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1 Overview of Supplementary Information

In this supplement we prove that only three types of memory-1 strategies – self-alternators, self-cooperators,
and self-defectors – can be evolutionary robust and prevalent in an arbitrary iterated two-player game
with a 2 × 2 payoff matrix. We derive analytic expressions for the subsets of these strategy types that
are evolutionary robust. We show that the volume of robust self-alternators, self-cooperators, and self-
defectors provide good approximations for the time spent at each of these strategy types in an evolving
population, for a fixed payoff matrix. As shown in Fig. 2 and Fig. 4 of the main text, this analysis enables
us to explain strategy evolution in iterated two-player games even when payoff matrices are also allowed to
evolve. In particular, this analysis predicts the collapse of cooperation in the Iterated Prisoner’s Dilemma
(Fig. 2), as well as the transition from the Iterated Prisoner’s Dilemma to the Snowdrift or Staghunt
game (Fig. 4).

We first define evolutionary robustness for an arbitrary iterated two-player game with a 2× 2 payoff
matrix in a well-mixed population of finite size N ; and we state necessary and sufficient conditions for
evolutionary robustness under the limits of either strong or weak selection on strategies. We then show
that, under strong selection on strategies, only three subsets of memory-1 strategies can be evolutionary
robust and prevalent: self-cooperate, self-defect and self-alternate. Within each of these three strategy
types we derive the precise subset that is robust, and from this we calculate the volume of robust strategies
of each type. Under weak selection, by contrast, we show that only the self-cooperate and self-alternate
strategies can be evolutionary robust.

Finally we perform simulations under weak mutation for a variety of payoff mutation schemes, in
addition to those used in the main text. These simulations demonstrate that the volume of robust
strategies within each of these types continues to determine the outcome of payoff-strategy co-evolution
in finite populations.
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2 Iterated two-player games

We consider an iterated game with an infinite number of successive rounds between two players, X and
Y . We study games with a 2×2 payoff matrix, so that in each round each player has two choices, denoted
cooperate (c) or defect (d). The payoffs for the respective players are given in Table S1, in their most
general form.

Table S1: Payoff matrix for an arbitrary 2× 2 game

Player Y
c d

Player X
c Rxy(cc), Ryx(cc) Rxy(cd), Ryx(dc)

d Rxy(dc), Ryx(cd) Rxy(dd), Ryx(dd)

2.1 Memory

In general, a player may have an arbitrarily long memory, such that her play in each round depends on
the plays in all previous rounds of the current game. However, as per Press and Dyson [1], a player with
memory-1 may treat all opponents as though they are also memory-1, regardless of the opponent’s actual
memory of the current game. And so the sets of scores sxx, sxy and syx for a player X with memory-1
facing an opponent Y with arbitrary memory can be understood by considering the scores received by
X against an arbitrary memory-1 opponent instead. By contrast, the score a long-memory player Y
received against himself, syy, may depend on his memory capacity. Nonetheless, since our results for
strong selection do not depend on syy, we will show that a robust strategy for a memory-1 player X is
robust against any opponent, regardless of his memory capacity. The same is true under weak selection:
under weak selection, the robustness of a strategy may depend on syy, but nevertheless, as shown in [2]
for the Prisoner’s Dilemma, we can still derive conditions for robustness under weak selection that do
not depend on the memory of Y . It is in this sense that our results on the evolutionary robustness of
memory-1 strategies are without loss of generality – because such memory-1 strategies are evolutionary
robust against all opponents, regardless of the opponent’s memory capacity in the current game.

However, our results do not exclude the possibility that there exist long-memory strategies that are
also evolutionary robust nor do they exclude the possibility that long memory strategies may gain an
advantage under finite time horizons [3,4]. Furthermore, if players have a super long memory of previous
interactions with different opponents they can “learn” the composition of the population and construct
something similar to a “tag” based strategy [5–7] – that is, they can gain an advantage by only cooper-
ating with players like themselves, while punishing players unlike themselves [5–7].

2.2 Equilibrium payoffs in Iterated Games

The longterm scores received by two memory-1 players in an iterated two-player game are calculated
from the equilibrium rates of the different plays, (cc), (cd), (dc) and (dd), given by the stationary vector
v = (vcc, vcd, vdc, vdd) of the Markov matrix describing the iterated game [8]. The equilibrium score of
player X against player Y is calculated according to
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sxy =
v ·Rxy

v · I =
D (px,py,Rxy)

D (px,qy, I)
(1)

where I = (1, 1, 1, 1), px and qy are the strategies of playersX and Y , and Rxy = (Rxy(cc), Rxy(cd), Rxy(dc), Rxy(dd))
is the payoff vector of player X against player Y , where the plays (cc), (cd) etc list the play of X first and
the play of Y second. The determinant D(px,qy, f) gives the dot product between the stationary vector
v and an arbitrary vector f = (fcc, fcd, fdc, fdd) [1], where

D(px,qy, f) = det


−1 + pccqcc −1 + pcc −1 + qcc fcc
pcdqdc −1 + pcd qdc fcd
pdcqcd pdc −1 + qcd fdc
pddqdd pdd qdd fdd

 . (2)

In general Eq. 1 is sufficient to calculate the scores received by a pair of memory-1 players. However,
there are certain pathological cases in which the Markov chain describing the iterated game has multiple
absorbing states. The scores in these cases can be calculated by assuming that players execute their
strategy with some small “error rate” ε [9], so that the probability of cooperation is at most 1 − ε and
at least ε. Assuming this, and taking the limit ε → 0 then gives the player’s scores in the cases where
multiple absorbing states exist.

2.3 Akin coordinate system

As shown by Akin in [8], manipulations of Eq. 1 produce an alternate coordinate system for the four-
dimensional space of memory-1 strategies, useful for analysing the outcomes of the iterated Prisoner’s
Dilemma. In particular, for an arbitrary 2×2, two-player game, we can convert from the basis (pcc, pcd, pdc, pdd)
to the basis (φ, χ, κ, λ) [1, 2, 8], where the two coordinate systems are related by

p̃x = −φ
[
R†yx − χRxy − (1− χ)κI + λL

]
. (3)

Here p̃x = (−1+pcc,−1+pcd, pdc, pdd), I = (1, 1, 1, 1), L = (0, 1, 1, 0) and R†yx = (Ryx(cc), Ryx(dc), Ryx(cd), Ryx(dd)),
which is the payoff vector of Y when X is the focal player [1]. To convert directly between the two coor-
dinate systems we have the equations

pcc = 1− φ (Ryx(cc)− χRxy(cc)− (1− χ)κ)

pcd = 1− φ (Ryx(dc)− χRxy(cd)− (1− χ)κ+ λ)

pdc = φ (χRxy(dc)−Ryx(cd) + (1− χ)κ− λ)

pdd = φ ((1− χ)κ−Ryx(dd) + χRxy(dd)) .

When considering the evolution of payoffs in general we must use the coordinate transform above for the
general case in which Rxy 6= Ryx (see below). When considering the evolution of strategies, we will be
concerned with monomorphic populations in which Rxy = Ryx = R, such that
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pcc = 1− φ(1− χ) (R(cc)− κ)

pcd = 1− φ (R(dc)− χR(cd)− (1− χ)κ+ λ)

pdc = φ (χR(dc)−R(cd) + (1− χ)κ− λ)

pdd = φ(1− χ) (κ−R(dd)) .

(4)

In this coordinate scheme the players’ scores are related by [2, 8]

syx − χsxy − (1− χ)κ+ λ(vcd + vdc) = 0. (5)

which, unlike ZD strategies, depends on the equilibrium rate of playing (cd) and (dc). The Akin coordi-
nate system can be used to analyse arbitrary 2 × 2 player games of this type, unless R(cc) = R(dc) or
R(cd) = R(dd). These two special cases are discussed separately, following our treatment of the more
general case in which R(cc) 6= R(dd) and R(cd) 6= R(dc).

Finally, we note from Eq. 3, that in the limit φ → 0 (i.e when X tries to set her own score [1]) we
are left with

pcc = 1 + φχRxy(cc) + φ(1− χ)κ

pcd = 1 + φχRxy(cd) + φ(1− χ)κ− φλ
pdc = φχRxy(dc) + φ(1− χ)κ− φλ
pdd = φ(1− χ)κ+ φχRxy(dd)

To produce a viable strategy in this limit we require φχ→ 0 and φ(1−χ)κ→ 0 to ensure pcc ∈ [0, 1] and
pdd ∈ [0, 1]. This in turn implies φλ → 0 to ensure pcd ∈ [0, 1] and pdc ∈ [0, 1], and we are left with the
singular strategy (1, 1, 0, 0) [1] known as Repeat [8], regardless of the choice of payoffs.

