
Supplementary Figures

Supplementary Figure 1: Overall picture of the robot. Strut profiles were
used to build the frame. They were joined using 3D printed pieces. The
carriage which holds the syringes and tubes was also 3D printed. All the
mechanisms were based on RepRap 3D printers. The long axis shown here
is the X axis, with the shorter being the Y axis. The carriage is shown at
home (0,0) position.



Supplementary Figure 2: X axis 3D design. Blue: The precision rod (8h7).
Grey: The timing belt (T2.5x6mm). Yellow: The 3d-printed parts. Dark
red: Aluminium strut profile (20x20mm). Transparent red: The paral-
lelepiped near the motor is where the end stops were placed; other parts in
this colour are machine screws used to fasten the parts together.



Supplementary Figure 3: Y axis 3D design. Blue, the precision rod. Grey,
the belt. Yellow the printed parts. The motor that moved the carriage
around the Y axis could be seen on Supplementary Figure 2. The red
transparent parallelepiped is where the end stops were placed. The four
holes on its side, and on the other side where it cannot be seen, were used to
place the structures that would handle the syringes or any other equipment,
making the design customizable.



Supplementary Figure 4: The X-Y carriage. Assembled but without sy-
ringes. The locations for actuated syringes and fluidic connections to the
fluid platform can be seen in the foreground. In the background is the
attachment to the Y-axis.



Supplementary Figure 5: Tubing output setup. Plastic syringes barrels
were used to guide the tubes. First the four oils, and at the end acetone
and aqueous phase share the same barrel.



Supplementary Figure 6: Automated syringe prototype. The plunger was
actuated using a 9g servo motor. Guide rods were used to avoid bending.



Supplementary Figure 7: Syringe attached to needle and lifting mechanism.
The same lifting mechanism was used to raise and lower a plastic needle to
remove liquid from the Petri dish



Supplementary Figure 8: To better visually represent the behavioural space
exhibited during the lattice-search, a self-organizing map analysis was ap-
plied to the resultant data. Readers unfamiliar with the technique are re-
ferred to [17] and [18] as introductory texts. Behaviours were manually
assigned, based on visual assessment by one of the researchers. Each circle
in Supplementary Figure 8 represents a “node”: The fundamental unit of
output from the SOM. Chemical composition varies across both the X and
Y axes in a spatially significant, but visually non-obvious pattern. Each
behaviour is assigned an individual colour and it can be seen that behaviour
cluster together in space, and therefore in composition. Each cluster of
behaviours therefore represents a phenotypic “island” within the composi-
tion/behaviour mapping.



Supplementary Figure 9: Fitness landscapes for the environments division
(Ai-iv), motility (Bi-iv) and vibration (Ci-iv. In each plot, three sub-
stances are displayed as the plot title. The fourth substance can therefore
be assumed to be held at a constant zero. The projection used is equivalent
to the ternary plots shown in the main text. Each axis shows the proportion
of a substance (indicated). The proportion of the third substance (Z) is cal-
culated as Z = 1−X − Y . The numerical indications show the location of
fitness peaks. In division and vibration two major fitness peaks were discov-
ered. Minor fitness peaks are not indicated. The scale bar corresponds to
the fitness functions for each environment and are not comparable between
environments.



Supplementary Figure 10: Fitness island map derived from the kernel anal-
ysis for the fitness landscapes division (Ai-iv), motility (Bi-iv) and vibra-
tion (Ci-iv). Each colour (Red, yellow, green, blue, purple) corresponds to a
stable fitness island (colours stated in sorted order of island-maximum from
highest to lowest [i.e. red is the fittest island and purple the least fit]). Five
islands were observed in each landscape, although it is unknown if further
islands are present in the interior of the full simplex.



Supplementary Figure 11: Fitness progression throughout each of the nine
optimization experiments, derived from three repeats for each of the three
fitness landscapes. Fitness is specific to each landscape and not comparable
between landscapes. The black line corresponds to the median for each
generation, dark green bounds the distribution between the upper and lower
25th percentile and light green bounds between the upper and lower 10th
percentile.



Supplementary Figure 12: Outline of the droplet generation. First the aque-
ous phase is placed, and then the droplets are dropped over it.



Supplementary Figure 13: Scheme outlining the pipeline of the different
techniques and algorithms involved in the droplet detection.



