomly generated, exponentially distributed synthetic “data,”
with the same number of points as our lifetime distributions. When the empirical percentiles match the percentiles of the fit
distribution, the plotted points (blue circles) will lie on the y = x line (shown in red); the deviation of the points from the
y = x line measures the deviation of the empirical (measured) percentiles from the fit percentiles (and hence the deviation
of the data from the fit model, in this case, an exponential). b, A P-P plot for the lifetimes obtained for the O1-E894-O1
construct’s unlooped state at 500 pM repressor, compared to the cdf of a single exponential. In this case we conclude that
a single exponential describes the experimental distribution well. c, A P-P plot for the same construct as in b but for the
middle state. A single exponential does not describe these data well. d-f, P-P plots for a 107 bp loop of the E8 sequence
flanked by the Oid and O1 operators, at 25 pm repressor, a concentration at which both looped states are prevalent. None
of these states is well-described by a single exponential, indicating that they most likely contain multiple microstates. The
same holds for the other sequences, loop lengths, flanking operators and repressor concentrations lower than 500 pM that
we have examined in this work. Note the common feature of blue points lying above the y = x line at small percentiles,
even in b, indicating that the measured lifetimes had too few counts at small values for the distribution to be well fit by
an exponential; we suspect this feature is due at least in part to our limited temporal resolution which does not allow us to
measure lifetimes shorter than 11 seconds.
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the four possible unlooped state microstates into 3 microstates (the singly-bound-operator states being
identical in this case). The majority of our constructs, under the majority of repressor concentrations,
do not show singly-exponentially distributed lifetime distributions for either their looped or unlooped
states, indicating that all are composed of multiple microstates. We have in fact recently shown using
a more sophisticated kinetic analysis of a subset of the data discussed in this work that the two looped
states we observe are indeed composed of multiple microstates (30), as has been long supposed to be the
case (11, 12, 14, 54), and which again is consistent with the characteristics of the lifetime distributions
we obtain here.

S3.2 Comparing looping rate constants for a loop flanked by identical operators to
literature values.

For exponentially-distributed lifetimes, which characterize states whose exit rates are governed by a
single rate constant, the rate constant for transitioning out of that state is simply the inverse of the mean
lifetime of the state (see Sec. S2.1.4 above). As discussed in the previous section, we obtain exponentially
distributed lifetimes only for the unlooped state at or above 500 pM. But at least for the unlooped
state of those constructs that we have measured at high repressor concentration, we can compare the rate
constants that we obtain to those recently reported by Wong and coworkers and Rutkauskas and coworkers
on similar constructs, at the same salt concentrations that we use, and analyzed using half-amplitude
threholding as we have done here (13, 28).

Wong and coworkers found their 133 bp and 138 bp loops, flanked by two Oid operators, to have
unlooping rates (kαoff in the language of Fig. S2, where in this case operators A and B are identical so

kαoff = kβoff ) of 0.003 to 0.006 per second, and looping rates (kαon) of 0.005 to 0.03 per second, in the
presence of 5.4 nM repressor. Rutkauskas and coworkers used a 285-bp loop flanked by two O1 operators,
and found unlooping rates from 0.023 to 0.046 per second. (As an aside, we note that the off-rate for O1

in the absence of loop formation is 0.0047 per second as measured using nitrocellulose filter binding in
200 mM KCl (55), the same conditions as here and in (13, 28)).

If we assume exponentially-distributed lifetimes for our O1-E894-O1 construct at 500 pM repressor
(shown in Fig. S8b and c above), we find a looping rate of roughly 0.005 per second, which is on the
lower end of the range of values Wong and coworkers found with the stronger Oid operator. If we were
to assume that the looped state is likewise also governed by only one rate constant (which is however
unlikely, given the results of Sec. S3.1 above), we would calculate kαoff ≈ 0.02 s−1, which is faster than
that of Wong and coworkers (which makes sense, given our weaker operator), and in good agreement
with the values obtained by Rutkauskas and coworkers. Thus we are confident that our application of
the half-amplitude thresholding method gives us reasonable values for approximate rate constants.

S3.3 Approximate power-law-like scaling of lifetimes with J-factor as a function of
flanking operators, and for the two states separately.

In the main text we show that both unlooped and looped state lifetimes have a power-law-like relationship
to looping J-factors. In Fig. S9a and b we show that this relationship holds when one of the flanking
operators is changed (and the LacUV5 promoter sequence is added to the loop, because these sequences
were originally designed for complementary in vivo and in vitro studies, with the promoter and the choice
of operators being necessary for the in vivo work) (1, 2). In Fig. S9a and b as well as in Fig. 3 in the
main text, the data are fit to a generic power law, as described in Sec. S1.4, with fit parameters given in
Table S1. In Fig. S9c and d, we show the same data but fit to Eqs. S75 amd S76 in Sec. S2.3.4; these fit
parameters are given in the bottom half of Table S1 (called “U/L, global”).