2.4 Useful inequalities

In addition to the relationship Eq. 5 we make note of four inequalities which we will use to determine the
memory-1 strategies that are evolutionary robust. We begin by noting that the equilibrium payoff for X
playing against an opponent Y is given by [8]

sxy = R(cc)vcc +R(cd)vcd +R(dc)vdc +R(dd)vdd (6)

(i) From Eq. 6, the difference between the two players’ scores can be written as

sxy − syx = (vdc − vcd)(R(dc)−R(cd))

which gives
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sxy − syx ≤ (vcd + vdc)|R(dc)−R(cd)| (7)

where equality is achieved by an opponent Y for whom vcd = 0 (e.g. an opponent who always cooperates).

(ii) Similarly, we must have

sxy − syx ≥ −(vdc + vcd)|R(dc)−R(cd)| (8)

where equality is achieved by an opponent Y for whom vdc = 0 (e.g. an opponent who never cooperates).

(iii) From Eq. 6, the sum of the two players’ scores is

sxy + syx = 2(vcc + (vdc + vcd))(R(cc)−R(dd))− (vdc + vcd)(2R(cc)− (R(cd) +R(dc))) + 2R(dd)

and, since vcc + (vdc + vcd) ≤ 1, we have

sxy + syx ≤ 2R(cc)− (vdc + vcd)(2R(cc)− (R(cd) +R(dc))) (9)

where equality is achieved when vdd = 0 (e.g. by an opponent who never defects once they have been
defected against).

(iv) Finally, we also have

sxy + syx ≥ 2R(dd)− (vdc + vcd)(2R(dd)− (R(cd) +R(dc))) (10)

where equality is achieved when vcc = 0 (e.g. by an opponent who always defects once they have been
cooperated with).

2.5 Evolution in a population of players

We study evolution in a well-mixed, finite population of N haploid, memory-1 players. Evolution is
described by the “imitation” process of [10]. Under this model, which is similar to the Moran process,
pairs of individuals, X and Y , are drawn randomly from a population of size N at each time step. Player
X adopts the strategy of player Y with a probability (1 + exp [σ(sx − sy)])−1 that depends on their
respective total payoffs, sx and sy, summed across pairwise matchups with all players in the population.
Here σ denotes the strength of selection.

We study evolution in the limit of weak mutation. This means that, at any point in time, the
population is monomorphic for some payoff matrix R = (R(cc), R(cd), R(dc), R(dd)) and some strategy
p = (pcc, pcd, pdc, pdd). Given a population monomorphic for the resident type X, a mutation producing
type Y will fix with probability [10]

ρ(X,Y ) =

1 +

N−1∑
i=1

i∏
j=1

e−σ[(j−1)syy+(N−j)syx−jsxy−(N−j−1)sxx]

−1 ,
or otherwise will be lost.
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The “strong-selection” limit of this process is defined by taking N →∞ while keeping σ fixed, so that
even small differences in the longterm payoff of the iterated game convey a significant advantage to the
player with the greater payoff. Alternatively, the “weak-selection” limit arises when Nσ � 1, by taking a
Taylor expansion of the fixation probability ρ(X,Y ) and neglecting terms O

(
(Nσ)2

)
and larger, in which

case even deleterious strategies may reach high frequency through genetic drift. We consider both of these
regimes of selection in our analyses below.

2.5.1 Mutations affecting payoffs

In addition to mutations to strategies, we also consider mutations that affect the payoffs recieved by a
mutant and by her opponents. When such mutations occur, the payoff vectors for a given game may
depend on the genotypes of both players, so that Rxy 6= Ryx. Under the public goods game that we
study in the main text, a resident genotype X pays a cost Cx when she cooperates. We assume that
a cost Cx generates a benefit Bx when both players cooperate or a payoff 2αxBx when the focal player
cooperates alone. In the simplest form of the public goods game, when αx = 1/2, the amount of benefit
produced does not depend on how the opponent behaves. We assume that Bx satisfies Bx − Cx = f(Cx)
for some function f(C), which is typically chosen to be monotonically increasing with C. Given the choice
of function f(C), the genotype of player X is comprised of her strategy vector p, her contributed cost
CX , and her synergy factor αX . In general, when two players who contribute different costs to the public
good face each other we assume that they equally share the payoffs for mutual cooperation, so that the
payoff vectors for X and Y have the form

Rxx =

(
f(Cx), αxf(Cx)− (1− αx)Cx, αxf(Cx) + αxCx, 0

)
Rxy =

(
f(Cx) + f(Cy)

2
, αxf(Cx)− (1− αx)Cx, αyf(Cy) + αyCy, 0

)
Ryx =

(
f(Cx) + f(Cy)

2
, αyf(Cy)− (1− αy)Cy, αxf(Cx) + αxCx, 0

)
Ryy =

(
f(Cy), αyf(Cy)− (1− αy)Cy, αyf(Cy) + αyCy, 0

)

In any given matchup between players X and Y the resulting longterm scores in the iterated game, sxx,
sxy, syx and syy can be calculated from Eq. 1 and the fixation probability of Y can be calculated as
described above. In particular, mutations that increase the benefit for mutual cooperation are favored by
selection in a population of self-cooperators.

2.6 Evolutionary robustness of strategies

We will use the above relations to determine which strategies are evolutionary robust in a population of
N players.

The concept of evolutionary robustness [2] is similar to the notion of evolutionary stability [11,12]. An
evolutionary stable strategy px is one that satisfies either sxx > syx, or else sxx = syx and sxy > syy, for
all opponents py 6= px [11, 12]. This means that a strategy is evolutionary stable provided (i) it cannot
be selectively invaded by any other strategy (sxx > syx), or (ii) it can selectively invade (sxy > syy)
any strategy that can neutrally invade it (sxx = syx). However, as shown in [2, 8], evolutionary stable
strategies rarely exist within the full space of memory-1 strategies, because many strategies can neutrally
invade each other. Therefore, we analyze the outcomes of evolution in a population using the notion of
evolutionary robustness [2].
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In general, a strategy is defined to be evolutionary robust if, when resident in a population, there
is no mutant strategy that is favored to spread by natural selection when rare [2]. In particular, under
strong selection a strategy X is evolutionary robust iff, when resident in a population of size N , it cannot
be selectively invaded by any mutant strategy Y – that is, iff sxx ≥ sxy for all Y . The condition for
evolutionary robustness under strong selection is thus identical to that of a Nash equilibrium [8]. Under
weak selection, by contrast, a resident strategy X is evolutionary robust iff the fixation probability of any
new mutant strategy Y satisfies ρyx ≤ 1/N (see [2]). As shown previously [2,8], evolutionary robustness,
as opposed to evolutionary stability, is useful for characterizing the strategies that dominate in evolving
populations. In the remainder of the supplement we first derive results for evolutionary robustness under
strong selection, which are used in the main text. We then derive conditions for evolutionary robustness
under weak selection.
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3 Necessary conditions for memory-1 strategies to be robust under
strong selection

We start by proving that strategies in the interior of the four-dimensional memory-1 strategy space cannot
be evolutionary robust – that is, they can always be selectively invaded by some other strategy. In fact,
we will show that nothing on the interior can be robust with the exception of the “equalizers”, which
have χ = λ = 0, and always set their opponent’s score to syx = κ (the special case of the equalizers is
treated separately below). To prove that no strategy in the interior of memory-1 strategy space (except
the equalizers) can be robust under strong selection (i.e a Nash equilibrium), we show that any such
strategy can by invaded by a one of its “neighbors” in the alternate coordinate system (φ, χ, κ, λ).

First, consider a resident strategy X characterised by (φx, χx, κx, λx) and a mutant strategy Y char-
acterised by (φy, χy, κy, λy). From Eq. 5, with y = x, we find that the payoff of the resident against itself
is

sxx = κx −
λx

1− χx
(vcd + vdc).

Similarly, from Eq. 5 we find that the payoff of Y against X is

syx =
(1− χx)κx − λx(wcd + wdc) + χx((1− χy)κy − λy(wcd + wdc))

(1− χxχy)

where v is the stationary vector for X playing against itself and w is the stationary vector for X playing
against Y .

3.1 A strategy with 0 ≤ pcc < 1 and 0 < pdd ≤ 1 can always be invaded unless pcd = 0
and pdc = 1

First suppose that X satisfies 0 < pcc < 1 and 0 < pdd < 1. Recall that, in order for Y to selectively
invade X under strong selection requires syx > sxx.