Supplementary Figure 14: Droplet detection, image processing pipeline. Top
left: Raw frame. Top Right: Canny edge detection. Bottom Left: Dilate
morpho operation. Bottom Right: Flood fill operation, seed at pixel 0,0.



Supplementary Figure 15: Droplet detection, image processing pipeline. Top
left: Hough transform, dish detection. Top Right: Distance transform.
Bottom Left: Watershed algorithm. Bottom Right: Final result. Blue circle
marks the dish detection, red circle represents the arena.



Supplementary Tables

Supplementary Table 1: Parameters used to generate all GA-derived data
presented in this paper.

Parameter Value

Generations 21
Genome length 4
Population size 25
Carry-overs 15
Per-locus mutation rate 0.3
QTL mutation (SD) 0.1
Selective pressure 1



Supplementary Table 2: ANOVA analysis of the first generation individuals
in the upper half of the fitness distribution against the last generation indi-
viduals in the upper half of the fitness distribution. All fitness landscapes
showed highly significant improvement in fitness from the beginning, to the
conclusion of the experiment.

Fitness F-value p-value

Division 104.1 < 10−15

Motility 74.9 1.7× 10−13

Vibration 43.6 2.7× 10−13



Supplementary Table 3: ANOVA analysis of the 11th generation against the
last generation, under the same method of analysis as in Supplementary
Table 2. Division and vibration both show significant improvement in fit-
ness during the latter half of the experiment (Under the Holm–Bonferroni
multiple testing correction[20]).

Fitness F-value p-value

Division 5.51 0.0207
Motility 0.611 0.436
Vibration 7.08 0.00902



Supplementary Table 4: ANOVA analysis of all generations; the entire distri-
bution for each generation was tested as a function of generation, expressed
as a categorical variable. All fitness landscapes show highly significant dif-
ferences in variation between generations.

Fitness F-value p-value

Division 407.8 < 10−15

Motility 259.1 < 10−15

Vibration 297 < 10−15



Supplementary Table 5: Kendall rank-correlation test of non-linear depen-
dence of fitness on generation, expressed as a continuous variable. All fitness
landscapes show a highly significant, positive correlation between the two
variables.

Fitness τ -value Z-value p-value

Division 0.283 18.89 < 10−15

Motility 0.210 14.33 < 10−15

Vibration 0.256 17.50 < 10−15



O
il

D
en

si
ty

(g
m
L
−
1
,

20
◦ C

)
S

ol
u

b
il

it
y

(g
L
−
1
)

S
u

rf
ac

e
T

en
si

on
(m
N
M
−
1
)

V
is

co
si

ty
(m
P
a
s−

1
)

V
a
lu

e
R

ef
.

V
al

u
e

R
ef

.
V

al
u

e
R

ef
.

V
al

u
e

R
ef

.

1-
o
ct

a
n

ol
0
.8

2
4

[1
0
]

0.
46

[1
1]

27
.1

[1
1]

7.
28

8
[1

1]
1-

p
en

ta
n

ol
0
.8

1
1

[1
0
]

22
[1

1]
25

.3
6

[1
1]

3.
61

9
[1

1]
D

E
P

1
.1

2
[1

0
]

1.
08

[1
1]

19
.6

[1
4]

10
.6

25
[1

5]
O

ct
a
n

oi
c

A
ci

d
0
.9

1
[1

0
]

0.
68

[1
2]

27
.9

[9
]

5.
02

0
[1

1]
D

o
d

ec
a
n

e
0.

78
[1

0]
In

so
l.

[1
2]

25
.3

5
[1

3]
1.

38
3

[1
1]

S
u

p
p

le
m

en
ta

ry
T

ab
le

6:
P

h
y
si

ca
l

p
ro

p
er

ti
es

of
oi

ls
u

se
d

in
th

e
ex

p
er

im
en

t



Supplementary Methods

Supplementary method 1: Construction of robotic
hardware

The robotic system specified in this document, DropBot, was built on the
foundations laid by the RepRap 3D printer project[1]. This project was
chosen as a starting point due to its open-source philosophy, expansive doc-
umentation and large community. These reasons were considered advanta-
geous as they are expected to contribute to the easy replication and adoption
of the DropBot paradim and implementation in other laboratories, as com-
pared to a proprietary product. Early designs of DropBot (data not shown)
aimed to use a RepRap 3d printer directly, through the replacing of the
thermoplastic extruder with a liquid handling system. After early proto-
typing phases, it was decided that this platform was unsuitable and so a
new design was formulated, re-using modular components from the RepRap
project rather than its monolithic design. This section provides an overview
of the methodology applied to the design and implementation of DropBot :
Subsection 1.1 gives an introduction to the limitations encountered in the
direct conversion of RepRap into a liquid-handling robot and the develop-
ment of the final design used for this publication, subsection 1.3 gives an
overview of the digital control systems used and subsection 1.2.3 describes
the 3d-printed, servo-actuated syringe design that was developed for this
robotic platform.

