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Normalization of Functional MRI Data Using DARTEL. The supervised
voxel-based morphometry protocol proceeded in the following
stages to normalize both fMRI and structural data. Motion-cor-
rected fMRI data were first rigidly aligned to T1-weighted images.
T1-weighted images were segmented into gray matter (GM) and
white matter (WM) using a new segmentation algorithm in SPM8.
Then, a group-specific template (across all subjects) was created
using diffeomorphic anatomical registration using exponentiated
lie algebra [DARTEL (1)]. This was done by first importing
tissue class images (e.g., GM, WM) into the DARTEL space
using the normalization parameter yielded during the segmen-
tation step followed by resampling to isotropic voxels (1.5 × 1.5 ×
1.5 mm). Then, the imported images went through an iterative
procedure that began by producing an initial template as a mean
of GM/WM across all participants (n = 339). Deformation from
the initial template to each of the subject-specific GM/WM im-
ages was computed and the inverse of the deformation was ap-
plied to each of the subject-specific GM/WM images. A second
template was then created as the mean of the deformed subject-
specific GM/WM images across all participants, and this pro-
cedure was repeated until a sixth template was created. Finally,
the coregistered fMRI images and segmented GM/WM images
were nonlinearly normalized, subject by subject, to the sample-
specific template (using a subject-specific flow field), affine-
aligned into a Montreal Neurological Institute template, and
finally smoothed using an 8.0-mm full width at half maximum
Gaussian filter. Thus, both preprocessed structural MRI and
fMRI images were in the same space and had the same voxel size
(2 × 2 × 2 mm).

Independent Component Analysis. ICA is a multivariate approach
that identifies spatially independent and temporally coherent
patterns of the brain from their linearly mixed fMRI signal. As
such, ICA provides a natural measure of functional connectivity
(i.e., each component consists of a set of brain regions that shares
the same temporal pattern). In the current study, group ICA was
performed using the GIFT toolbox (2). In the first step, a time
series of each voxel was normalized by its average intensity. This
intensity normalization procedure improves the accuracy and
test–retest reliability of subsequent ICA output (2). The in-
tensity-normalized preprocessed data for all participants (n =
339) were concatenated across time. After temporal concate-
nation, the optimal number of independent sources was esti-
mated using a minimum description length (MDL) algorithm. As
such, 47 independent components (ICs) were estimated. Two-
step data reduction was carried out using principal component
analysis (PCA). In the first step, subject-specific data reduction
was conducted to reduce computational complexity while pre-
serving most of the information content of the data (100 prin-
cipal components were retained). The second (group-level) data
reduction was again carried out by PCA according to the esti-
mated number of ICs (i.e., 47 estimated by MDL). After data
reduction, the Infomax ICA algorithm (3) was used to optimally
extract 47 ICs. The latter procedure was repeated 20 times using
the ICASSO toolbox (4), and the resulting components were
clustered to estimate the reliability of the ICs. All ICs reported
in the current study exhibited a reliability index (Iq; ranges from
0 to 1) greater than 0.95. Finally, a backreconstruction using the
recently developed GICA3 method (an improved version of dual
regression) was conducted (2), by which time courses (TCs) and
spatial maps (SMs) were computed for each subject (both TCs

and SMs have the same unit, percent signal changes; for more
details, see ICA-Driven Measures of RSNs). There are desirable
properties in GICA3 not available in the other method, in-
cluding that the aggregate SM is the sum of the subject-specific
SMs, analogous to a random effects model where the subject-
specific effects are zero-mean distributed deviations from the
group mean effect. As such, it was shown that noise-free ICA
using GICA3 provides more robust results with a more intuitive
interpretation (5). As for the model order, the estimation of
dimension for fMRI data is still an open and challenging prob-
lem, although it has been shown that both analytic approaches
using information theoretic criteria (such as MDL) and empiri-
cal methods provide reasonable results (6). Previous studies
suggested that an appropriate model order can be empirically
estimated from the Iq curve such that the point at which com-
ponents transition from relatively stable to less reliable can be
considered as a reasonably good estimate of the model order
(7, 8). Based on this suggestion, we varied the model order from
30 to 70 and again found 47 to be the knee (i.e., transition point)
in the Iq curve. Finally, we also varied the model order from 30
to 70, and found that the functional architecture of the default
mode network remained relatively stable across different model
orders. Taken together, although we cannot be certain that we
have the true model order, both analytical and empirical ap-
proaches suggested that 47 components could be a reasonable
estimate (Fig. S3).

