## Supplementary Data

## **Dimension Reduction of the Source Vectors**

Each source vector or dipole estimated by LORETA is a vector with three components, projected onto the X-, Y-, and Z-axes. To obtain a single (scalar) time series for each solution point, taking the Euclidean norm of the source vector projected onto the X-, Y-, and Z-axes leads to frequency doubling. That is, the discrete Fourier transform (DFT) of a source vector, x(t), is not equal to the DFT of ||x(t)||, where ||.|| is the Euclidean norm. Figure 1 illustrates this effect. The X-, Y-, and Z-components of a source vector in the left visual cortex reveal clear alpha activity, whereas the Euclidean norm shows spurious power at 20 Hz (frequency

doubling, Fig. 1B bottom-left). In contrast, the first principal component analysis (PCA) projection correctly shows continuous power in the alpha band (Fig. 1B bottom-right). We hence applied PCA approach to each specific source vector and took the first component as the representative source time series (Hipp et al. 2012).

## Reference

Hipp JF, Hawellek DJ, Corbetta M, Siegel M, Engel AK. 2012. Large-scale cortical correlation structure of spontaneous oscillatory activity. Nat Neurosci 15:884–890.



**SUPPLEMENTARY FIG. S1.** Dimension reduction of an exemplary visual source vector. (A) The x, y, and z components of a source vector in the occipital cortex. (B) The Euclidean norm (top-left) and the first principal component analysis (PCA)-projection (top-right) of the source vector, time-frequency power spectra of the Euclidean norm (bottom-left), and the first PCA-projection (bottom-right). The Euclidean norm results in frequency doubling, whereas the first PCA project correctly captures the activity in the alpha band.