1.1 Robot Frame

The primary limitations encountered in early prototyping phases, which
attempted the direct modification of a RepRap 3d printer into a liquid-
handling robot, were the limited working area and the trans-location of
the target stage, in the Y axis, rather than the manipulation apparatus.
The most common design for a RepRap 3d printer has a working area of
20x20cm, which was was unsuitably small for the target experiments. The
limitations imposed by the size of the experimentation apparatus, prescribed
a target stage of around 50x40cm; no extant printer design, which also met
the other demands, was discovered that would fulfil this criterion, at the



time of project initiation. The second factor, the movement of stage along
the Y-axis, rendered the design unsuitable for a liquid handling robot, as it
introduced extreme turbulence to the liquid-phase target chemistry; essen-
tially, the stage was behaving similarly to a shaker plate. In addition, the
design involved the majority of the Y-actuation mechanism being physically
located underneath the stage, occupying space that would optimally be allo-
cated to the inclusion of a camera, for the analysis of the experiments, with
a clean field of view.

To correct these deficiencies, it was decided that the manipulation ap-
paratus should be located on an overhead XY-axis, above a static, glass
staging area, with a camera located on a separate XY-axis being located
underneath this stage, viewing the experiments through the glass from the
bottom. Whilst this restricted the robot to working with glass apparatus, it
was decided that, since this would be the normal mode of operation in any
case, this limitation would not impact the real-world performance.

1.1.1 Mechanical design

Supplementary Figure 1 shows the final design, used for all methods in this
publication. The primary modules of the design are:

1. The staging area, on which the experimentation apparatus is placed.

2. The X-axis, which actuates motion along the long edge of the robot.

3. The Y-axis, which actuates motion along the short edge of the robot.

4. The manipulation apparatus (the mobile carriage), which performs
formulation mixing, aqueous-phase handling, droplet placement and
cleaning.

5. The fluid-handling platform, which handles the introduction of liquids
to the main stage of the robot for further manipulation.

1.1.2 Staging area

The staging area consisted of a large glass plate, fixed to the robot frame.
This area was defined by being that space over which the X-Y carriage could
move and hence all apparatus that needed manipulation by the carriage was
placed on the stage. At the centre of the stage was a 96-well plate, in
which fluids were placed for formulation mixing, prior to droplet placement.
There was a magnetic stirrer underneath the well-plate, to actuate miniature
magnetic stirrer bars inside each well. Also atop the stage were two petri
dishes, one was used to carry out the experiments and the other was used
to collect waste after experiments were concluded. Manual intervention was
required after a series of 48, or 96, experiments (dependant on whether
experiments ran overnight) to clean the well-plate and waste petri dish.



1.1.3 X-axis

Supplementary Figure 2 shows a 3D-rendering of the X-axis translation
mechanism. The same design was mirrored on both sides of the frame.
This mechanism is static in relation to the staging area and frame of the
robot

1.1.4 Y-axis

Supplementary Figure 3 shows a 3d-rendering of the Y-axis translation
mechanism. This mechanism runs along the X-axis via the X-axis belt, rod
and linear bearing system. The two round steel bars seen in Supplementary
Figure 3 were inserted into the complimentary holes seen in Supplementary
Figure 2. A single motor was mounted on one of the X-axis carriages to
actuate the central belt and provide linear motion along the Y-axis.

1.1.5 Mobile carriage

Supplementary Figure 4 shows a 3d-rendering of the X-Y carriage. This
components runs along the Y-axis via the Y-axis belt, rod and linear bearing
system. The “ridge” running from left to right along the Y-axis runner
served as an attachment point for the circuitry (subsection 1.3). The design
of the syringe actuation mechanism is detailed in subsection 1.2.3.