Resting-State Network Selection. After visually inspecting the
group average maps, ICs located in the cortex exhibiting low
spatial overlap with the typical topology of potential artifacts
(e.g., vascular, ventricle, motion, and susceptibility artifacts) and
representing functionally meaningful patterns were considered
to be RSNs (Fig. S1; refs. 2, 9–14). In addition, a template-
matching procedure was carried out using templates of estab-
lished RSNs provided online by the developers of the GIFT
program (2). For the hippocampus IC reported in this study,
however, no RSN has been identified in the noted template. In-
stead, spatial correlation was conducted with a corresponding
network reported in other studies (9, 15). To further substantiate
our categorization (RSNs vs. physiological artifacts), spectra
were characterized with a metric of low- to high-frequency
power ratios (PRs) used previously by Allen and colleagues (2).
ICs that exhibited a higher PR (>7) were considered to be robust
RSNs. It is important to stress that although we found 24 RSNs,
the main focus of the current paper is on the cortical and the HC
DMN components.
Finally, a voxelwise one-sample t test was computed across all

subjects (each subject as a random effect) for all RSNs, thereby
providing a statistical threshold on RSNs. Thresholds were based
on the distribution of voxelwise t statistics to identify voxels reliably
and consistently activated across subjects using a gamma-mixture
model fit controlling for a false-discovery rate (FDR) of 1%.

ICA-Driven Measures of RSNs. For the set of selected RSNs (and in
particular focus for the DMN), we considered four ICA-driven
measures that reflect distinct but complementary facets of RSNs.
(i) Component SMs reflected the level of coactivation (con-
nectivity) within a network in a voxelwise manner (voxelwise
connectivity). An SM was created after the backreconstruction
step of the group ICA, which creates subject-specific maps from
a corresponding group-level IC. (ii) Global indices of functional
connectivity reflected connectivity within a network as a whole.

Salami et al. www.pnas.org/cgi/content/short/1410233111 1 of 10

www.pnas.org/cgi/content/short/1410233111


This measure was computed according to work by Glahn and
colleagues (16). In short, individual 3D subject-specific SMs for
each network were concatenated into a single 4D map, and the
first principal eigenvector representing the subject’s connectivity
was calculated within a study-specific mask of the corresponding
network. The mask was generated with a Gaussian/gamma-
mixture model fit to the intensity histogram of group ICA for
each network, controlling for an FDR of 1%. (iii) The subject-
specific amplitude of a TC indicated the level of activation within
a network. As suggested in a recent paper by Allen and col-
leagues (6), the amplitude was computed as a joint metric (which
combines scaling information from TCs and SMs) using the TC
SD, a well-characterized indicator of the spread or dispersion
across the entire network, and the SM maximum value, which
exhibited the amplitude of the top 20 voxels (intensity was av-
eraged to reduce the influence of noise) most strongly associated
with the corresponding TC. Note that TCs were detrended and
despiked. In addition, motion parameters were regressed out
from each component’s TC (i.e., post-ICA motion correction).
(iv) The internetwork functional connectivity (IFC) reflected
connectivity between networks (17). The IFC was estimated as
Pearson’s correlation coefficients between pairs of TCs that were
detrended, despiked, and filtered using a fifth-order Butterworth
low-pass filter (f < 0.15).

Age-Related Differences in RSN Measures. To investigate age-
related differences in SM connectivity measures, a voxelwise gen-
eral linear model was set up for each RSN. Age, sex (coded as
a binary variable), age-by-sex interaction, temporal signal-to-
noise ratio (tSNR) as a predictor of data quality, as well as
a nuisance predictor related to motion were included in the
model. Although ICA helped in identification of motion-related
sources, which were excluded from further analysis (e.g., ref. 18),
it has been shown that residual motion-related variance may still
partly remain in an RSN (19, 20). For each subject, rigid-body
motion was estimated using SPM’s realignment routine. This
estimation derives a motion transformation matrix for each time
point that is described by six motion parameters consisting of
three translations and three rotations. These six parameters were
condensed to a scalar quantity, namely framewise displacement
[FD (19)], which reflects instantaneous head motion from a
frame to an adjacent frame. As a separate analysis, we computed
three other possible metrics of head motion, namely maximum
motion (maximum absolute translation of each brain volume
compared with the previous volume), number of movements and
rotation (number of relative displacements >0.1 mm in 3D space
between adjacent volumes), and mean scan-to-scan translation
and mean scan-to-scan rotation as suggested by Allen and col-
leagues (2). Consistent with a previous study (20), the use of
different metrics did not change the results, and hence FD was
used as the central metric of head motion in all analyses. In
addition, tSNR of each resting-state session was computed, as
suggested by Van Dijk and colleagues (20). The mean signal
across the BOLD run was calculated for each voxel, and the
mean value was divided by the SD of the signal intensity within
the voxel over time. Finally, the mean tSNR across all voxels in
the brain served as the measure of tSNR for the BOLD fMRI
data. In all analyses, local maxima with p < 0.05 (FWE-cor-
rected) with an extended threshold of 20 contiguous voxels (K >
20) were considered to be significant. To investigate age-related
differences in global measures of connectivity and amplitude,
partial correlation was carried out between each measure and
age (controlling for sex, motion parameter, and tSNR). Finally,
those components that reflected reliable age differences across
three main RSN outcome measures (global measures: r ≥ 0.20,
p < 0.0001; voxelwise measures: p < 0.05 [familywise error
(FWE)-corrected], k > 20) were reported in the current study.
As stated in the main text, the main focus of this paper was to