Suppose Y is chosen such that χx = χy and φx = φy. Finally, choose λy such that (1 − χx)κx − λx =
(1− χy)κy − λy i.e. so that pcd and pdc are unaltered by the mutation. This gives

syx =
(κx + χxκy)

1 + χx
− λx

1− χx
(wcd + wdc)−

χx(κy − κx)

(1 + χx)
(wcd + wdc)

We can then write

syx − sxx =
χx(κy − κx)

1 + χx
[1− (wcd + wdc)] +

λx
1− χx

[(vcd + vdc)− (wcd + wdc)]

and so Y selectively invades X iff

χx(κy − κx)

1 + χx
[1− (wcd + wdc)] >

λx
1− χx

[(wcd + wdc)− (vcd + vdc)]

This inequality can always be satisfied unless vcd + vdc = 1, in which case both sides vanish and the
mutation is neutral. To see this, we use Eq. 2 to calculate
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vcd+vdc =
2(1− pcc)(1 + pcc − pdd)pdd

(1− pcc)((1− pcd − pdc)(1 + pcc) + 2pcdpdc) + 2(1− p2cc + pcdpdc)pdd − (1− 2pcc + pcd + pdc)p
2
dd

where we note that vcd + vdc = 1 implies pdc = 1− pcd and pcdpdc = 0, so that either pcd = 1 and pdc = 0
or vice versa. We now assume that the mutant is such that κy = κx + η where η is small. We can then
write

(wcd + wdc)− (vcd + vdc) =

(vcd + vdc)
η(1− (pcc + pdd))(1 + pcc − pdd)

2(1− pcc)(1 + pcc − pdd)pdd
− η(1− (pcc + pdd) + (pcc − pdd)(pcd + pdc − (pcc + pdd)))

2(1− pcc)(1 + pcc − pdd)pdd
+O

(
η2
)

or, more conveniently

(wcd + wdc)− (vcd + vdc) = Aη

where A depends on the resident strategy and is zero when vcd + vdc = 1. The condition for invasion of
X by Y then becomes

χx
1 + χx

[1− (vcd + vdc)] η >
λx

1− χx
Aη

This inequality permits the following cases:

• If χx 6= 1, vcd + vdc 6= 1 and either |χx| > 0 or |λx| > 0 the inequality can always be satisfied (since
the sign of η can always be reversed by taking κy > κx or κy < κx).

• If χx = 1, this implies pcc = 1 and pdd = 0, which violates our assumption that 0 ≤ pcc < 1 and
0 < pdd ≤ 1 (see below)

• If χx = λx = 0 the strategy X is an equalizer and all mutants are neutral (we discuss the equalizers
further below)

• If vcd + vdc = 1 then pcd = 0 and pdc = 1 or else pcd = 1 and pdc = 0, which implies A = 0, and both
sides of the inequality vanish.

The final two cases consist of pcd = 0 and pdc = 1 or pcd = 1 and pdc = 0. When these strategies play
against themselves, the play is always cd. We call strategies with pcd = 0 and pdc = 1 “self-alternating”
strategies since, when playing against themselves, the play alternates between cd and dc. Self-alternating
strategies can be robust (see below)

Strategies of the form pcd = 1 and pdc = 0 cannot be robust: if we assume, without loss of generality,
that R(dc) > R(cd), then an opponent with pdc = 0 and pcd < 1 scores R(dc) at equilibrium, whereas
such an alternator scores (1/2)(R(cd) +R(dc)) against itself. Therefore the mutant can selectively invade
and this strategy type cannot be robust. The only exception occurs in the special case R(cd) = R(dc),
which we discuss further below).

Note that the above expressions hold for 0 < pcc < 1 and 0 < pdd < 1. When pcc = 0 or pdd = 1,
changing κx so that κy = κx + η necessitates that we also decrease φx so that φy = (1− η∗)φx, where η∗

must be chosen so that a viable strategy is produced when η < 0. In this case it is simple to show that
(wcd + wdc) − (vcd + vdc) = A∗η, and the same argument holds as for mutations that change κx alone.
Thus strategies with pcc = 0 or pdd = 1 can be invaded under the same conditions as strategies with
0 < pcc < 1 and 0 < pdd < 1.
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3.2 A strategy with 0 < pcd < 1 and 0 < pdc < 1 can always be invaded unless pcc = 1
or pdd = 0

Now suppose 0 < pcd < 1 and 0 < pdc < 1. We consider a mutant Y such that κx = κy, χx = χy and
φx = φy. This has the effect that pcc and pdd remain constant under mutation. We then have

syx = κx −
(λx + χxλy)(wcd + wdc)

(1− χ2
x)

and Y can selectively invade iff

λx
1− χx

[(vcd + vdc)− (wcd + wdc)] >
χx

1− χx
[λy(wcd + wdc)− λx(vcd + vdc)]

This inequality can always be satisfied unless vcd + vdc = 0, in which case both sides vanish and the
mutation is neutral. To see this, we once again write

vcd+vdc =
2(1− pcc)(1 + pcc − pdd)pdd

(1− pcc)((1− pcd − pdc)(1 + pcc) + 2pcdpdc) + 2(1− p2cc + pcdpdc)pdd − (1− 2pcc + pcd + pdc)p
2
dd

and note that vcd + vdc = 0 implies either pcc = 1, pdd = 0 or else pcc = 0 and pdd = 1. As in the previous
case, we assume that the mutant is such that λy = λx + η where η is small. We can then write

(wcd + wdc)− (vcd + vdc) =

(vcd + vdc)
η(1− pcd − pdc − (pcc − pdd)(pcc − pcd − pdc + pdd))

(1− pcc)((1− pcd − pdc)(1 + pcc) + 2pcdpdc) + 2(1− p2cc + pcdpdc)pdd − (1− 2pcc + pcd + pdc)p
2
dd

+O
(
η2
)

or, more conveniently

(wcd + wdc)− (vcd + vdc) = Aη

where A depends on the resident strategy and is zero when vcd + vdc = 0. The condition for invasion of
X by Y then becomes

−λx
1 + χx
1− χx

Aη >
χx

1− χx
η(vcd + vdc)

This inequality permits the following cases:

• If χx 6= 1, vcd + vdc 6= 0 and either |χx| > 0 or |λx| > 0 the inequality can always be satisfied (since
the sign of η can always be reversed by taking λy > λx or λy < λx).

• If χx = 1, this implies pcc = 1 and pdd = 0, in which case the strategy has (at least) two absorbing
states when playing against itself. We treat this case separately below.

• If χx = λx = 0 the strategy X is an equalizer and all mutants are neutral (we discuss the equalizers
further below)

• If vcd + vdc = 0 then pcc = 1, pdd = 0 or else pcc = 0 and pdd = 1, which implies A = 0, and both
sides of the inequality vanish.
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The final three cases consist of pcc = 1, pdd = 0 or pcc = 0 and pdd = 1. We call pcc = 1 and pdd 6= 0 a
“self-cooperating” strategy since it always cooperates when playing itself. These strategies can be robust
(see below). We call pcc 6= 1 and pdd = 0 a “self-defecting” strategy since it always defects when playing
itself. These strategies can be robust (see below).

Strategies with pcc = 0 and pdd = 1 cannot be robust: as shown in the previous section, such strategies
are vulnerable to mutations that change κx and φx simultaneously, and can always be invaded.

3.3 Strategies belonging to multiple types can only be robust in the absence of noise

It now remains to consider strategies that simultaneously satisfy more than one of the necessary conditions
for robustness outlined above. When each strategy of a single type plays against itself, the associated
Markov chain describing the iterated game has either a single absorbing state (in the case of self-cooperate
or self-defect), or else displays stable periodic behavior (in the case of self-alternating strategies of either
type). When a strategy belonging to multiple types plays against itself, there exist multiple absorbing
states (or stable periodic behaviors). For example, tit-for-tat is a memory-1 strategy of the form (1, 0, 1, 0)
and is therefore a self-cooperator, a self-defector and a self-alternator. Such strategies admit two possible
behaviors.

• In the presence of a small amount of “noise” [9], such that players execute their strategy with some
small error rate, the score received by a strategy against itself is the average of the scores received
by each of the possible strategy-types it belongs to.

• In the absence of noise, the equilibrium play arrived is determined by the play in the first round
(e.g if tit-for-tat players always cooperate in the first round, they self-cooperate at equilibrium).