Finally, in Fig. S10 we show the result of the lifetime analysis in which the middle and bottom looped
states are thresholded separately (see Sec. S1.2), for both sets of flanking operators, again fit to generic
power laws. Note that here we plot the middle looped state lifetimes against the looping J-factors of the
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Figure S9: Additional lifetimes data as a function of J-factor and flanking operators. Unlooped state (a, c) and
looped state (b, d) lifetimes as a function of J-factor and flanking operators. Closed circles are the same as those shown
in the main text, and represent constructs flanked by the Oid and O1 operators; open circles are constructs in which 36 bp
of the loop have been replaced by the LacUV5 promoter sequence, and the flanking operators are Oid and O2, O2 being
about five times weaker than O1. Lines in a and b represent fits to generic power laws, with fit parameters given in the top
five rows of the three lefthand columns of Table S1; lines in c and d represent a global fit of all four data sets (looped and
unlooped states with two combinations of operators) to Eqs. S75 amd S76 in Sec. S2.3.4, with fit parameters given in the
bottom half of Table S1.

30



10
−12

10
−10

10
−8

J loop, tot  (M)

10
2

E8
TA
dA
5S
CG

E8
TA
dA
5S
CG

10
−12

10
−10

10
−8

J loop, M  (M)

1

2

10

10

a

U
n
lo

o
p
e
d
 m

e
a
n
 l
if

e
ti

m
e
 (

s
)

M
id

d
le

 l
o
o
p
 m

e
a
n
 l
if

e
ti

m
e
 (

s
)

b

Oid-O1
(no prom.)
Oid-O2
(w/prom.)

Oid-O1
(no prom.)
Oid-O2
(w/prom.)

Figure S10: Lifetimes vs. J-factors as a function of flanking operators, when the two looped states are considered
separately. Here the lifetimes for the middle state are plotted versus the looping J-factors for the middle state only, instead
of the total looping J-factors used in the other plots here and in the main text. Lines represent fits to generic power laws,
with fit parameters given in the top five rows of the three righthand columns in Table. S1.

middle state, rather than the total looping J-factor of both looped states combined. As noted above, for
most constructs, especially the ones flanked by Oid and O2 (and containing the promoter), the bottom
state has such a low probability that Jloop,M and Jloop,tot are comparable. Note also that whether or not
trajectories are thresholded according to unlooped-looped or unlooped-middle-bottom does not change
the lifetimes of the unlooped state, as we would expect.

U/L a (sec/M) b (unitless) U/M/B a (sec/M) b (unitless)

UOid−O1 28(±6)× 10−4 −0.48± 0.03 UOid−O1 29(±7)× 10−4 −0.48± 0.03

UOid−O2 6(±2)× 10−4 −0.55± 0.02 UOid−O2 6(±2)× 10−4 −0.55± 0.02

LOid−O1 2.2(±0.4)× 105 0.35± 0.02 MOid−O1 2.3(±0.3)× 106 0.5± 0.1

LOid−O2 1.9(±0.4)× 105 0.385± 0.02 MOid−O2 2.9(±0.7)× 105 0.4± 0.1

U/L, CU,Oid−O1 CU,Oid−O2 CL,Oid−O1 CL,Oid−O2 m
global (sec/M) (sec/M) (sec/M) (sec/M) (unitless)

2.9(±0.2)× 10−4 3.4(±0.2)× 10−4 1.00(±0.08)× 106 4.6(±0.4)× 105 −0.422± 0.009

Table S1: Fit parameters for lifetimes as a function of J-factor. Two kinds of fits were performed on each of four data sets
(unlooped vs. looped state, and Oid-O1 vs Oid-O2 as flanking operators): individual fits of each data set separately to a
generic power law of the form 〈τ〉 = a×Jbloop, the parameters for which are given in the top left half of the table (“U/L”); or
a global fit to all four data sets simultaneously to Eqs. S75 and S76 in Sec. S2.3.4, in which the m parameters was forced to
be the same for all four data sets, but with the proportionality constants (here called C) allowed to be different for the looped
vs. unlooped states and the two pairs of flanking operators. Fit parameters for this global fit are given in the bottom half
of the table (“U/L, global”). In addition, we also performed fits to generic power laws for the analysis in which the middle
and bottom looped states were thresholded separately, with parameters given in the top right half of the table (“U/M/B”).
For most constructs the occurrence of the bottom state is too rare to allow a similar analysis on the bottom state.
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a b

c d

Figure S11: Unlooped (blue) lifetimes, looped (red) lifetimes, and looping J-factors (black) plotted as a function of loop
length, for the DNA sequences a, CG, b, 5S, c, E8, d, TA.
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