thoroughly investigate the interplay among age, the DMN (both
the cortical and HC subsystems), and episodic memory function.
As such, it is reasonable to identify the DMN using a template-
matching approach and use multiple-comparison correction
methods that correct the results at the DMN component level. In
a second, but more explanatory, attempt, we also investigated
the effect of age on all 24 RSNs. (It is important to stress that
these results are only supplementary and the main message of
the paper, reported in the main text, should be considered in-
dependent from the additional analyses as presented here.)
Although we used a strict threshold to select the most age-

sensitive RSNs (6 out of 24 components) at the global connectivity
level (i.e., p < 0.001; corrected for multiple comparison), a sec-
ond-level inter-RSN correction can further adjust for the risk of
type 1 error (false positives) induced by increasing the number of
components tested simultaneously. As such, we ran a control
analysis as suggested in a paper by Abou Elseoud and colleagues
(21) to further substantiate our supplementary findings. In short,
temporally concatenated subject-specific maps of each RSN (24
RSNs in total) were spatially concatenated in the y direction.
Then, 5,000 permutations were conducted on the concatenated
map. Our results confirmed that voxels within the anterior and
the posterior DMN reflected age-related connectivity decreases
with aging (posterior DMN: xyz = −6 −26 24; anterior DMN:
xyz = −6 40 54). Critically, we also observed age-related in-
creased connectivity in the bilateral HC of the DMN (left HC:
xyz = −18 −14 −18; right HC: xyz = 16 −10 −14). Finally, age-
related decline in voxelwise connectivity was also observed for
the bilateral fronto-parietal network (left: xyz = −30 24 48, −42
−56 50; right: xyz = 26 28 50, 42 −44 56) and the medial parietal
network (xyz = −8 −52 68, 16 −74 54).
To better localize the HC component and its age-sensitive

segment, the hippocampus proper of our DARTEL template was
segmented by Freesurfer. A contour of the hippocampus proper
was created and used in all analyses to better localize effects
within the hippocampus proper. In addition to the voxels with
elevated functional connectivity within the hippocampus proper
(reported in the main text), voxels with decreased functional
connectivity were also observed within the hippocampus proper
(left HC: xyz = −34 −20 −18, t = 5.60; right HC: xyz = 30 −14
−20, t = 5.58). Critically, however, none of these voxels exhibited
significant correlations with episodic memory performance, nor
with longitudinal memory performance over 20 y even at a le-
nient threshold (p < 0.01, uncorrected), and thus were not
considered for further analysis.

Influence of Head Motion on Observed Age Effects on DMN Functional
Connectivity. Past studies have shown that head motion has sig-
nificant, systematic effects on different measures of functional
connectivity (19, 20). In particular, effects of head motion may
be erroneously interpreted as age-related alterations of DMN’s
functional connectivity.
In the first set of analyses, global signal regression (GSR) and

“scrubbing” (19) were conducted prior to ICA. To investigate
whether a relatively small number of movements (e.g., bad
frames) affected our main findings, an additional preprocessing
step, scrubbing, was conducted. A detailed description of scrub-
bing is given in a study by Power and colleagues (19). In short, we
identified the most egregiously suspect frames of our RS tem-
poral data based on an FD measure. FD was computed from
realignment parameters that were calculated during preprocess-
ing of RS data, and frames with FD >0.3 (+2 SD for all dis-
placements) were flagged and eliminated. We also tested other
thresholds (e.g., +1 SD and +3 SD), which produced roughly the
same results, although lower thresholds produced an excessive
number of flagged frames (i.e., >35), which led to the exclusion of
many subjects. All subjects (after scrubbing) contained at least
4 min of resting-state data, which were reported to be sufficient to
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identify RSNs. ICA was then rerun on the preprocessed data. All
identified RSNs (after scrubbing) showed strong spatial correla-
tions (r > 0.92, p < 0.0001) with the RSNs reported in Fig. S1.
Critically, the same RSNs were found to be age-sensitive. Thus,
negative correlations with age were observed for the anterior and
posterior DMN and positive correlations for the HC (Fig. S5 A–C).
In the second set of analyses, both individual-level GSR and