In the first case (with noise) a strategy with multiple types cannot be robust in general, unless it plays
like a single type against itself. To see this, suppose that the equilibrium payoffs received by strategy type
i against itself is R∗i . If a strategy belongs to k types, the equilibrium score a strategy receives against
itself is

sxx =

k∑
i=1

τiR
∗
i

where τi > 0 is the proportion of time spent in state i at equilibrium. Now consider a mutant Y which
shares only a single type j with resident strategy X, such that R∗j > R∗i , ∀i 6= j. If there is no other
absorbing state for the Markov chain describing the iterated game between X and Y , then he resulting
score is

syx = R∗j

which means syx > sxx and X can always be invaded. However, an exception occurs in the special payoffs
for all of the types to which X belongs are exactly equal. Note also that if τi = 0 for all but one type, the
strategy behaves as though it belongs to a single type, and it may therefore be robust. It therefore remains
for us to calculate τi for the four cases of strategies that belong to multiple types in 2 × 2 two-player
games. There four cases are as follows:

• p = (1, pcd, pdc, 0) with pcd > 0 and pdc < 1 (self-cooperate AND self-defect)

• p = (1, 0, 1, pdd) or p = (1, 1, 0, pdd) with pdd > 0 (self-cooperate AND self-alternate)

• p = (pcc, 0, 1, 0) or p = (pcc, 1, 0, 0) with pcc < 1(self-defect AND self-alternate)
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• p = (1, 0, 1, 0) of p = (1, 1, 0, 0) (self-cooperate AND self-defect AND self-alternate)

In the case of self-alternating strategies above we consider for completeness both those strategies with
pcd = 0, pdc = 1 and those strategies with pcd = 1, pdc = 0. The times spent at each of the three possible
equilibria are τc = vcc, τd = vdd and τa = vcd + vdc. Assuming a small amount of noise ε in the execution
aof a particular play, these times can be calculated for each of the four cases from Eq. 2, to give the
following:

3.3.1 Equilibrium play against self for p = (1, pcd, pdc, 0)

τc =
pcdpdc

1− pcd − pdc + 2pcdpdc
+O (ε)

τd =
1− pcd − pdc + pcdpdc
1− pcd − pdc + 2pcdpdc

+O (ε)

τa = O (ε) .

If pcd > 0 and pdc > 0 we have τc > 0 and τd > 0 and the arguement given in section 3.3 above holds.
To see this, choose a mutant of the form q = (1, pcd, pdc, qdd). Calculating the proportion of time spent
cooperating between the resident and such a mutant we find τc = 1− O (ε), so that the mutant recieves
the payoff for mutual cooperation and it can selectively invade.

However, if pcd = 0 or pdc = 0, and ε→ 0 we find τd → 1. These strategies behave like self-defectors,
and they must be analysed as such. The robustness of such strategies can be determined from the
robsutness conditions given in the main text (and below Eq. 12). These conditions reveal that such

strategies can be robust only if pdc = 0 and R(dd)−R(cd)
R(dc)−Rdd > 0.

3.3.2 Equilibrium play against self for p = (1, 0, 1, pdd) or p = (1, 1, 0, pdd)

Both strategies of these forms have the same equilibrium rates of play, given by

τc =
1

3− pdd
+O (ε)

τd = O (ε)

τa =
2− pdd
3− pdd

+O (ε) .

In this case, regardless of pdd, we have τc > 0 and τa > 0, and it is simple to verify that such a strategy
can always be selectively invaded in the way described above in section 3.3, by choosing a mutant of the
form q = (1, qcd, qdc, pdd) if 2R(cc) > R(cd) +R(dc), or by choosing q = (qcc, 0, 1, pdd) otherwise.

3.3.3 Equilibrium play against self for p = (pcc, 0, 1, 0) or p = (pcc, 1, 0, 0)

Both strategies of these form have the same equilibrium rates of play, given by
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τc = O (ε)

τd =
1

2 + pcc
+O (ε)

τa =
1 + pcc
2 + pcc

+O (ε) .

In this case, regardless of pcc, we have τd > 0 and τa > 0, and it is simple to verify that such a
strategy can always be selectively invaded in the way described above in section 3.3, by choosing a
mutant q = (pcc, 0, 1, qdd).

3.3.4 Equilibrium play against self for p = (1, 0, 1, 0) or p = (1, 1, 0, 0)

Both of these form of strategies have the same equilibrium rates of play, given by

τc =
1

4

τd =
1

2

τa =
1

4
.

This strategy is tit-for-tat. It has τc > 0, τd > 0 and τa > 0, and it is simple to verify that such a strat-
egy can always be selectively invaded in the way described above in section 3.3, by choosing a mutant
q = (1, qcd, qdc, qdd) if 2R(cc) > R(cd) +R(dc), or by choosing q = (qcc, 0, 1, qdd) otherwise

Finally, in the case that there is no noise in the execution of each play, a strategy with multiple types
belongs to the class determined by its initial play. Strategies belonging to multiple types can ensure they
always receive the payoff of a particular type, j, by choosing their initial play appropriately. To ensure
mutual cooperation for example, players belonging to multiple types (including the self-cooperators) must
always cooperate on the first move. In the case of alternators, ensuring opposite play in the opening moves
of the game may require more complex communication between players, but is nonetheless possible in
principle. In the case of no noise, a strategy belonging to multiple types can be robust provided it receives
the maximum payoff among the types it belongs to, R∗j > R∗i , ∀i 6= j, when playing against itself. If it
does not receive the maximum payoff, the strategy can be invaded just as described when noise is present.
If the payoff is maximized, the strategy will be robust provided it also satisfies the robustness conditions
described below.

4 Necessary and sufficient conditions for evolutionary robustness un-
der strong selection

As discussed above, a memory-1 strategy that is evolutionary robust in an arbitrary two-player, 2 × 2
game must belong to one of the following four types:

• the self-cooperators C = {(pcc, pcd, pdc, pdd) |pcc = 1},

• the self-defectors D = {(pcc, pcd, pdc, pdd) |pdd = 0},
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• the self-alternators A = {(pcc, pcd, pdc, pdd) |pcd = 0, pdc = 1},

• the equalizers E = {(φ, χ, κ, λ)|λ = χ = 0}.

We now derive sufficient conditions for strategies of each of these types to be robust.

4.1 Self-cooperators with λ ≥ −χ(R(cc)− (R(cd)+R(dc))) and λ ≥ −χ|R(dc)−R(cd)| are
robust

The self-cooperators C satisfy pcc = 1 and score sxx = R(cc) against themselves, which corresponds to
κ = R(cc). In the context of the Iterated Prisoner’s Dilemma, these are precisely the “Good” strategies
of [8] and discussed it [2]. In order to invade a resident strategy X, a mutant Y must have

syx > R(cc).

From Eq. 5, this condition becomes

χsxy > χR(cc) + λ(vcd + vdc)

We can also combine Eq. 5 with Eq 9 (where the extremal case of Eq. 9 corresponds here to an opponent
who plays (0, 1, 1, 1), so that vdd = 0) to give

sxy(1 + χ) ≤ (1 + χ)R(cc)− (vcd + vdc)(2R(cc)− (R(cd) +R(dc)) + λ)

and we therefore find that Y can invade X if

−χ(R(cc)− (R(cd) +R(dc)) > λ

Similarly, we can combine Eq 5 with Eq 8 (where the extremal case of Eq. 8 corresponds here to an
opponent who plays (0, 0, 0, 0), so that vdc = 0) to give

−χ|R(dc)−R(cd)| > λ

as a condition for Y to invade X. Converting back to our original coordinate system, this implies a
self-cooperator X is robust iff:

pdc(R(dc)−R(cc)) ≤ (R(cc)−R(cd))(1− pcd)
pdd(R(dc)−R(cc)) ≤ (R(cc)−R(dd))(1− pcd). (11)

These expressions are given in [8] for the self-cooperators under the Prisoner’s Dilemma.

The evolutionary robust self-cooperating strategies are thus described by the set

Cr =

{
p | pcc = 1, pdc ≤

R(cc)−R(cd)

R(dc)−R(cc)
(1− pcd), pdd ≤

R(cc)−R(dd)

R(dc)−R(cc)
(1− pcd)

}
.
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These analytic expressions for the robust self-cooperating strategies are confirmed by Monte-Carlo simu-
lations (Fig. S1).

4.2 Self-defectors with λ ≥ χ(R(cd)+R(dc)−R(dd)) and λ ≥ χ|R(dc)−R(cd)| are robust

The self-defectors D satisfy pdd = 0 and score sxx = R(dd) against themselves, which corresponds to
κ = R(dd). In order to invade, a mutant Y must therefore have

syx > R(dd).