1.1.6 Fluid platform

The fluid-handling platform is a simple frame, constructed from aluminium
strut profile and the 3d-printed assembly pieces used in the main robotic
frame. Sheet-polycarbonate was attached to the strut-frame to support the
weight of the pumps. The frame was designed so that reagents could be
places underneath the pumps; This design was chosen to minimize the effect
of any chemical spills by prevented contact with the electronics. The design
of the pumps themselves is detailed in subsection 1.2.1.

1.2 Liquid Handling

Both servo-actuated syringes and syringe pumps were used to transport
liquid phases. The servo-syringes were more precise but were unable to
carry as much volume as the syringe pumps. Servo-syringes were used to
mix the liquid in the well-plates and to carry small volumes of liquid into
the petri dish via droplet formation. Syringe pumps were used to transport
liquids from source reagent bottles to components on the experiment stage.

1.2.1 Pumps

In the course of extraneous and prior research, the authors had accumu-
lated a number of defective commercial syringe pumps, rendered inoperative



through faults in their logic boards. Its original electronics were removed
and the motors were connected to custom components (see subsection 1.3).
A total of seven such pumps were used by the robot, mounted on a single
platform (see subsection 1.1.6). Each pump was equipped with a three-way
valve: Allowing the syringe to be connected through one port to either of
the other two. One of these port was designated as an input port and the
other as an output port. Three of the pumps were equipped with 5ml sy-
ringes: One was used for introducing the aqueous phase, and the other two
for the introducing and removing solvents as part of the cleaning procedure.
All pumps except one were connected via the input port to a reagent bottle
and via the output port to the X-Y carriage; the sole except was the sy-
ringe pump used for removing the acetone from the petri dish as part of the
cleaning cycle. The remaining four pumps were equipped with 1ml syringes;
these were used to introduce organic phases.

The tubing set-up at the X-Y carriage can be seen in Supplementary
Figure 5. The syringe barrels were used as guides, to maintain accurate
positioning of the tubing above the working area. Acetone and aqueous
phase shared the same barrel, with two independent tubes being fixed inside
by hot glue. The support structure was 3d-printed in PLA and was attached
to the carriage with brass screws.

1.2.2 Mixing stage

The robot used a standard 96-well plate. Each well had its own miniature
magnetic stirrer bar and the entire plate was mounted over a stirrer plate.
This design was chosen so that multiple experiments could be concluded
before manual intervention was necessary to clean the mixing area.

1.2.3 Carriage-mounted syringes

As shown in Supplementary Figure 6, an automatic syringe was designed to
be used with the X-Y carriage. The casing and structure was 3d-printed from
PLA. Independent crank mechanisms were used to actuate the plunger of
the syringe and to lower and raise the syringe. These consisted of the default
servo motor-arm and a 3d-printed piece, joined via steel pins. The crank
was aligned with the centre of the syringe itself to avoid unwanted lateral
torque. Small-diameter steel rods and teflon linear bearings were used to
mitigate rotation away from and towards the servo.

The syringes were fitted with a metal needle-tip, as shown in Supple-
mentary Figure 7. The mechanism to raise and lower the syringe, via a
crank, can also be seen in this Supplementary Figure. On the right of Sup-
plementary Figure 7, the same mechanism can be seen to be actuating an
unactuated syringe. This syringe has had its plunger removed and is instead
fitted with a piece of plastic tubing, which connects it to a syringe pumps.



This syringe was used to remove solvents from the Petri dish during a clean-
ing cycle. For this reason, the needle taper tip was cut, to effect a larger
absorption diameter. Whilst DropBot only used one of each syringe type, it
would be possible to expand the robot by adding additional syringes to the
carriage.

1.3 Electronics

The electronics can be divided into three groups. One group controls the
movement of the robot along the X and Y axes,another group controls the
servo motors which actuate the syringes, and a third group control the
pumps.

1.3.1 Axis control

The movement along the X and Y axes was performed using a stripped down
version of the electronics used by a RepRap 3D printer, where only the parts
required by the X and Y movement were kept: an Arduino Mega[2] board
and “A4988 Stepper Motor Driver Carrier”. A PCB shield was designed,
which interfaced the Arduino board to the motor drivers and provided con-
nectors for the motors to the drivers. In addition, connections were provided
for two end-stops, each assigned to a particular axis, for homing purposes.
Each stepper driver had 16 pins, but only 3 of them were needed to control
the motor: enable, step and direction, with the other pins being connected
to high (5V), low (GND), 12V or to the motor itself. The board therefore
used only eight outputs (the end-stops used two outputs) from the Arduino
directly and interfaced the remainder of digital connectors, and a power
supply, to a header output for the servo daughter-board.