motion correction using the Friston 24-parameter model were
conducted (22) followed by ICA. Consistent with the results after
scrubbing, 24 RSNs were identified (Fig. S2). For both the ante-
rior and the posterior DMN, the results of the voxelwise con-
nectivity index converged with the results of the amplitude and
global connectivity indices in showing age-related decline (Fig. S5
D and E). For the HC network, the coupling between left and
right HC was strengthened with advancing age, as shown by both
the voxelwise and global connectivity (Fig. S5F). Similarly, there
was an age-related increase in amplitude in the HC network.
Although we controlled for motion by using both scrubbing and

the Friston model, several additional control analyses were
performed to assure that our observation of age-related differ-
ences in functional connectivity of identified RSNs was in-
dependent of motion. First, we conducted a stepwise selection
approach using MANCOVA (mialab.mrn.org/software/mancovan/
index.html). For each RSN, the MANCOVA model predicting
functional connectivity is F = DB + E, where F is the matrix of
functional connectivity, D is the design matrix (including age,
sex, and tSNR; FD is an estimate of motion), and E is the matrix
of error. Backward selection was implemented such that the full
model was compared (F test using the Wilks Lambda likelihood
ratio test statistic) with each reduced model. The reduced model
was defined by removing one column of the design matrix. The
final reduced model has all terms significant at α = 0.01. Results
from a multivariate MANCOVA model selection strategy con-
firmed that for the seven age-sensitive RSNs only age and sex
(p < 0.05), but neither motion nor tSNR, predicted functional
connectivity. Second, we subdivided our sample into two age-
and sex-matched groups with large (high-mover: n = 169; 62.36 ±
12.88 y of age, 92 females) and small (low-mover: n = 169; 60.56 ±
13.76 y of age, 92 females) motion according to a median-split
analysis based on FD. There was no significant difference in age
between the two groups (p > 0.5). We found no significant group
difference in global connectivity and amplitude of DMN as well
as HC RSN (p > 0.2). No significant group difference was found
for the voxelwise connectivity. A similar finding was observed
when a median-split analysis was carried out based on the mean
scan-to-scan translation and mean scan-to-scan rotation as two
alternative indices of head motion (2). Third, to compute the
degree of motion relatedness of the brain mode time courses, six
regressors modeling head motion [three translation (Tx Ty Tz)
parameters and three rotation parameters (Rpitch Rroll Ryaw)]
were created. These regressors were fit to the calibrated subject-
specific TC of each RSN using a multiple-regression approach.
Motion relatedness can be assessed by performing an analysis of
the resulting fit parameters (23). That is, an RSN is considered
motion-related if the regressor parameter fit survives a one-
sample t test. Consistent with the previous control analyses, none
of the age-sensitive networks (except a parietal–visual network)
reflected significant associations with motion parameters. Spe-
cifically, none of the six head motion regressors were signifi-
cantly associated with the TC of the posterior (tx = −0.43; ty =
1.09; tz = −0.37; tpitch = −1.33; troll = −1.04; tyaw = 0.28; p > 0.1)
and anterior (tx = −0.60; ty = 0.78; tz = 0.62; tpitch = −1.19; troll =
−1.34; tyaw = 1.12; p > 0.1) DMN. Similarly, no significant effect
of motion was observed for the HC RSN (tx = −0.16; ty = 1.13;
tz = −1.19; tpitch = −0.33; troll = 0.94; tyaw = 1.02; p > 0.1). In
addition, to control for both subject-specific motion correction
using scrubbing and the Friston model and group-level motion
(reported above), we applied a technique that derives estimates

of displacement on a voxelwise basis (24). Using this approach,
we computed a voxelwise map of motion for each subject that
displayed how much a given voxel moved from the prior time
point. To explore whether age-related differences in functional
connectivity were driven by local changes due to motion, the
biological parametric mapping (BPM) toolbox was used. Voxel-
wise motion maps served as a covariate in a general linear
model (GLM). Of chief interest was to investigate whether the
elevated hippocampal coupling in aging could be accounted for
by age-related local changes in motion. Results showed that age-
related increases (before including the voxelwise motion map:
left HC: xyz = −18 −14 −18, t334 = 9.33; right HC: xyz = 16 −10
−14, t334 = 5.63) in voxelwise functional connectivity of the HC
RSN persisted after controlling for voxelwise motion (after in-
cluding the voxelwise motion map: left HC: xyz = −18 −14 −18,
t = 9.28; right HC: xyz = 16 −10 −14, t = 5.60). In addition, no
region within the HC network exhibited significant correlation
between functional connectivity and motion (r < 0.06). Finally, to
investigate the effect of age on non-RSN components, we ran
a control analysis on a cerebral spinal fluid (CSF) component,
which is a typical artifact that confounds RS data. The associa-
tion between age and functional connectivity of the CSF com-
ponent was weak [mean correlation: r (CSF, age) = 0.09, p >
0.05]. This nonsignificant association substantiates the specificity
of age effects on RSNs.