From Eq. 5, this condition becomes

χsxy > χR(dd) + λ(vcd + vdc)

We can also combine Eq. 5 with Eq 10 (where the extremal case of Eq. 10 corresponds here to an opponent
who plays (0, 0, 0, 1), so that vcc = 0) to give

χ(R(cd) +R(dd)− 2R(dd)) > λ

as a condition for Y to invade X. Similarly, we can combine Eq 5 with Eq 7 (where the extremal case of
Eq. 7 corresponds here to an opponent who plays (1, 1, 1, 1), so that vcd = 0) to give

χ(R(dc)−R(cd)) > λ

as a condition for Y to invade X. Converting back to our original coordinate system, this implies that a
self-defector X is robust iff:

pdc(R(cc)−R(dd)) ≤ (R(dd)−R(cd))(1− pcc)
pdc(R(dc)−R(dd)) ≤ (R(dd)−R(cd))(1− pcd). (12)

The evolutionary robust self-defecting strategies are thus described by the set

Dr =

{
p | pdd = 0, pdc ≤

R(dd)−R(cd)

R(cc)−R(dd)
(1− pcc), pdc ≤

R(dd)−R(cd)

R(dc)−R(dd)
(1− pcd)

}
.

These analytic expressions for the robust self-defecting strategies are confirmed by Monte-Carlo simula-
tions (Fig. S1).
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4.3 Self-alternators with pcd = 0, pdc = 1, (1 − χ)κ ≤ (1 + χ)R(cd)+R(dc)
2

− 2χR(cc) and

(1− χ)κ ≤ (1 + χ)R(cd)+R(dc)
2

− 2χR(dd) are robust

The self-alternators A satisfy pcd = 0 and pdc = 1. Using Eq. 4, and converting to the alternate coordinate
system, we have

λ = (1− χ)

(
κ− R(cd) +R(dc)

2

)
for strategies of this type. From Eq. 5, a resident strategy X of this type has

sxx =
R(cd) +R(dc)

2
.

In order to selectively invade the resident, then, a mutant Y must satisfy

syx >
R(cd) +R(dc)

2

Combining this with Eq 5 gives

χsxy >
R(cd) +R(dc)

2
(1− (vcd + vdc)) + χ

R(cd) +R(dc)

2
(vcd + vdc)− (1− χ)κ(1− (vcd + vdc))

We can also combine Eq. 5 with Eq. 9 (where the extremal case of Eq. 9 corresponds here to an op-
ponent who plays (1, 1, 1, 1), so that vdd = 0) and we find that Y can selectively invade if

(1 + χ)

(
R(cd) +R(dc)

2
− κ
)
< 2χ(R(cc)− κ)

We can also combine Eq. 5 with Eq. 10 (where the extremal case of Eq. 10 corresponds here to an opponent
who plays (0, 0, 0, 0), so that vcc = 0) and we find that Y can selectively invade if

(1 + χ)

(
R(cd) +R(dc)

2
− κ
)
< 2χ(R(dd)− κ)

and converting back to our original coordinate system, this a self-alternator X is robust iff:

pcc ≤ 2
R(dc)−R(cc)

R(dc)−R(cd)

pdd ≤
R(dc) +R(cd)− 2R(dd)

R(dc)−R(cd)
. (13)

These evolutionary robust self-alternating strategies are thus described by the set

Ar =

{
p | pcd = 0, pdc = 1, pcc ≤ 2

R(dc)−R(cc)

R(dc)−R(cd)
, pdd ≤

R(dc) +R(cd)− 2R(dd)

R(dc)−R(cd)

}
.

These analytic expressions for the robust self-alternating strategies are confirmed by Monte-Carlo simu-
lations (Fig. S1).
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4.4 All equalizers are robust, and all mutants invade equalizers neutrally

Finally, we must deal with the case of the equalizers [13], which have χ = λ = 0. From Eq. 5, we see that
such strategies satisfy syx = κ against any invader Y . Thus, a population of equalizers is neutral against
all possible invaders. The equalizer strategies are thus evolutionary robust. However, unlike the other sets
of robust strategies (Cr, Dr, Ar), which resist replacement by any other strategy type, equalizers never
resist invasion, and so they tend to be quickly lost from a population through neutral drift. Therefore we
exclude them from our further discussion of robust strategies and, indeed, we find that populations spend
very little time (< 0.01%) at the equalizers.

4.5 Games with R(cc) = R(dd), or R(cd) = R(dc)

As mentioned previously, the Akin coordinate system cannot describe games with R(cc) = R(dd) or
R(cd) = R(dc). However, we can nonetheless look at the robust strategies in the limit R(cc) → R(dd)
and R(dc)→ R(cd).

When R(cc)→ R(dd) we find, from Eq 11 for the self-cooperators, p(dd) = 0 and

pdc(R(dc)−R(cc)) ≤ (R(cc)−R(cd))(1− pcd)

as the conditions for robustness. For the self-defectors we find from Eq 12 pcc = 1 and

pdc(R(dc)−R(cc)) ≤ (R(cc)−R(cd))(1− pcd)

and the sets of robust self-defectors and self-cooperators are identical. We also find, for Eq 13 for the
self-alternators

pcc ≤ 2
R(dc)−R(cc)

R(dc)−R(cd)

pdd ≤
R(dc) +R(cd)− 2R(cc)

R(dc)−R(cd)
.

which can only be satisfied if R(dc) + R(cd) > 2R(cc), i.e if self-alternators maximize their score when
playing against themselves.

When R(cd)→ R(dc) we find, from Eq 11 for the self-cooperators

pdc(R(dc)−R(cc)) ≤ (R(cc)−R(dc))(1− pcd)
pdd(R(dc)−R(cc)) ≤ (R(cc)−R(dd))(1− pcd).

which can only be satisfied if R(cc) > R(dc), in which case all self-cooperators are always robust. For the
self-defectors we find from Eq 12

pdc(R(cc)−R(dd)) ≤ (R(dd)−R(dc))(1− pcc)
pdc(R(dc)−R(dd)) ≤ (R(dd)−R(dc))(1− pcd).
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which can only be satisfied R(dd) > R(dc). Finally, for the self alternators we find from Eq. 13

0 ≤ R(dc)−R(cc)

0 ≤ R(dc)−R(dd).

as conditions for robustness, i.e self-alternators can only be robust if R(dc) > R(cc), in which case they
are all always robust.
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5 The volume of a robust strategy type

We can use Eqs. 11-13 to calculate the volumes associated with each robust strategy type. In the case of
the self-alternators the volume of Ar is in fact a 2D surface of area(

2
R(dc)−R(cc)

R(dc)−R(cd)

)
×
(
R(dc) +R(cd)− 2R(dd)

R(dc)−R(cd)

)
where, in addition, we must constrain the area so that only strategies within the unit square are included.
Similarly, Cr has cross-sections of area(

R(cc)−R(cd)

R(dc)−R(cc)
(1− pcd)

)
×
(
R(cc)−R(dd)

R(dc)−R(cc)
(1− pcd)

)
and its volume is calculated by integration, with the limits of integration chosen to include only strategies
lying within the unit cube. Finally, Dr has cross-sections of area(

1− R(cc)−R(dd)

R(dd)−R(cd)
pdc

)
×
(

1− R(dc)−R(dd)

R(dd)−R(cd)
pdc

)
and its volume is calculated by integrating across those strategies lying within the unit cube.

5.1 Time spent at different strategy types

We now use our results on the volumes of robust strategies to approximate the time spent at the different
strategy types – self-cooperators, self-defectors, and self-alternators – for fixed payoffs under strong se-
lection. To make this analytical approximation we will assume that the population spends all of its time
at these three strategy types, an approximation motivated by the fact that these types contain all the
evolutionary robust strategies (except for the equilizers, which are quickly replaced through neutral drift).
Indeed, Monte Carlo simulations confirm that populations spend > 97% of their time at self-alternators,
self-cooperators or self-defectors, for values of payoffs ranging across an order of magnitude.

To approximate the amount of time a population spends in C, D or A, we simply the evolution of
strategies in population as a three-state Markov chain (Fig. S2). We assume that the probability g of
entering a strategy type is given by the probability that a robust strategy of that type replaces a randomly
drawn memory-1 strategy. We assume that non-robust strategies can be neglected, because although they
may be able to invade, they can quickly be reinvaded.

In order to calculate the probability of entering a strategy type under the “imitation” model of [10],
we use the probability that a new mutant Y fixes in a population otherwise comprised of a resident X:

ρ(px,qy) =

N−1∑
i=0

i∏
j=1

eσ[(j−1)syy+(N−j)syx−jsxy−(N−j−1)sxx]

−1

The probability of the population adopting a self-alternator strategy under in this three-state chain is
then

ga = Zδ2Va

∫
p∈[0,1]4

∫
q∈Ar

ρ(p,q)dpdq

where q is integrated over the set of robust self-alternating strategies, p is integrated over the full set of
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memory-1 strategy, ρ(p,q) is the probability that a resident strategy p is replaced by a robust alternator
q, and VA is the two-dimensional area comprised by robust alternators. The term δ2Va denotes the
volumes of all memory-1 strategies within Euclidean distance δ of the robust alternators, called the δ-
neighborhood of the robust alternators [2,14]. The constant term Z normalizes the probability of adopting
a strategy, so that ga + gc + gd = 1.