1.3.2 Carriage control

The header input to the servo daughter-board consisted of twenty pins,
connected to the Arduino via a ribbon cable to the bypass on the XY driver
board. The servo board itself was mounted on the X-Y carriage in order
to provide both power and control to the syringe-actuation servo motors.
Each servo motor took power from a common supply and were connected to
a common ground, with the only individual connection being a single PWM
data pin to the Arduino. The servo daughter-board was therefore able to
service 20 unique servo motors.

1.3.3 Pump control

The pumps mentioned in subsection 1.2.1 were faulty only in the function
of their logic boards; the mechanical components and motors were fully op-
erational. As motion was provided by two stepper motors, from the NEMA
family, these were therefore compatible with the shield developed for the



X-Y axis control (Subsection 1.3.1). It was therefore possible to re-use the
mechanical components of these syringe pumps by the replacement of their
electronics with custom PCBs. A second Arduino was assigned entirely to
pump control.

1.4 Bill of Materials

• The frame was built using Bosch-Wrexroth 20x20mm aluminium strut
profile, fastened together using custom, 3d-printed PLA1 pieces.

• The motors used were NEMA2 14 for the Y-axis and two NEMA 17s
for the X-axis.

• The linear motion mechanics were derived from the RepRap printer,
using a belt (Timing belt T2.5x6mm) and pulley (T2.5 pulley, 5mm
bore) system connected to the motors

• Round-profile hardened-steel bar (8h7, chrome plated) and round-
profile linear bearings (LME8UU) were used to achieve smooth linear
motion.

• The syringe pumps modified and used were “TriContinent C-Series”

• “IDEX Health Science PEEK 1/8”” tubing was used to connect those
pumps used introduce or remove cleaning solvent to/from the petri
dish arena.

• “IDEX Health Science FEP Ora 1/16 x 0.20”” was used to carry or-
ganic phases from reagent bottles to syringe pumps and from syringe
pumps to the X-Y Carriage.

• The syringe used to direct the tubing from the syringe pumps at the
carriage the “1 ml NORM-JECT”.

• These syringes were fitted with “Weller KDS16TN25 Needle Taper Tip
16G”.

• The syringe used in the servo-actuated syringes was a “Hamilton 710
LT 100 µL”.

• The needles used were “Weller KDS2012P Dispensing Needle GA20
ID 0.66 MM”.

• The syringe was raised and lowered by a “New Power XL-3.7” servo-
motor.

1Polylactic acid.
2National Electrical Manufacters Association. http://www.nema.org



• The plunger was actuated with a “9g servo motor”. In this specific
case, a “TowerPro Micro Servo 9g SG90”.

• The motor arm used was the default arm, which shipped with the
servo motor.

• The well plate used was “Nunc U96 PP 0.5 ml”.

• Inside every well, a “Magnetic stir bar micro PTFE 6 mm x 3 mm”
was used to provide liquid turbulence.

• Below the well plate, was a single “Variomag Compact” stirrer plate,
used to turn the stirrer bars.



Supplementary method 2: Software implementa-
tion

A hierarchical/deliberative paradigm was followed when designing the con-
trol software. Software components resident on the host computer was pro-
grammed entirely in Python, whilst software components on the Arduinos
(referred to henceforth as the firmware) were programmed in C++. Software
was divided into three conceptual modules: planning, acting, and sensing.

The artificial intelligence (AI) component is responsible for coordinat-
ing the overarching experimental plan, selecting droplet formulations based
on prior (if any) data and passing these formulae on to the next compo-
nent. Thus the AI acts as globally, with overview of an entire experimental
series, and the RC, FW and CV components have purview only of single
experiments.

The robotics controller (RC) takes these formulae as input and, acting
as an interface between the AI and the physical robot, transforms these
numerical recipes into a G-code representation. G-code is a standardized
scheduling language[3] used in the automation industry to plan mechanical
operations (see subsection 2.2 for more details).

The firmware (FW) consists of software resident on the Arduino board.
It converts the symbolic G-code representation into a series of experimental
operations, instantiated as a sequence of analogue and digital signals sent
to the mechanical parts through the Arduino boards.