Offline Behavioral Measures and RSNs. All subjects underwent
a neuropsychological assessment with the Betula test battery. The
average time between the neuropsychological testing and scan-
ning was 266 d. The offline measures included block design and
several tests of episodic memory. Block design is a part of the
Wechsler Adult Intelligence Scale and is generally considered to
tax visuospatial processing (25). Episodic memory was assessed
with a composite of five episodic memory scores, measured at 5-y
intervals over a period of 20 y of the Betula study. The composite
(summing across tests) consisted of (i) immediate free recall of
16 imperative verb–noun sentences that were enacted by the
participant; (ii) delayed cued recall of nouns from the previously
enacted sentences; (iii) immediate free recall of 16 verbally and
visually presented verb–noun sentences; (iv) delayed cued recall
of nouns from the previously presented sentences; and (v) im-
mediate free recall of 12 verbally presented nouns.
To investigate the relation between RSN global measures of

connectivity/amplitude and behavioral measures, Pearson’s cor-
relations were carried out between each RSN measure and off-
line behavioral measures separately (controlled by age, sex, FD
movement parameter, and tSNR).

Gray Matter Volume and RSNs. To explore whether age-related
differences in functional connectivity were driven by local GM
atrophy, BPM (26) (fmri.wfubmc.edu/software/bpm) was used.
Preprocessed voxelwise GM maps (see preprocessing and data
analysis) served as a covariate in a GLM framework to in-
vestigate whether age-related changes in GM volume accounted
for age-related differences in functional connectivity. Thus, the
design matrix in the BPM is voxel-specific in contrast to the
identical design matrix for all voxels in the traditional SPM
analysis. Local maxima with p < 0.05 (FWE-corrected) were
considered to be significant.

White Matter Integrity and RSNs. To explore the relation between
WM integrity and functional connectivity, we extracted mean
fractional anisotropy (FA) along the spatial course of 12 WM
tracts, including those interconnecting the two cerebral hemi-
spheres (genu, body, and splenium of corpus callosum). In ad-
dition, FA of two critical white matter tracts of the medial
temporal lobe, namely the fornix and the descending cingulum,
was extracted. FA is themost frequently used property of diffusion
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tensor imaging (DTI) and potentially indicates localWM integrity.
Full details of the procedures carried out to analyze the DTI data
are described elsewhere (27).

Large-Scale Brain System Facilitating Memory Encoding During
Functional MRI Task. To identify a network that facilitates episodic
encoding, a multivariate partial-least-squares (PLS) was used to
analyze fMRI data from a large population-based sample. A de-
tailed description of the PLS analyses for the face–name paired-
associate (FN-PA) fMRI task and the findings have been given
elsewhere (28). In short, a data matrix was created by in-
cluding each individual’s fMRI block onsets and durations for
each condition (i.e., encoding, retrieval, and baseline). A cross-
block covariance matrix between changes in brain activity and
experimental conditions was then subjected to mean centering
by subtracting the mean of each column from each value of that
column. Singular value decomposition was conducted on the
mean-centered data matrix to reveal orthogonal latent varia-
bles (LVs), which reflect cohesive patterns of brain activity
related to the experimental conditions. The first and successive
LVs account for the greatest and progressively lesser amount of
the cross-covariance matrix, respectively. Within each LV, voxel
and design saliencies represent the relation of each voxel and
experimental design to the LV, correspondingly. In addition,
brain scores were computed for each LV. The brain score was
obtained as a dot product of each subject’s image volume and
voxel saliencies of each LV to derive an estimate of how strongly
each subject contributes to the pattern of each LV. Two signif-
icant LVs were identified, but only LV2 was positively correlated
with performance. This LV exhibited a network encompassing
the bilateral hippocampus (spatially overlapping with the hippo-
campal RSN) and the prefrontal cortex, which reflected greater
activation during the encoding than the retrieval. The brain score
of LV2, which facilitated memory performance, was considered
for further investigation in relation to the hippocampal RSN.

