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Geometrical Model: Alternative Derivation
Intrinsic Equation. We give here an alternative and equivalent
derivation of the equation describing the curve generated by the
geometrical model. This derivation is independent of the coordinate
system and leads to a so-called natural (or intrinsic) equation giving
the evolution of the local radius of curvature of the curve as a
function of the arclength (ref. 1, p. 26).
We still consider the system at two infinitesimally close time

steps such that the length of the curve has increased by an amount
ds given by Eq. 1 of the main text, namely

ds = θ0   drb = θ0
drb
dt

dt; [S1]

where rbðtÞ is the radius of the bubble of injected reagent at time
t (Fig. S1A). The curve is parametrized by its arclength s such
that the value of s of an arbitrary point P is equal to the length of
the curve measured from the first point P0 to P (Fig. S1A). As
explained in the main text, P0 is generated from an initial small
circle of radius rbð0Þ= rc. The radius of curvature at s= 0 is thus
given by Rð0Þ= rc. At time t, the radius of curvature of the last
point of the curve at its tail is given by

RðsÞ = rbðtÞ: [S2]

Similarly, at time t+ dt, the radius of curvature of the last point of
the curve is given by

Rðs+ dsÞ = rbðt+ dtÞ = rbðtÞ+ drb
dt

dt; [S3]

where we used a first-order expansion in dt. Therefore, the dif-
ference between Eq. S3 and Eq. S2 leads to

Rðs+ dsÞ − RðsÞ = dR
ds

ds =
drb
dt

dt; [S4]

where we used a first-order expansion in ds. Using the expression
S1 of ds, we obtain

dR
ds

=
1
θ0
: [S5]

Integration of this last equation leads to

RðsÞ = Rð0Þ + s
θ0

= rc +
s
θ0
: [S6]

The radius of curvature is thus a linear function of the arclength.
This is the Cesàro equation of a logarithmic (equiangular) spiral
(ref. 1, p. 26). Let us now obtain the equation of the curve in
polar coordinates.

Polar Equation. We have thus obtained above the curvature κ as
a function of the arclength s:

κðsÞ = 1
RðsÞ =

θ0
θ0rc + s

: [S7]

The relation between the Cesàro equation and the Cartesian
coordinates is (ref. 1, p. 26)

xðsÞ =
Z

cos κðsÞds = θ0rc + s
1+ θ20

ðcos κðsÞ+ θ0 sin κðsÞÞ; [S8a]

yðsÞ =
Z

sin κðsÞds = θ0rc + s
1+ θ20

ðsin κðsÞ− θ0 cos κðsÞÞ; [S8b]

where

κðsÞ =
Z

κðsÞds = θ0 lnðθ0rc + sÞ+K ; [S9]

and K is a constant of integration which fixes the orientation of
the curve in space and is fixed below. The constants of integra-
tion in Eq. S8 correspond to translations of the curve and are set
to zero.
Using Eqs. S8 and S9, the polar equation is obtained as follows:

rðsÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ðsÞ+ y2ðsÞ

q
=

θ0rc + sffiffiffiffiffiffiffiffiffiffiffiffi
1+ θ20

q ; [S10]

and

θðsÞ = arctan
�
y
x

�
= arctan

�
sin κðsÞ− θ0 cos κðsÞ
cos κðsÞ+ θ0 sin κðsÞ

�

= arctan
�

tan κðsÞ− θ0
1+ θ0 tan κðsÞ

�

= arctan½tanðκðsÞ− arctan θ0Þ�
= κðsÞ− arctan θ0

= θ0 lnðθ0rc + sÞ+K − arctan θ0:

[S11]

Eliminating s between Eqs. S10 and S11, we have

r =
eðarctan θ0−KÞ=θ0ffiffiffiffiffiffiffiffiffiffiffiffi

1+ θ20

q eθ=θ0 : [S12]

The constant K can be fixed by imposing that s= 0 corresponds to
θ= 0, meaning that the radius of curvature of the curve S12 at
θ= 0 should be equal to rc. This leads to K = arctan θ0 − θ0 lnðθ0rcÞ
and Eq. S12 reduces to

r=
rcθ0ffiffiffiffiffiffiffiffiffiffiffiffi
1+ θ20

q eθ=θ0 ≡ r0  eθ=θ0 : [S13]

Discrete Algorithm
The curves generated by the proposed mechanism and depicted
schematically in Fig. S1A can also be directly constructed using
the following discrete algorithm (Fig. S1B). We start from a cir-
cle of radius rc with a point P0 at the top which represents the
first point of the generated curve.

i) The radius of the circle is increased by a given Δr. The
ordinate of P0 is increased by Δr and then rotated by an
angle Δθ. A point P1 is added at the top of the circle and
represents a new amount of precipitate.
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ii) The radius of the circle is increased by a constant Δr. The
ordinates of P0 and P1 are increased by Δr and then are
both rotated by an angle Δθ. A point P2 is added at the top
of the circle.