The computer vision (CV) component interfaces with the camera and
converts raw image data, through an algorithmic image-processing pipeline,
into quantitative-numerical fitness data, which is then returned to the AI.

A multiprocessing software architecture was chosen to make maximum
usage of time and resources, and to ease development by modularizing the
software. Software interprocess communication was used between modules
running on the host computer, whilst USB-serial protocols were used to
communicate between the software and firmware.

2.1 Robot Controller

The robot controller functions to translate experimental procedures form
a high-level description into a G-code representation. The G-code can be
considered as an intermediate layer between the description of a recipe and
the digital actuation, effected by the electronics. By using this translation
pipeline, a number of expert-written modules could be leveraged, signifi-
cantly reducing development costs and time. The core component of the
RC is the PrintRun[4] library, developed for controlling RepRap printers
(via G-code) and and which constitutes the most popular choice of library
for this purpose. As this central library is written in the Python program-
ming language[5], this language was used for the entire development of this



layer. PrintRun communicates with the Arduino-based Firmware via a USB
emulated-serial connection, facilitated by the pySerial library on the host
computer[6].

The RC’s interface to exterior code was encapsulated within a library
called “RobotCtl”. This library contains functions which relate to the fixed
set of modular lab operations (e.g. “form droplet” or “clean petri dish”)
required to perform all experiments. The interface functioned to convert
a sequence of these operations into a sequence of G-code instructions. The
robot could move the syringes to any position around X or Y with a precision
of 0.1 mm and this precision was accounted for in the conversion. Since there
were multiple components on the X-Y carriage, the relative distance between
these components was hard coded and used to modify the final X-Y position
when one specific apparatus was selected. In contrast to the operational
mode of a 3d-printer, which produces the entire batch of G-code from a
3d model in one run, the RC runs in online mode, compiling operations
into G-code as they are received. This mode of operation is a necessity,
due to the iterative nature of the procedures, whereby future operations are
unknown until data from present operations have been processed. The G-
code produced in real-time is communicated to the robot via the PrintRun
core.

2.2 Firmware

The firmware layer is directly responsible for the actuation of mechanical
parts. The firmware was written specifically for the target Arduino boards,
hence the Arduino development environment was used for this layer. The
native language of this environment is C++; therefore, this was the language
used to develop the firmware layer.

There were two separate Arduino boards, one to control the X-Y carriage
(subsection 1.1.5) and one to control the fluid platform (subsection 1.1.6) As
with the RC layer, the carriage firmware was built on top of extant 3d-printer
modules. In this case, the firmware core used was the Sprinter package[7],
commonly used with Reprap 3D printers. Functionality with regards to
Z-axis movement, temperature control and extrusion of thermoplastic was
removed from the code-base. In its stead, functionality was added for control
of the syringes (See subsection 1.2.3), via the servo library provided by
Arduino[8]. The modified Sprinter firmware was therefore capability of X-Y
motion, able to actuate all servo-motors and synchronize these actuations
with the RC component, via the receipt and parsing of G-code instructions.

The fluid platform firmware was developed de novo. Each pump con-
tained two components: A three-way valve and lead-screw actuated plunger.
Both of these components sourced motive force from a NEMA stepper mo-
tor. These motors were controlled, as with other motors on the robot, via
an “A4988 Stepper Motor Driver”. A G-code interface was added, with new



symbols for pump movement.
Very little sanity checking was performed and so the RC was relied upon

for coherent operation.

2.3 Artificial Intelligence

For each behaviour to be tested, three Genetic Algorithm (GA) runs were
used. Each GA run performed 21 generations, with a fixed-population size
of 25 individuals and 15 individuals being propagated from the previous
generation, for a total of 225 recipes. Each recipe was repeated three times,
and the minimum between the mean and the average of these 3 experiments
was returned. Each experiment generated four droplets.

A complete test ran the GA 3 times, therefore in total it generated 675
recipes. Each recipe was repeated 3 times, for a total of 2025 experiments.
Each experiment generated 4 droplets, for a total of 8100 droplets.