Hippocampal RSN and Episodic Memory Task.To investigate whether
hippocampal RSN coupling and the level of activation affect the
recruitment of the hippocampus during a memory task, several
analyses were carried out. In the first set of analyses, we corre-
lated the level of activation within the left/right hippocampal
regions that were strongly engaged during episodic face–name
encoding [LHC: xyz = −28 −14 −16, r (EM, LHC) = 0.21, p <
0.01; RHC: xyz = 24 −8 −18, r (EM, RHC) = 0.19, p < 0.01; see
table 2 in ref. 28] and the level of activation within the hippo-
campal RSN. Note that the amplitude of the HC RSN was
computed as a joint metric using the TC SD and the SM maxi-
mum value, which both have the same unit of percent signal
changes (for more details, see ICA-Driven Measures of RSNs).
In the second set of analyses, HC RSN connectivity and am-

plitude were related to the degree to which a larger fronto-hip-
pocampal network, which facilitated memory performance, was
recruited during episodic encoding [r (brain score, EM) = 0.16,
p < 0.05); see latent variable 2 in ref. 28]. To do this, subject-
specific brain scores that reflected subjectwise level of activation
within the whole network, which facilitated episodic encoding,
were correlated with hippocampal RSN amplitude.
Third, we related RSN hippocampus connectivity to the level

of functional connectivity of the network connected to the left
hippocampus during episodic encoding (xyz = −28 −14 −16; this
region strongly contributed to the network that facilitated epi-
sodic encoding during the fMRI task; see latent variable 2 and
tables 2 and 3 in ref. 28). Here, a brain score represents a con-
nectivity index across the entire network that facilitated EM
performance during the fMRI task.
To further test the notion that strong HC coupling at rest

restricts the degree to which the HC interacts with other brain
regions during active mnemonic processing (encoding in the FN-

PA task described above), older participants (55 y and older, n =
284 subjects) were subdivided into two age-matched groups of
high- and low-HC couplers (for each group: n = 106 subjects,
66.5 ± 7.41 y of age, mean ± SD) according to a median-split
analysis based on the degree of HC coupling during rest. Here,
the left hippocampal cluster (LHC: xyz = −28 −14 −16; boot-
strap ratio = 16.12), which reflected a high level of activation
during episodic encoding (see latent variable 2 and table 2 in ref.
28), was selected as a seed region (i.e., the mean signal of all
voxels within the left HC cluster was considered as the seed
region). The left HC was the second most reliable cluster that
contributed to the pattern expressed by LV2, which was posi-
tively correlated with episodic memory performance during the
encoding task. Critically, this hippocampal cluster spatially
overlaps with the hippocampal RSN. Connectivity during epi-
sodic encoding was carried out using individual parameter esti-
mates from a left HC cluster as covariates in second-level
analysis. Functional connectivity analysis yielded a network (p <
0.001, FDR-corrected) that was functionally connected to LHC
during episodic encoding for each group. To identify brain re-
gions that exhibited differential connectivity to this hippocampus
region as a function of hippocampal connectivity during rest
(high or low couplers), a group-by-covariate interaction was
performed.

Classification of Cognitive Changes over 20 y. Participants from
a longitudinal study were classified as maintainers or average
decliners based on their initial level and rate of change in episodic
memory scores across 15–20 y (29, 30). The statistical classifi-
cation procedures have previously been described in full detail
(29) and encompassed baseline memory scores of all 1,954
participants in samples 1 (T1: 1988–1990) and 3 (T2: 1993–1995)
from the Betula study and the slopes of 1,561 participants with
two or more measurement points. The slopes (i.e., linear rates of
cognitive change over 15–20 y) were computed for each partic-
ipant through ordinary least-squares regression of the episodic
memory composite on time. The slopes and baseline scores were
then entered into a random effects pattern-mixture model to
estimate an attrition-corrected average memory development in
each of 10 age cohorts in our full sample. Each participant was
classified based on how his/her initial baseline memory score and
estimated rate of change compared with the average for his/her
age cohort as estimated from the pattern-mixture model. To
obtain an outcome measure that accounted for both initial level
and slope of change in memory scores, we used the predicted
final score as a cutoff measure because the predicted final score,
by definition, is a linear combination of the baseline score plus
rate of change multiplied by time in the study (i.e., 15 or 20 y).
This allowed us to consider cognitive performance across the
entire 15–20 y that the participants had been followed in our
definition of successful aging. All individuals with predicted final
scores greater than 1 SD from the estimated average score in
each respective age cohort were classified as successful agers
[denoted “maintainers” in Josefsson and colleagues (29)]. All
participants falling within +1/−1 SD from the average predicted
final score were classified as average decliners.
The final group size of 51 reflects the fact that 75 individuals in