The procedure is then iterated to generate the next points. The
discrete angle used is provided by Eq. 3 of the main text:
Δθ= θ0Δr=r. Fig. S1B shows the generation of the first few points
using a large value of Δr for clarity. Fig. S1C shows the resulting
structures emerging from the 2,000 and 4,000 iterations of the
algorithm using a smaller value of Δr= 0.01 and θ0 = 2. Fig. S1D
shows that these two curves, once properly rotated and trans-
lated, are exactly described by Eq. S13 using the same value of θ0
as the one used in the algorithm and a value of r0 such that the
radius of curvature at P0 is equal to the radius rc of the initial
small circle, namely r0 = rcθ0=ð1+ θ20Þ1=2.
Spiral Analysis
Each experiment is recorded by taking photos at regular time
steps adapted according to the injection rate. Typically the time
interval between two photos is 1 s for the injection rates used. The
pattern is then analyzed at one given time for each experiment
when the spirals are sufficiently developed and/or when the
overall pattern is as large as the field of view. To analyze the
spirals observed in our experiments, we measure the evolution of
the spiral radii r as a function of the polar angle θ. By convention,
the starting point P0 of the spiral, which is the closest to the
spiral center, is characterized by θ= 0 and r= r0 (Fig. S2).
However, the exact position of the spiral center CS, from which
the radii should ideally be measured, is not known. In this sec-
tion, we explain the method used to overcome this difficulty.

System of Coordinates Centered on the Spiral Center. The equation
of a logarithmic spiral written in a system of coordinates centered
on the spiral center CS is given by

r = r0eθ=θ0 ; [S14]

where r0 and θ0 are constant parameters. If the spiral radii r are
measured from the exact position of the spiral center CS, then
the evolution of r as a function of the polar angle θ can be fitted
using Eq. S14. The measured spiral radii and the polar angle can
then be rescaled by r0 and θ0, respectively, to produce the graph
displayed in Fig. 3B of the main text.

Arbitrary System of Coordinates. The exact position of the spiral
center is generally not known a priori and the radii are measured
in an arbitrary system of coordinates whose origin does not co-
incide with CS. In such a system of coordinates centered on, say,
CA, the expression of a logarithmic spiral is no longer given by
the simple form Eq. S14. In this section, we derive the general
expression describing a logarithmic spiral off centered with re-
gard to CS which is used to fit the data.
The approximate position of the spiral center CA used to

measure the spiral radii is obtained from the osculating circle
passing through P0. Fig. S2A shows this construction on an exact
logarithmic spiral to illustrate and test the proposed procedure.
Fig. S2B shows the evolution of the spiral radii r as a function of
the polar angle θ when the radii are measured from the exact
(CS) and approximate (CA) positions of the spiral center, re-
spectively. The polar coordinates of the spiral obtained from the
approximate position of the center are noted ðr′; θ′Þ, whereas the
polar coordinates of the spiral obtained from the exact position
of the center are noted ðr; θÞ.
These two curves are obviously equivalent and describe the

same spiral. As shown in Fig. S3, they are just measured in two
different systems of coordinates related by a rotation and a
translation as

�
x
y

�
=
�
cosφ −sinφ
sinφ cosφ

��
x′
y′

�
−
�
x0
y0

�
; [S15]

with

φ = arcsin
�
y0
r0′

�
; x′ = r′ cos θ′; y′ = r′ sin θ′: [S16]

x0 and y0 are the Cartesian coordinates of CA in the ðx; yÞ
system of coordinates whose origin coincides with the spiral center
CS. Because r′, θ′, and r0′ are the quantities measured in practice,
the curve ðr; θÞ obtained from the exact position of the center can
thus be reconstructed once x0 and y0 are known by using

r =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
; θ = arccos

�
x
r

�
: [S17]