Similarly, the probability of the system adopting a robust self-cooperator is

gc = ZδVc

∫
p∈[0,1]4

∫
q∈Cr

ρ(p,q)dpdq,

and the probability of the system adopting a robust self-defector strategy

gd = ZδVd

∫
p∈[0,1]4

∫
q∈Dr

ρ(p,q)dpdq. (14)

Once at a robust strategy, we know that, under strong selection, the system evolves through neutral
invasion among strategies of the same type (C, D, or A). The probability h of leaving a strategy type is
therefore the probability that a randomly drawn memory-1 strategy replaces a randomly drawn resident
of that type. For the self-alternators we have

ha =

∫
q∈A

∫
p∈[0,1]4

ρ(q,p)dpdq

where q is integrated over all self-alternator strategies A. Similarly we have

hc =

∫
q∈C

∫
p∈[0,1]4

ρ(q,p)dpdq

for self-cooperators, where q is integrated over all self-cooperator strategies C. And

hd =

∫
q∈D

∫
p∈[0,1]4

ρ(q,p)dpdq (15)

for self-defectors, where q is integrated over all self-defector strategies D. The stationary distribution of
this three-state Markov chain with these transition probabilities can be readily found to give

Πa =
ga/ha

ga/ha + gc/hc + gd/hd

for the probability of the system to be at an self-alternator strategy,

Πc =
gc/hc

ga/ha + gc/hc + gd/hd

for the probability of the system to be at a self-cooperator strategy, and

Πd =
gd/hd

ga/ha + gc/hc + gd/hd

for the probability of the system to be at a self-defector strategy.
As shown in Fig. 2 and Fig. 4 of the main text, the analytic expressions above for the amount of time

spent at each strategy type, given the current payoff matrix, provide very good approximations for the
actual occupancy times observed in Monte-Carlo simulations over all strategies, even as the payoff matrix
evolves.
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5.2 The evolution of strategy-types in the two-player public goods game

In the two-player public goods game, the volume of robust self-alternators Ar is a 2D surface of area(
2C −B
C

)
×
(
B − C
C

)
where, in addition, we must constrain the area so that only strategies within the unit square are included.
Similarly, Cr has cross-sections of area(

B

2C −B (1− pcd)
)
×
(

2
B − C
2C −B (1− pcd)

)
and its volume is calculated by integration, with the limits of integration chosen to include only strategies
lying within the unit cube. Finally, Dr has cross-sections of area(

1− 2
B − C
2C −Bpdc

)
×
(

1− B

2C −Bpdc
)

As should be clear from this, the volume of robust self-cooperating strategies increases as B−C increases,
while the volume of self-defecting strategies decreases as B − C increases. Thus we see why the collapse
of cooperation occurs when B/C decreases. In general, mutations that increase B − C are favored by
selection in two-player public goods games, since they increase the payoff to self-alternators and self-
cooperators and leave the payoff to self-defectors unchanged. Thus what matters is how B − C changes
with C. As discussed in the main text, if we assume B−C = f(C) where f(C) increases monotonically in
C, then all that matters for the collapse of cooperation is whether f(C) is sub- or super-linear (or linear)
in C, since

B

C
= 1 +

f(C)

C

When f(C) is sub-linear, cooperation will collapse, whereas if it is super-linear, cooperation will become
more prevalent. If f(C) is linear, cooperation will collapse if the intercept k > 0 and will increase in
prevalence if k < 0. All of these cases are shown in Fig S6.
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6 Necessary conditions for memory-1 strategies to be evolutionary
robustness under weak selection:

We have so far assumed that selection is strong. However, we can relax this assumption, and consider
instead the robustness of memory-1 strategies in the regime of weak selection,which arises when Nσ � 1
[15]. For a population evolving under strong selection, a strategy X is evolutionary robust iff sxx ≥ sxy for
all Y , i.e if no mutant is selected to invade. For a population evolving under weak selection, i.e. for which
Nσ � 1, even deleterious mutants may reach high frequency due to genetic drift. Therefore, in order to
find the strategies that are evolutionary robust under weak selection, we must look at the probability of
fixation, ρ(px,qy). In particular, a strategy X is robust under weak selection iff ρ(px,qy) ≤ 1/N for all
mutants Y , where 1/N is the probability of neutral fixation. The expression for ρ(px,qy) under weak
selection can be Taylor expanded to give the following robustness condition: a strategy X is evolutionary
robust iff

(N − 2)(syy − 2sxx + 2syx − sxy) < 3(sxy − syx) (16)

where N is the population size [15]. First we derive necessary conditions for robustness. Recall that, for
a resident strategy X we can write

sxx = κx −
λx

1− χx
(vcd + vdc)

for the payoff of X against itself and the payoff of a mutant Y against X is

syx =
(1− χx)κx − λx(wcd + wdc) + χx((1− χy)κy − λy(wcd + wdc))

(1− χxχy)

Similarly we have

syy = κy −
λy

1− χy
(v ∗cd +v∗dc)

for the payoff of Y against itself and the payoff of a mutant X against Y is

sxy =
(1− χy)κy − λy(wcd + wdc) + χy((1− χx)κx − λx(wcd + wdc))

(1− χxχy)

6.1 A strategy with 0 ≤ pcc < 1 and 0 < pdd ≤ 1 can always be invaded unless pcd = 0
and pdc = 1

Consider, as before, a resident strategy with pcc < 1 and pdd > 0, along with a mutation that results in a
small change to κy = κx + η, and a small change to λy so that (1 − χx)κx − λx = (1 − χy)κy − λy. We
then have

syx = κx +
χxη

1 + χx
(1− (wcd + wdc))−

λx
1− χx

(wcd + wdc)

as well as

sxy = κx +
η

1 + χx
(1− (wcd + wdc))−

λx
1− χx

(wcd + wdc)
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and

syy = κx + η(1− (v ∗cd +v∗dc))−
λx

1− χx
(v ∗cd +v∗dc)

Also note that (v ∗cd +v∗dc) − (vcd + vdc) = A∗η where A∗ is finite and is zero if pcd = 0 and pdc = 1 or
pcd = 1 and pdc = 0. We can then write

sxy − syx = η
1− χx
1 + χx

(1− (vcd + vdc))

and

sxx − syx = Aη
λx

1− χx
− η χx

1 + χx
(1− (vcd + vdc))

and

syy − sxy = η
χx

1 + χx
(1− (vcd + vdc))− η

λx
1− χx

(A∗ −A)

where terms O
(
η2
)

and greater have been neglected. Replacing these expressions into Eq. 16 gives

η(N − 2)

[
3

χx
1 + χx

(1− (vcd + vdc))−
λx

1− χx
(A∗ +A)

]
> 3η

1− χx
1 + χx

(1− (vcd + vdc))

This can always be satisfied unless vcd + vdc = 1 and A∗ +A = 0, which occurs iff pcd = 0 and pdc = 1 or
pcd = 1 and pdc = 0, i.e. if the resident is an self-alternating strategy.

6.2 A strategy with 0 < pcd < 1 and 0 < pdc < 1 can always be invaded unless pcc = 1
or pdd = 0

Similarly, we can consider mutations that change λx by a small amount, for strategies with 0 < pcd < 1
and 0 < pdc < 1. The resulting payoffs following such a mutation are

sxx = κx −
λx

1− χx
(vcd + vdc)

for the payoff of X against itself and the payoff of a mutant Y against X is

syx = κx −
λx

1− χx
(wcd + wdc)− η

χx
1 + χ2

x

(wcd + wdc)

Similarly we have

syy = κx −
λx

1− χx
(v ∗cd +v∗dc)− η

1

1− χx
(v ∗cd +v∗dc)

for the payoff of Y against itself and the payoff of a mutant X against Y is

sxy = κx −
λx

1− χx
(wcd + wdc)− η

1

1 + χ2
x

(wcd + wdc)
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We can then write

sxy − syx = −η 1

1 + χx
(vcd + vdc)

and

syy − sxy = η
λx

1− χx
(A−A∗)− η χx

1 + χ2
x

(vcd + vdc)

where in this case A∗ = 0 if pcc = 1 or if pdd = 0. We also have

sxx − syx = η
λx

1− χx
A+ η

χx
1 + χ2

x

(vcd + vdc)

Replacing these expressions into Eq. 16 gives

η(N − 2)

[
λx

1− χx
(A+A∗) + 3

χx
1 + χ2

x

(vcd + vdc)

]
< 3η

1

1 + χx
(vcd + vdc)

which can always be satisfied unless vcd + vdc = 0 and A + A∗ = 0, which occurs iff pcc = 1 or pdd = 0,
i.e. if the resident strategy is either a self-cooperator or a self-defector.

