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Expectation Maximization algorithm for haploid spatial ancestral inference

We would like to infer M ancestral location for a given mixed individual haplotype. This can be achieved
by maximizing the likelihood function with respect to X as follows

L(h;X,Π) =
∑
Z

P (Z; Π)

L∏
i=1

P (hi|zi;X)

By treating X as parameters and Z as hidden variables, this maximization falls in exactly the procedure of
EM algorithm.

E step. In short, the expectation step is similar to forward-backward algorithm in HMM, which calculates
the posterior probability of hidden variables Z given current estimation of ancestral locations X(t).

P (zi = j|h;X(t)) =
αi(j)βi(j)∑

j αL(j)

where α and β can be calculated recursively

α1(j) = (1/M)P (h1|z1 = j;X(t))

αi(j) =
∑
j′

αi−1(j′)P (zi = j|zi−1 = j′)P (hi|zi = j;X(t))

βL(j) = 1

βi(j) =
∑
j′

P (zi+1 = j′|zi = j)P (hi+1|zi+1 = j′;X(t))βi+1(j′)

M step. The maximization step needs to alternatively optimize the Q functions in X and in Π. The first
can be done as follows

Q(X;X(t),Π(t))

=
∑
Z

P (Z|h;X(t),Π(t)) ln

(
P (Z; Π)

∏
i

P (hi|zi;X)

)

=
∑
j

(∑
i

P (zi = j|h;X(t),Π(t)) lnP (hi|zi = j;xj)

)
+ const.

=
∑
i,j

Cij lnP (hi|zi = j;xj) + const.

=
∑
i,j

Cijqi(xj) + const. (1)

where Cij denotes the constant P (zi = j|h,X(t),Π(t)), and

qi(x) =

{
− ln(1 + exp(aTi x+ bi)) hi = 0

− ln(1 + exp(−aTi x− bi)) hi = 1

We use Newton’s method to perform the maximization step, which is a widely used optimization technique.
The gradient for the Q function in (1) can be computed as follows

∂Q

∂xj
=

∑
i

Cijηi(xj)
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where

ηi(xj) =


1

1 + exp(−aTi xj − bi)
(−ai)T hi = 0

1

1 + exp(aTi xj + bi)
(ai)

T hi = 1

The Hessian matrix for the Q function in (1) can be obtained as follows

∂2Q

∂x2j
=

∑
i

Cijθi(xj)

where

θi(xj) =
1

1 + exp(−aTi xj − bi)
· 1

1 + exp(aTi xj + bi)
· (−aiaTi )

We also need the maximize the Q function in Π, which can be derived as follows

Q(Π;X(t),Π(t))

=
∑
Z

P (Z|h;X(t),Π(t)) ln

(
P (Z; Π)

∏
i

P (hi|zi;X)

)

=
∑
j

∑
k

(∑
i

P (zi = j, zi−1 = k|h;X(t),Π(t)) lnP (zi = j|zi−1 = k; Π)

)
+ const.

=
∑
i

∑
j

∑
k 6=j

P (zi = j, zi−1 = k|h;X(t),Π(t)) lnπj + P (zi = j, zi−1 = j|h;X(t),Π(t)) ln(1− τi(1− πj))

+ const.

=
∑
i,j

Dij lnπj + Eij ln(1− τi(1− πj)) + const. (2)

where Dij and Eij denote the constants as follows

Dij =
∑
k 6=j

P (zi = j, zi−1 = k|h;X(t),Π(t))

Eij = P (zi = j, zi−1 = j|h;X(t),Π(t))

We use Newton’s method to perform the maximization step. The gradient for Q function in (2) can be
computed as follows

∂Q

∂πj
=

∑
ij

Dij

πj
+

Eijτi
1− τi(1− πj)

The Hessian matrix for the Q function in in (2) can be computed as follows

∂2Q

∂π2
j

=
∑
ij

−Dij

π2
j

− Eijτ
2
i

(1− τi(1− πj))2

Expectation Maximization algorithm for diploid spatial ancestral inference

We would like to infer M+N ancestral location for a given mixed individual genotype. This can be achieved
by maximizing the likelihood function with respect to X and Y as follows

L(g;X,Y ) =
∑
Z

P (Z)

L∏
i=1

P (gi|zpi , z
m
i ;X,Y )

W-Y. Yang et al. 2 S1



File S1
Supplementary Note

By treating X and Y as parameters and Z as hidden variables, this maximization falls in exactly the
procedure of EM algorithm.

E step. In short, the expectation step is similar to forward-backward algorithm in HMM, which calculates
the posterior probability of hidden variables Z given current estimation of ancestral locations X(t).

P (zpi = j, zmi = k|g;X(t)) =
αi(j, k)βi(j, k)∑

j,k αL(j, k)

where α and β can be calculated recursively

α1(j, k) = 1/(MN)P (g1|zp1 = j, zm1 = k)

αi(j, k) =
∑
j′,k′

αi−1(j′, k′)P (zpi = j|zpi−1 = j′)P (zmi = k|zmi−1 = k′)P (gi|zpi = j, zmi = k)

βL(j, k) = 1

βi(j, k) =
∑
j′,k′

P (zpi+1 = j′|zpi = j)P (zmi+1 = k′|zmi = k)P (gi+1|zpi+1 = j′, zmi+1 = k′)βi+1(j′, k′)

M step. The maximization step needs to optimize the Q functions in X, Y , Π and Ω. The Q function in
X and Y can be done as follows

Q(X,Y ;X(t), Y (t),Π(t),Ω(t))

=
∑

Zp,Zm

P (Zp, Zm|g;X(t), Y (t),Π(t),Ω(t)) ln

(
P (Zp; Π(t))P (Zm; Ω(t))

∏
i

P (gi|zpi , z
m
i ;X,Y )

)

=
∑
j,k

(∑
i

P (zpi = j, zmi = k|g;X(t), Y (t),Π(t),Ω(t)) lnP (gi|zpi = j, zmi = k;xj , yk)

)
+ const.