the imaging sample were classified as maintainers, and 24 of these
were excluded based on poor image quality, health-related issues,
and not reaching scanner task performance criteria set up in our
previous study (30), in which exact exclusion details are provided.
The average decliners were age-matched person-by-person to
the maintainers, and selected into the sample based on how close
they were to the average initial memory and memory change in
the full sample (n = 1,954/1,561). Selection of participants from
the imaging sample into the average decliner group was based
on the shortest standardized Euclidian distance to the average
baseline cognitive test score and the average slope of cognitive
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change. This metric was calculated for each age cohort in the full
Betula sample (1,954 participant baseline scores and the slopes
of 1,561 participants with two or more measurements). This
procedure ensured that the most representative participants (i.e.,
those closest to the average baseline score and slope) from the
imaging sample were selected into the average decliner group.
Whenever a participant with the shortest Euclidian distance met
any of the exclusion criteria, the person with the next shortest
distance was selected instead.
We investigated theHCRSN in relation to longitudinal memory

changes. We compared the functional coupling of HC RSN be-
tween 51 successful elderly persons (maintainer; age, 68.8 ± 7.1 y,
mean ± SD) and 51 age-matched average decliners. In addition,

we compared the functional connectivity during episodic encod-
ing in the FN-PA task between two groups of successful and
average older participants, as reported in our recent study [cf.
(30)]. This was carried out using individual parameter estimates
from a left HC cluster (peak xyz = −30 −14 −16) as covariates
in second-level analysis. The hippocampal cluster was identified
as being more engaged by the successful rather than the average
participants in a group contrast of episodic memory encoding
compared with baseline [cf. (30)]. To identify brain regions that
exhibited differential connectivity to this hippocampus region as
a function of cognitive status (successful or average decliner), a
group-by-covariate interaction was performed.
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Fig. S1. Resting-state networks during a 6-min scan. Twenty-four out of 47 estimated components were identified (see Methods for details about RSN se-
lection criteria). RSNs were divided into groups based on their anatomical and functional properties, and included basal ganglia (BG), auditory, sensorimotor,
visual, cerebellar, default mode, attentional, and frontal networks. Spatial maps of each RSN are plotted as t statistics. Thresholding was based on the dis-
tribution of voxelwise t statistics to identify voxels reliably and consistently activated across subjects, using a gamma-mixture model fit controlling for FDR at
1%. The HC component included the hippocampus proper and the parahippocampal and enthorinal cortex. Posterior DMN included the posterior cingulum,
cuneus, precuneus, and bilateral angular gyrus. Anterior DMN included the medial prefrontal cortex and a small portion of the posterior cingulum.