Notice that if the spiral is exactly logarithmic and if the approx-
imate center is constructed using the osculating circle passing
through P0, then x0 = 0 as seen in Fig. S2A. In practice, the
spirals are obviously never exactly logarithmic and the position
of the osculating circle is never perfect. Consequently, one needs
to allow for a nonvanishing value for x0 in the procedure. We
show below how x0 and y0 can be obtained.
The spiral parameters r0 and θ0, together with the translation

parameters of the center x0 and y0, are obtained all at once by fitting
the data by the general expression of a logarithmic spiral valid in an
arbitrary system of coordinates. This general expression is simply
obtained by considering the reverse of the transformation S15:

�
x′
y′

�
=
�

cosφ sinφ
−sinφ cosφ

��
x+ x0
y+ y0

�
; [S18]

with

x= r0et=θ0 cos t; y= r0et=θ0 sin t; [S19]

and φ is given by Eq. S16. The parametric equations, where t is
the parameter describing a logarithmic spiral in an arbitrary
system of coordinates, are finally given by

r′ðr0; θ0; x0; y0; tÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x′2 + y′2

q
; [S20a]

θ′ðr0; θ0; x0; y0; tÞ= arccos
�
x′
r′

�
: [S20b]

The values of the parameters r0, θ0, x0, and y0 are obtained for
each spiral by fitting the expression S20 to the measured values of
r′ and θ′ using a nonlinear regression procedure (Mathematica).
At this stage, because x0 and y0 are known, we apply the

transformation S15 to the data to obtain the measured curve in
a system of coordinates centered on the spiral center. The result
is shown in Fig. S2B with a very good agreement compared with
the measurements performed directly in a system of coordinates
centered on the spiral center. This illustrates the correctness of
the procedure proposed to treat the data.

Results from the Analysis
The results of the analysis described in the previous section are
gathered in Fig. 3B of the main text where the radial distance and
the polar angle are rescaled by r0 and θ0. The same results are
presented here separately for each categories Si defined in Fig. 1 of
the main text. The spirals are logarithmic in good approximation in
each of the seven sectors Si of the phase diagram (Fig. S4 below).
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Only the sector S1 displays more dispersion for low values of
θ=θ0 but, at larger values of the rescaled polar angle, the
spirals follow closely the evolution of a logarithmic spiral. For
information, we also show in Fig. S4H the results obtained for
the inverted case, where sodium silicate is injected into cobalt
chloride, corresponding to the sectors S1 and S3. Those spirals
are also logarithmic.
In Fig. S5, we show the distributions of the values of r0 and θ0

characterizing all of the analyzed spirals. Those distributions
show also the contributions of each sector Si. Notice that those
distributions have a meaning only if r0 and θ0 are both in-
dependent of the reagent concentrations (or if the dependence is
weak). It seems that this is roughly the case by inspecting the
contributions of each sector Si. However, the number of ana-
lyzed spirals per sector is not large enough to draw definitive
conclusions. Notice that the sector S2 is characterized by larger
values of r0 (r0 J0.5 mm). However, only seven spirals have been
analyzed for this sector. For clarity, those data are not reported
in Fig. S5A. The distributions of r0 and θ0 are both rather well
fitted by a log-normal distribution

f ðx; μ; sÞ= λ

x
e−½ðln x− μÞ2=2s2�: [S21]

The expectation value E is then given by

E= eμ+s
2=2; [S22]

and the SD σ is

σ =
�
es

2
− 1

�1=2
  E: [S23]

We find

r0 = ð0:43± 0:20Þmm; θ0 = 1:67± 0:52: [S24]

Within ourminimal geometric model, the radius of curvature of
the spiral at its starting point P0 should be close to the radius rc
of the initial circle of solid precipitate before the solid layer breaks.
The radius of curvature R of a logarithmic spiral is given by

R= r0 eθ=θ0

ffiffiffiffiffiffiffiffiffiffiffiffi
1+ θ20

q
θ0

: [S25]

Consequently, at the point P0 (θ= 0), the radius of curvature
RP0 ≡ rc is given by

rc = r0

ffiffiffiffiffiffiffiffiffiffiffiffi
1+ θ20

q
θ0

: [S26]

The distribution of rc in the experiments is displayed in Fig. S6A
and also follows a log-normal distribution. We find

rc = ð0:51± 0:24Þmm: [S27]

Three typical spirals constructed by considering a constant value of
rc equal to its expectation value and θ0 varying by 1 SD around its
expectation value are shown in Fig. S6B. Those three spirals are
generated from the same expanding bubble of reagent having a ra-
dius equal to 40  rc. Consequently, they all have the same pair of radii
of curvature at their end points. An animation showing the growth of
these spirals can be found in Movie S2. Movie S3 shows a qualitative
comparison between the growth a spiral observed experimentally and
a spiral obtained from the geometrical model.
Finally, Fig. S7 shows the distribution of the maximal value θmax

of the polar angle characterizing each analyzed spiral. As ex-
plained in the main text, we choose θmax > 2:44 ð140°Þ such that
the maximal value of θ=θ0 for each spiral is large enough to
obtain a relevant comparison with the model.