Individuals were fixed-length genomes of 4 floating-point numbers (i.e.
Quantitative trait loci). The GA used a per-locus probability of mutation
(resulting in a poisson-distributed number of mutations per individual). For
each locus selected for mutation, a normal-distributed noise function, with
a mean of 0 and an SD of 0.1 was additively applied. Each child was al-
ways the product of a single crossover recombination between two distinct
parents, with the crossover being uniformly distributed along the genome
and the same genetic location being used for each parent. Individuals were
birthed with parents being selected, without replacement, from the extant
pool with probability proportional to the fitness (to the power of some pa-
rameter). After birthing and fitness measurement, the population was culled
to a fixed size, with individuals being chosen for death with probability in-
versely proportional to the fitness (to the power of some selective pressure
parameter).



Supplementary method 3: Construction of fitness
landscapes

The fitness landscapes seen in Figure 6 in the main text were produced
through a multi-step analytical pipeline. The results from the GA were first
collated and passed through a radial basis function kernel ridge regression
to produce a model. This model was then queried through a grid search
along each face of the parameter-space simplex to estimate the fitness at
each location.

3.1 Kernel Ridge Regression

General Linear Regression (GLR) performs model fitting by minimizing the
sum-of-squares error over a space of linear coefficients, in an equation of the
form

ŷi = φ̂>xi, (1)

with the sum-of-squares error being given for N points as

(ŷ − y)> (ŷ − y) . (2)

Ridge-regression, also known as Tikhonov regularisation[16], is a com-
monly used method of regularization of ill-posed problems. This form of
regression augments the minimization with a weighted penalty on the size
of the coefficient vector φ̂:

φ̂ = arg min
φ̂

(ŷ − y)> (ŷ − y) + λφ̂>φ̂ (3)

Kernel ridge-regression is a re-formulation of ridge-regression, used in sit-
uation where the number of dimensions exceeds the number of data-points.
Equation 1 is substituted by

ŷi = θ>Xxi. (4)

With equation 3 taking the equivalent substitution:

φ̂ = arg min
φ̂

(ŷ − y)> (ŷ − y) + λθ̂>θ̂ (5)

An important property of this reformulation is that it requires the cal-
culation of a dot-product between each input vector and every other. These
dot-products can be collated in the Gram matrix:

G = XX> (6)



However, the dot-product does not need to be computed in input space.
Higher predictivity can often be obtained by transforming the input vectors
into a higher-dimensional space, known as ”feature space”:

zi = f (xi) (7)

the Gram matrix G is then replaced by the kernel matrix K, whose entries
are given by

Kij = z>i zj . (8)

Rather than calculating the dot products through an explicit mapping
from input space into feature space, it is usually quicker to use an implicit
feature-space inner product g, calculated directly on the input vectors:

Kij = g (xi,xj) (9)

The function g is then known as the ”kernel function” and its use, with
associated improvements in computational speed, is often referred to as the
”kernel trick”.

3.2 Radial Basis Function

The kernel function that we apply to extend the sampled points into a
smooth fitness landscape is the Gaussian Kernel. This kernel function falls
into the broader category of Radial Basis Functions (RBFs), whose members
are defined by being real-valued function that depend only on the distance,
in input space, between the input vectors. Distance is here defined between
points i and j as

rij = ‖xi − xj‖ . (10)

The Gaussian RBF then defines the kernel function between two points
i and j as

Kij = e−
rij

2σ2 . (11)

Where σ is a problem-specific parameter, roughly equivalent to the stan-
dard deviation of the Gaussian probability distribution. One peculiar prop-
erty of the Gaussian kernel function, not shared by other RBFs, is its implicit
mapping of the input vectors into an infinite dimensioned feature space. This
property arises from the expansion of the exponential term, here demon-
strated for a single-dimension input vector:

Kij = e−
(xi−xj)

2

2σ2 (12)

= e−
x2i
2σ2 e−

x2j

2σ2

∞∑
k=0

[
2kxki x

k
j

2σ2k!

]
(13)



As a result, whereas other kernel functions can be used to derive a set
of feature space coefficients, the Gaussian RBF requires that the kernel
function be evaluated for every N training vector with a new vector, for a
prediction to be made for that vector:

ŷk =
N∑
i=0

Kikθi (14)

3.3 Complete Landscapes

Three reduced fitness landscapes are shown in the main text in figure 6. Each
of these subfigures shows a three-dimensional “facet” of the four-dimensional
space of oil composition. Each facet was chosen so that the global maximum,
for each environment, would be shown, in each case. However, as each facet
is derived by holding one of the oil proportions at zero, there are three other
facets per environment. All facets for the three environments are therefore
shown below.