Sensorimotor Networks
Frontal networks

R

Parietal networks

Fronto-parietal networks

DMN networks

BG network

Language networkCerebellum network Auditory network

Visual networks

Fig. S2. Resting-state networks during a 6-min scan after (pre-ICA) global signal regression and (pre-ICA) motion regression (using the Friston 24-parameter
model). Twenty-four out of 47 estimated components were identified (compare Fig. S1). All identified components showed strong spatial correlations (r > 0.95,
p < 0.0001) with components reported in Fig. S1, where both motion parameters and global signal regression were regressed out from the ICA time courses
(i.e., post-ICA). This correspondence indicated that ICA components remained strikingly similar regardless of whether motion and GSR were regressed out pre-
or post-ICA.
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Fig. S3. Functional segmentation of the DMN at different functional hierarchical levels. Functional architecture of the DMN remained relatively stable at
different model orders.
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Fig. S4. Effect of age on three different ICA-derived measures of attentional and visual RSNs. For each RSN, the scatter plots display global functional
connectivity (measured across the whole RSN network) and amplitude as a function of chronological age. The slice panels indicate brain regions (in yellow)
exhibiting age-related decline within each RSN (i.e., age-related decline in voxelwise connectivity). The results of age-related decline in voxelwise connectivity
are overlaid on the sample-specific template created using DARTEL. Note that regions in yellow are parts of the whole network shown in red. A and B display
age-related decline in all three ICA-driven measures of the right and left fronto-parietal attentional network, respectively. C and D exhibit age-related decline
in all ICA-driven measures of medial parietal and visual networks, respectively. Results for age effects were corrected for multiple comparisons [global
measures: r ≥ 0.20, p < 0.0001; voxelwise measures: p < 0.05 (FWE-corrected), k > 20]. No age-related increases were observed for these RSNs.
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Fig. S5. Effect of age on ICA-driven measures of the HC and DMN after two different motion correction methods. Age-related alteration of the posterior (A
and D) and anterior (B and E) DMN and the HC RSN (C and F) for three different ICA-driven measures (voxelwise connectivity, global connectivity, and am-
plitude) after pre-ICA motion correction (scrubbing and the Friston model) and global signal regression. Additionally, we controlled for framewise displace-
ment in all reported correlations (see Fig. 1 for more details).
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Fig. S6. Increased hippocampal RSN in relation to gray matter volume. Results of the multimodal BPM analysis overlaid on the sample-specific template created
using DARTEL. Circles indicate structural and functional alterations in the bilateral HC. (A) Regression analysis reflecting age-related increases in functional
connectivity (left HC: xyz = −18 −14 −18, t334 = 9.33; right HC: xyz = 16 −10 −14, t334 = 5.63). (B) Regression analysis demonstrating age-related gray matter
volume loss. (C) Regression analysis indicating age-related differences in HC coupling after controlling for local GM loss (left HC: xyz = −18 −14 −18, t334 = 9.29;
right HC: xyz = 16 −10 −14, t334 = 5.60); age-related elevation of HC connectivity persisted after controlling for GM volume). Results were thresholded at p < 0.05
(FWE-corrected; k > 20).
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Fig. S7. Network functionally connected to LHC during episodic encoding. Singular images for behavioral and seed latent variable for the left HC (xyz = −28
−14 −16), which reflected a high level of activation during episodic encoding (see latent variable 2 and table 2 in ref. 28). Note that the left HC was the second
most reliable cluster (bootstrap ratio 16.12) that contributed to the pattern expressed in LV2. (A) Singular images for a significant LV (p < 0.001), which ex-
hibited greater functional connectivity with LHC during episodic encoding relative to baseline. Regions with bootstrap ratio >4 (corresponding approximately
to p < 10−4) are shown in red. These regions were functionally connected to LHC during episodic encoding. (B) Seed LV during episodic encoding and baseline.
Error bars denote 95% confidence intervals defined by SEs of the bootstrap estimate. Nonoverlapping error bars suggest that the level of functional con-
nectivity to LHC was greater during encoding than baseline. (C and D) Strength of the functional connectivity as a function of age and accuracy.
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Average decliners Maintainers

Functional connectivity during episodic encoding

p < 0.01, FDR corrected

Average decliners < Maintainers 

Fig. S8. Hippocampal RSN in relation to task-induced recruitment in individuals with maintained or declining episodic memory over time. Render figures show
brain regions functionally connected to LHC (xyz = −30 −14 −16) during episodic encoding in decliners (red) and maintainers (blue). The hippocampal cluster
was identified as being more engaged by the successful rather than the average participants in a group contrast of episodic memory encoding compared with
baseline. Decliners who exhibited high HC coupling during rest engaged a less extensive memory network compared with maintainers who showed lower HC
coupling during rest. The slice panels show brain regions that exhibited greater functional connectivity to LHC during encoding in maintainers compared with
decliners (left inferior frontal gyrus: xyz = −40 22 14, t48 = 4.05; right inferior frontal gyrus: xyz = 60 18 18, t48 = 3.93; left HC: xyz = −24 −26 −8, t48 = 3.88).

Table S1. Correlation of ICA measures of DMN hubs with neuropsychological measures and
integrity of selected white matter pathways

Network EM BD Genu Body Splenium Fornix

Not corrected for age
Posterior DMN (con) 0.22* 0.33** 0.15* 0.22** 0.18** 0.34**
Posterior DMN (amp) 0.12* 0.20** NS NS 0.11* 0.18**
Anterior DMN (con) 0.10* NS
Anterior DMN (amp) 0.15** NS
HC network (con) −0.25** −0.15* −0.14* −0.12* NS −0.31**
HC network (amp) −0.27** −0.23** −0.27** −0.27** −0.15* −0.40**

Corrected for age
Posterior DMN (con) NS 0.16** NS NS NS 0.12*
Posterior DMN (amp) NS NS NS NS NS NS
Anterior DMN (con) NS NS
Anterior DMN (amp) NS NS
HC network (con) −0.17** NS NS NS NS −0.22**
HC network (amp) −0.17** NS −0.11* −0.13* NS −0.22**

*p < 0.05; **p < 0.005. amp, amplitude of a network; BD, block design; body, body of corpus callosum; con,
global functional connectivity within a network; EM, episodic memory; genu, genu of corpus callosum; NS, not
significant; splenium, splenium of corpus callosum. We controlled for sex and a motion parameter (framewise
displacement) in all analyses.
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