1. Struik DJ (1988) Lectures on Classical Differential Geometry (Dover Publications, New
York), 2nd Ed.
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Fig. S1. (A) Schematic of the growth mechanism of the curly shaped precipitates during an infinitesimal interval of time. (B) First few points generated by this
mechanism and obtained from a discrete algorithm using Δr = 0:2, θ0 = 2, and rc = 1. The red straight lines are added to help with visualizing the emerging
structure. Due to symmetry, the generation of only one curve is shown. (C) Curves generated from a discrete algorithm using Δr = 0:01, θ0 = 2, and rc =1. The
curves obtained after n= 2,000 and n= 4,000 iterations are shown and correspond to a bubble of injected reagent having a radius of 21rc and 41rc, respectively
(nΔr + rc). (D) If the emerging curves are logarithmic spirals, the position of the spiral center can be deduced from the position of the center of curvature of P0
(see Spiral Analysis). In the context of this algorithm, the position of the center of curvature of P0 is tracked during the growth process. The total angle of
rotation of the curves during the growth is simply equal to the sum of all Δθ applied. Therefore, these two curves can be properly rotated and translated such
that their centers coincide with the origin of coordinates. These curves are exactly described by Eq. S13 with θ0 = 2 and r0 = rcθ0=ð1+ θ20Þ1=2 ’ 0:89, such as its
radius of curvature at P0 (θ= 0) is equal to rc.

Fig. S2. (A) Logarithmic spiral together with the osculating circle passing through the point P0 which is the closest to the spiral center. The center of the
osculating circle CA is used as approximate center to measure the spiral radii. The black dots show where the radii are measured. CS indicates the position of the
spiral center. (B) Plot of the radius r of the spiral as a function of the polar angle θ using the exact and the approximate positions of the spiral center. The curve
reconstructed from the data obtained with the approximate position of the spiral center is also shown (orange dots) and agrees well with the spiral curve
measured directly from the exact center position CS.
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Fig. S3. Representation of the two systems of coordinates. The system of coordinates ðx,yÞ is centered on the spiral center CS, whereas the system of co-
ordinates ðx′,y′Þ is centered on CA and is used to measure the spiral radii.
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Fig. S4. (A–G) Evolution of the rescaled spiral radii r=r0 as a function of the rescaled polar angle θ=θ0 for each category Si identified in Fig.1 of the main text.
(H) Evolution of the rescaled spiral radii r=r0 as a function of the rescaled polar angle θ=θ0 for the inverted case, where sodium silicate is injected into cobalt
chloride, corresponding to the sectors S1 and S3.
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Fig. S5. (A) Distribution of r0 and (B) distribution of θ0 for all analyzed spirals. The contributions of each sector Si are indicated. The log-normal distributions
S21 are characterized by μ=−0:97 and s=0:45 for r0 and μ= 0:47 and s= 0:31 for θ0.

Fig. S6. (A) Distributions of rc for all analyzed spirals. The contribution of each sector Si is indicated. The log-normal distribution S21 is characterized by
μ=−0:77 and s= 0:47. (B) Three typical spirals constructed by considering a constant value of rc equal to its expectation value and θ0 varying by 1 SD around its
expectation value. The spirals are generated from the same expanding bubble (in gray) of reagent having a radius equals to 40  rc. Consequently, they all have
the same pair of radii of curvature at their end points. The graph graduations are in millimeters.
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Fig. S7. Distribution of θmax defined as the maximal value of the polar angle of the analyzed spiral segments.

Movie S1. Some examples of chemical gardens growing in a confined geometry upon injecting one solution of cobalt chloride into sodium silicate.

Movie S1
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Movie S2. Photos of spiraling precipitates and animation of the spiral growth according to the geometrical model.

Movie S2

Movie S3. Qualitative comparison between the spiral growth observed in experiments and the one obtained from the geometrical model.

Movie S3
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