6.3 When N > 2, a strategy cannot be robust unless it maximizes its score against
itself

We have shown that only self-alternators, self-cooperators and self-defectors can be robust under weak
selection. However, in a population of N > 2 we can also construct a strategy that will selectively replace
any resident that does not achieve the maximum possible score against itself. To see this, consider a
resident strategy of type i which scores sxx = R∗i against itself. We can construct a mutant Y which is
of both type i and another type j such that it scores syy = τiR

∗
i + (1 − τi)R∗j against itself (where τi

is the proportion of time spent in state i at equilibrium.). If R∗i is not the maximum score a strategy
can receive against itself, we can choose j such that R∗j > R∗i and thus syy > sxx. Such a mutant scores
syx = sxy = R∗i against the resident strategy. From Eq. 16 the condition for invasion is then

(N − 2)(1− τi)(R∗j −R∗i ) > 0

which is satisfied by construction if N > 2. Thus a strategy can only resist invasion under weak selection
if it maximizes its score against itself when N > 2. In the case N = 2 the condition for invasion from
Eq. 16 is simply syx > sxy, which allows strategies such as always defect to be robust.
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7 Relaxation of assumptions

We have made the following simplifying assumptions in the main text and SI:

• Weak selection

• Non-local mutations to strategies

• Rapid mutations to payoffs

• Linear relationships between costs and benefits

We now relax each of these assumptions in turn.

7.1 The collapse of cooperation under weak selection

Sufficient conditions for a strategy to be robust under weak selection can be found using Eqs. 5-10
along with Eq. 16. The case 2R(cc) > R(dc) + R(cd), for example, in which only a subset of self-
cooperators are robust, has been studied by [2]. For the two-player public goods game with R(cc) = B−C,
R(cd) = B/2− C, R(dc) = B/2 and R(dd) = 0, these conditions reduce to

λ ≥ B − C
3N

[N + 1− (2N − 1)χ]

and

λ ≥ C

N − 2
[N + 1− (2N − 1)χ]

Using Eq. 1 to convert back to the standard coordinate system we have

[3NC + (2N − 1)(B − C)] (1− pcd) ≥ [3NC − (2N − 1)(B − C)] pdc

and

2(N − 2)(B − C)(1− pcd) ≥ [3NC − (N − 2)(B − C)] pdd

Just as in the case of strong selection, the volume of robust self-cooperative strategies shrinks as the ratio
of benefits to costs shrinks. And so this analysis predicts a collapse of cooperation as payoffs evolve to-
wards higher values. This behavior is indeed confirmed by Monte-Carlo simulations (Fig. S9), illustrating
that the collapse of cooperation occurs under both strong and weak selection.

7.2 Alternate mutation schemes

7.2.1 Varying γ

We have focused in the main text on a mutation scheme in which γ = 0.1, so that costs and benefits occur
in the relationship B−C = 1.25C + k. The collapse of cooperation persists, to a lesser or greater extent,
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when larger or smaller values of γ > 0 are considered, as shown in Fig. 43a-c. These payoff-mutation
schemes all correspond to a tradeoff in which larger benefits of mutual cooperation, B−C, are associated
with larger costs of being defected against, C.

We can alternatively consider values γ < 0. In this case, as B and C increase, the benefit for mutual
cooperation, B−C, decreases. And so larger benefits of mutual cooperation are no longer associated with
larger costs of being defected against. When strategies and payoffs co-evolve under this mutation scheme
selection leads to decreasing values of C, until C reaches zero (so that there is no longer a Prisoner’s
Dilemma). As might be expected, there is a collapse of defection in this case, with self-defectors replaced
by self-cooperators as payoffs evolve (Fig. S5).

Finally, in the limiting case in which B can evolve independently and C remains fixed, self-cooperators
become more successful as B evolves and there is no collapse of cooperation (Fig. S4c).

7.2.2 Varying k

We can alternatively consider values k < 0 in the linear relationship described above. In this case, as B and
C increase, the ratio, B/C, increases. When strategies and payoffs co-evolve under this mutation scheme,
as might be expected, there is a collapse of defection, with self-defectors replaced by self-cooperators as
payoffs evolve (Fig. S6c).

7.2.3 Varying α

In the main text we have assumed a mutation scheme with C > 0 and 0 ≤ α ≤ 1, such that α either
increases or decreases with increasing C, corresponding to increasingly synergistic or antagonistic inter-
actions. If we relax this assumption and allow C and α to evolve independently, we find that both α and
C tend to increase towards the Snowdrift game, as shown in Fig. S7a-b.

If we further relax these assumptions and allow α and C to adopt any value, we can produce all
qualitatively different 2 × 2 two-player games Fig. S3). If α and C evolve independently under this
mutation scheme, α and C increase and the game R(dc) > R(cd) > R(cc) > R(dd) is produced (Fig
S7c-d).

7.2.4 Changing the functional relationship between B and C

As shown above, the collapse of cooperation occurs in the public goods game occurs when the ratio B/C
decreases as C increases. This in turn implies that the payoff for mutual cooperation, B − C increases
sub-linearly with C. In contrast, when B − C increases super-linearly with C, the ratio B/C tends to
increase and cooperation becomes increasingly prevalent. Examples of both cases are shown in Fig S6
with B − C increasing as

√
C (sub-linear case) and B − C increasing as C2 (super-linear case). Finally,

if B −C has an optimal value, the prevalence of cooperation depends on the ratio B/C at the optimum.
The equilibrium frequencies of the robust strategy types are shown as a function of B/C in Fig S8.

7.2.5 Slow mutations to payoffs

In the main text we assumed that mutations to payoffs and mutations to strategies occur at equal rates.
This assumption can be relaxed to allow for the scenario in which mutations to payoffs are relatively
more rare. As shown in Fig. S10 the collapse of cooperation persists even when mutations to payoffs are
relatively rare.