=
∑
i,j,k

Cijk lnP (gi|zpi = j, zmi = k;xj , yk) + const.

=
∑
i,j,k

Cijkqi(xj , yk) + const. (3)

where Cijk denotes the constant P (zpi = j, zmi = k|g,X(t), Y (t),Π(t),Ω(t)), and

qi(x, y) =



− ln(1 + exp(aTi x+ bi))− ln(1 + exp(aTi y + bi)) gi = 0

ln


1

(1 + exp(aTi x+ bi))(1 + exp(−aTi y − bi))
+

1

(1 + exp(−aTi x− bi))(1 + exp(aTi y + bi))

 gi = 1

− ln(1 + exp(−aTi x− bi))− ln(1 + exp(−aTi y − bi)) gi = 2

This function is not concave in general, since the function corresponding to heterozygous genotype gi = 1 is
not concave. But we can still use convex optimization techniques to get a local optimal solution. In practice,
we observe that the function is concave almost all the time. Thus, this proposed algorithm can well converge
to an optimal solution.

Note that there is a subtle connection from the above EM algorithm to the parental location inference
algorithm given previously [1]. For parental location inference, the hidden variables Zp and Zm would be
fixed instead of random. Thus, the EM algorithm would be reduced to the algorithm given previously, which
is equivalent to one M-step in the above EM algorithm.

The gradient for the Q function in (3) can be computed as follows

∂Q

∂xj
=

∑
i,k

Cijkηik(xj , yk)
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where

ηik(xj , yk) =


−pijai gi = 0

(1− 2mik)(1− pij)pij
pij(1−mik) +mik(1− pij)

· ai gi = 1

(1− pij)ai gi = 2

The variables pij and mik are shorthands for the ith allele frequencies for paternal ancestry j and maternal
ancestry k defined as

pij =
1

1 + exp(−aTi xj − bi)

mik =
1

1 + exp(−aTi yk − bi)

The Hessian for the Q function in (3) can be computed as follows

∂2Q

∂x2j
=

∑
i,k

Cijkθik(xj , yk)

where

θik(xj , yk) =



(1− pij)pij(−aiaTi ) gi = 0

(1− 2mik)

(1−mik)pij
1− pij

− mik(1− pij)
pij(

1−mik

1− pij
+
mik

pij

)2 (−aiaTi ) gi = 1

(1− pij)pij(−aiaTi ) gi = 2

and

∂2Q

∂xj∂yk
=

∑
i

I(gi = 1)

[
mik(1−mik)(1− 2mik)pij(1− pij)(1− 2pij)

[(1−mik)pij + (1− pij)mik]
2 +

2mik(1−mik)pij(1− pij)
(1−mik)pij + (1− pij)mik

]
(−aiaTi )

The function I(gi = 1) is an indicator function, which is equal to 1 if gi = 1, and equal to 0 otherwise.
We also need to maximize the Q function in Π and Ω, which can be derived as follows

Q(Π;X(t), Y (t),Π(t),Ω(t)) (4)

=
∑

Zp,Zm

P (Zp, Zm|g;X(t), Y (t),Π(t),Ω(t)) ln

(
P (Zp; Π)P (Zm; Ω)

∏
i

P (gi|zpi , z
m
i ;X,Y )

)

=
∑
j

∑
k

(∑
i

P (zpi = j, zpi−1 = k|h;X(t), Y (t),Π(t),Ω(t)) lnP (zpi = j|zpi−1 = k; Π)

)
+ const.

=
∑
i

∑
j

∑
k 6=j

P (zpi = j, zpi−1 = k|g;X(t), Y (t),Π(t),Ω(t)) lnπj

+P (zpi = j, zpi−1 = j|g;X(t), Y (t),Π(t),Ω(t)) ln(1− τi(1− πj))
)

+ const.

=
∑
i,j

Dij lnπj + Eij ln (1− τi(1− πj)) (5)
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where Dij and Eij denote the constants as follows

Dij =
∑
k 6=j

P (zpi = j, zpi−1 = k|g;X(t), Y (t),Π(t),Ω(t))

Eij = P (zpi = j, zpi−1 = j|g;X(t), Y (t),Π(t),Ω(t))

We use Newton’s method to perform the maximization step. The gradient for Q function in (5) can be
computed as follows

∂Q

∂πj
=

∑
ij

Dij

πj
+

Eijτi
1− τi(1− πj)

The Hessian matrix for the Q function in in (2) can be computed as follows

∂2Q

∂π2
j

=
∑
ij

−Dij

π2
j

− Eijτ
2
i

(1− τi(1− πj))2

Similarly, the derivation of Q function in Ω can be done by replacing all Zp variables with Zm.
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