7.2.6 Local mutations to strategies

In the main text we assumed that mutations to strategies are global, such that a mutant was drawn
uniformly from the space of all memory-1 strategies. This assumption can be altered to consider the
scenario in which mutations to strategies increase or decrease each element of a memory-1 strategy, p,
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by a small amount ∆, with the constraint that mutant probabilities lie in the range [0, 1]. As shown in
Fig. S11 the collapse of cooperation persists when mutations to strategies are local.
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Figure S1 – Confirmation by Monte-Carlo simulation of analytical conditions for evolutionary robustness of strate-
gies. For each of the three strategy types, self-cooperators (pcc = 1), self-defectors (pdd = 0), and self-alternators
(pcd = 0 and pdc = 1), we compare analytic expression for evolutionary robustness (black lines) with numerical
calculations of robustness (light blue regions). Coordinates (κ, χ) for the self-alternating strategies and (λ, χ) for
self-cooperators and self-defectors were sampled in regular intervals of 0.01 within the space of all feasible strategies
(outlined in red). For each sampled pair of co-ordinates (λ, χ) we also sampled 103 associated values of φ, ranging
from φ→ 0 to the maximum feasible φ. To determine numerically whether a focal strategy X = (λ, χ, φ) is robust
we computed the longterm payoffs sxx, syy, sxy and syx against 106 opponent strategies, Y , drawn uniformly from
all memory-1 strategies. A focal strategy X was designated as robust if no strategy Y was found with a score
syx > sxx. Parameters are N = 100, σ = 10, R(cc) = R = 3, R(cd) = S = 0, R(dc) = T = 5 and R(dd) = P = 1.
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Figure S2 – A simplified, three-state Markov chain to describe evolution of strategies in two-player games. The
transition rates are as given by Eqs. 14-15. In this simplified model we assume that the time spent away from
these three strategy types can be neglected. This approximation is supported by simulations on the full space of
strategies, which indicate that such populations occupy one of these three strategy types > 97% of the time.
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Figure S3 – All possible qualitative types of 2x2 two-player games can be parameterized by two parameters, alpha
and C, under the payoff scheme R(cc) = B−C, R(cd) = αB−C, R(dc) = αB, and R(dd) = 0, where B−C = γC+k
with γ = 0.1 and k = 1.6. As α ∈ R and C ∈ R vary without constraint, all 12 qualitatively different games, as
defined by the possible ordering of the payoffs (R(cc), R(cd), R(dc), R(dd)), can be produced. Although there are
24 possible orderings in total, the actual number of qualitatively different games is reduced by a factor of two, due
to symmetry. Lines indicate the boundaries where two payoffs, as indicated, are equal; and each region is labelled
according to the type of game it encodes. The three classic social dilemmas – the Prisoner’s Dilemma, Snowdrift,
and Stag Hunt games – are labelled and occur in the most biologically relevant region, α ∈ [0, 1] and C ≥ 0.
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Figure S4 – The collapse of cooperation in the Prisoner’s Dilemma under different mutation schemes. We simulated
populations under weak mutation, proposing both mutant strategies and mutant payoffs at equal rates, µ/2. Mu-
tations to strategies were drawn uniformly from the full space of memory-1 strategies. Mutations to payoffs were
drawn so that increasing benefits of cooperation incur increasing costs: mutations perturbing the benefit B by ∆
were drawn uniformly from the range ∆ ∈ [−0.1, 0.1], with the corresponding change to cost C chosen to enforce the
relationship B = γC + k with (a) γ = 0.2, (b) γ = 0.4 or (c) allowing B to evolve with fixed C = 1. Evolution was
modelled according to an imitation process under weak mutation [2,10,14]. Self-cooperative strategies are initially
robust and dominate the population, but they are quickly replaced by self-defectors as payoffs evolve. Dots indicate
the proportion of 105 replicate populations, at each time point, within distance δ = 0.01 of the three strategy
types self-cooperate, self-defect, and self-alternate. Lines indicate analytic predictions for the frequencies of these
strategy types, which depend upon the corresponding volumes of robust strategies. Simulations were run until each
population experienced 5× 105 mutations. Populations of size N = 100 were initiated with B = 3 and C = 1, and
evolved under selection strength σ = 1 (corresponding to strong selection on strategies).
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Figure S5 – Co-evolution of strategies and payoffs when B and C are allowed to evolve with γ = −0.15, so that the
payoff for mutual cooperation, B−C, increases as B and C decrease. (a) Populations were initialized at B = 6 and
C = 5, under which self-defect dominates. Once strategies and payoffs start to co-evolve, self-cooperate begins to
increase and eventually comes to dominate. (b) Benefits B and costs C evolve towards lower values. We simulated
populations under weak mutation as in Fig. 2a. Lines indicate analytic predictions for the frequencies of these
strategy types, which depend upon the corresponding volumes of robust strategies. Simulations were run until each
population had experienced 5× 105 mutations. Populations of size N = 100 were initiated with B = 3 and C = 1,
and evolved under selection strength σ = 1 (corresponding to strong selection on strategies).
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aaFigure S6 – The collapse of cooperation in the Prisoner’s Dilemma under different mutation schemes. We simu-
lated populations under weak mutation, proposing both mutant strategies and mutant payoffs at equal rates, µ/2.
Mutations to strategies were drawn uniformly from the full space of memory-1 strategies. Mutations to payoffs
were drawn so that increasing benefits of cooperation incur increasing costs: mutations perturbing the benefit B
by ∆ were drawn uniformly from the range ∆ ∈ [−0.1, 0.1], with the corresponding change to cost C chosen to
enforce various payoff relationships. (a) B−C =

√
C, an example in which the benefits of mutual cooperation grow

sub-linearly with the costs. Here self-cooperative strategies are initially robust and dominate the population, but
they are quickly replaced by self-defectors as payoffs evolve. (b) B − C = Bmax/(1 + exp[h(C0 − C)]), an example
in which the benefits of mutual cooperation saturate with increasing costs (where Bmax is the maximum value of
B, chosen so that when C = 4, B = 6. (c) B − C = γC + k, with γ = 1 and k = −2, an example in which
the benefits of mutual cooperation grow linearly with the costs, with a negative intercept. (d) B − C = C2/8,
an example in which the benefits of mutual cooperation grow super-linearly with the costs. Here self-cooperative
strategies are initially robust and become more prevalent as payoffs evolve. Here self-cooperative strategies are
initially robust and dominate the population, but they are quickly replaced by self-defectors as payoffs evolve. Here
self-cooperative strategies are initially robust and become more prevalent as payoffs evolve. Evolution was modelled
according to an imitation process under weak mutation [2, 10, 14]. Dots indicate the proportion of 105 replicate
populations, at each time point, within distance δ = 0.01 of the three strategy types self-cooperate, self-defect, and
self-alternate. Lines indicate analytic predictions for the frequencies of these strategy types, which depend upon
the corresponding volumes of robust strategies. Simulations were run until each population experienced 5 × 105

mutations. Populations of size N = 100 were initiated with B = 6 and C = 4 and h = 0.1 in (c). Populations
evolved under selection strength σ = 1 (corresponding to strong selection on strategies).
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Figure S7 – Evolution away from the Prisoner’s Dilemma. We simulated a population under weak mutation,
proposing mutant strategies drawn uniformly from the full space of memory-1 strategies. Alongside mutations to
the payoffs B and C, as in Fig. 2, we also allowed mutations to the additional payoff parameter α, which determines
whether mutual cooperation is synergistic (α < 1/2) or antagonistic (α > 1/2) for the amount of public benefit
produced. (a) Evolution with α ∈ [0, 1] (top panels) produces a rapid loss of cooperation and increase in defection,
as in Fig. 2, followed by an increase in alternating strategies. Points indicate the proportion of simulated populations
within a distance δ = 0.01 of the three strategy types self-cooperation, self-defect, and self-alternate; lines indicate
analytic predictions. (b) Following the collapse of cooperation, the Prisoner’s Dilemma (unshaded region) is replaced
by the Snowdrift game (shaded region), with 1 > α > C/B. Parameters values as in Fig. 2a-b. (c) Evolution with
α ∈ R (bottom panels) unconstrained produces a rapid loss of cooperation and increase in defection, as in Fig. 2,
followed again by an increase in alternating strategies. Points indicate the proportion of simulated populations
within a distance δ = 0.01 of the three strategy types; lines indicate analytic predictions. (d) Following the collapse
of cooperation, the Prisoner’s Dilemma (unshaded region) is replaced first by the Snowdrift game (shaded region),
with α > C/B, and then by the game R(dc) > R(cd) > R(cc) > R(dd), with α > 1. Parameters values as in
Fig. 2a-b. Populations of size N = 100 were initiated with B = 6 and C = 4 and α = 1/2, and evolved under
selection strength σ = 1 (corresponding to strong selection on strategies), with γ = 0.1.
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Figure S8 – Cooperation in the Prisoner’s Dilemma as a function of the ratio B/C of costs to benefits. (a) We
simulated populations under weak mutation, as in Fig. 2a, except that we exogenously varied the ratio B/C of costs
to benefits (x-axis) (keeping α = 0.5 fixed) and plotted the equilibrium frequency of self-cooperators, self-defectors,
and self-alternators (points). These simulated equilibrium frequencies are compared to analytic predictions (lines)
based on the volumes of robust strategies of each type. As B/C decreases, so too does the equilibrium frequency
of self-cooperators. When there is an optimal value of B − C then the ratio B/C at the optimum determines
the long-term prevalence of self-cooperative strategies. (b) Analytical results for the equilibrium frequency of self-
cooperators, self-defectors and self-alternators in terms of the ratio of costs to benefits, B/C (y-axis) and the degree
of antagonism α (x-axis). Labelled regions show parameter values for which a given strategy type occurs > 50% of
the time, while in the small gray region no strategy type is present > 50% of the time
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Figure S9 – The collapse of cooperation in the Prisoner’s Dilemma under weak selection. We simulated populations
under weak mutation as in Fig. 2a, except with N = 100 and σ = 0.01 (weak selection). Self-cooperative strategies
are initially robust and dominate the population, but they are quickly replaced by self-defectors as payoffs evolve.
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Figure S10 – Slow mutations to payoffs and the collapse of cooperation in the Prisoner’s Dilemma. We simulated
populations under weak mutation as in Fig. 2a, except that mutations altering strategies occur at 103-times the
rate of mutations altering payoffs. Self-cooperative strategies are initially robust and dominate the population, but
they are quickly replaced by self-defectors as payoffs evolve.
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Figure S11 – Local mutations to payoffs and the collapse of cooperation in the Prisoner’s Dilemma. We simulated
populations under weak mutation as in Fig. 2a, except that mutations altering strategies are now “local” so that
mutations perturbing each of the four probabilities (pcc, pcd, pdc, pdd by an amount ∆ were drawn uniformly from
the range ∆ ∈ [−0.01, 0.01]. Self-cooperating strategies are initially robust and dominate the population, but they
are quickly replaced by self-defectors as payoffs evolve.
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