Supplementary Figure 9 shows four fitness landscapes per environment,
displaying a greater proportion of the analysis than that found in the main-
text. As “true” representation of the data consists of a solid four-dimensional
simplex, graphical representation is inherently difficult. The authors there-
fore opted to display on the faces of this simplex. This was considered a
reasonable approximation as, for each environment, the global maximum
was found on one of these faces and not internally. Indeed, for division and
vibration environments, the larger of the two major fitness peaks was found
on an edge between two faces (a two-substance composition). These maxima
can therefore be seen, on two faces, for division in Aiii and Aiv (7.777) and
for vibration in Cii and Ciii (7.188). Numerous sub-optimal local maxima
are also discovered by the analysis in all environments and are explored in
subsection 3.4.

3.4 Catchment

In an evolutionary fitness landscape, multi-modality corresponds to the con-
cept of fitness islands [19]. Such a feature is defined as being that volume
surrounding a local (or the global) maximum, such that for any point within
that volume, consistent, upward progress along the gradient will converge
at that specific maximum.

To analyse the number and boundaries of the fitness landscapes that
underly the experimental evolution component of this manuscript, a discov-
ery algorithm was run on the fitness hyperplanes derived through the kernel
modelling. The hyperplanes were represented as 4 301× 301 quantized lat-
tices, as plotted in figure 4 in the main text. For each unique maximum, an
active set was maintained, starting with a single location at that maximum.



For each location in the active-set, all eight surrounding, quantized loca-
tions were tested, such that for each location tested, the 8 locations around
that location were tested, to discover which of them corresponded to the
neighbouring maximum. For each location whose neighbouring maximum
was the current location from the active-set, that location was marked as
belonging to the current fitness island and then added to the active-set for
analysis of its own neighbourhood. It was simple to allow this search to
extend over the boundaries of one hyperplane to another hyperplane, where
the locations were equivalent (i.e. where one of the components was 0).

The results of this algorithm are presented in Supplementary Figure 10.
For each of the three landscapes, exactly five fitness islands were observed,
although there may be fitness islands, in the interior of the fitness space, not
revealed by the search across the exterior hyperplanes. There is insufficient
data to specify whether the consistency of the occurrence of five islands per
landscape is a product of the dimensionality or a coincidental artefact.



Supplementary References

[1] Jones, R., Haufe, P., Sells, E., Iravani, P., Olliver, V., Palmer, C., and
Bowyer, A.,: RepRap - The Replicating Rapid Prototyper, Robotica
(2011) volume 29, pp. 177–191. Cambridge University Press.

[2] http://www.arduino.cc/

[3] Multiple authors (1982). Numerical Control of Machines ISO 6983-
1:1982

[4] Yanev, K. et al (2011) https://github.com/kliment/Printrun

[5] G. van Rossum and F.L. Drake (eds), Python Reference Manual,
PythonLabs, Virginia, USA, 2001. Available at http://www.python.

org

[6] Liechti, C. (2001) http://pyserial.sourceforge.net/

[7] Yanev, K. et al (2010) https://github.com/kliment/Sprinter

[8] http://playground.arduino.cc/ComponentLib/Servo

[9] http://www.dynesonline.com/visc_table.html

[10] http://sigmaaldrich.com

[11] Haynes, W. M. (2013). CRC Handbook of Chemistry and Physics,
94th Edition. CRC Press, 94th edition,

[12] Budavari, S., Smith, A., Heckelman, P., Kinneary, J. and O’Neill, M.
(1996) The Merck Index. Merck .

[13] Jasper, J. J., and Kring, E. V. (1955) The Isobaric Surface Tensions
and Thermodynamic Properties of the Surfaces of a Series of n-Alkanes,
C5 to C18, 1-Alkenes, C6 to C16, and of n-Decylcyclopentane, n-
Decylcyclohexane and n-Dcylbenzene. Journal of Physical Chemistry,
2142(3):3–5, 1955.



[14] Thomsen, M., Carlsen, L. and Hvidt, S. (2001) Solubilities and Surface
Activities of Phthalates Investigated by Surface Tension Measurements.
Experimental Toxicology and Chemistry, 20(1):127–132.

[15] Rostamkolahi, A. M., Rostami, A. A., Koohyar, F., and Kiani, F.
(2013) Thermodynamic prop + vinyl acetate, diethyl phthalate +
vinyl acetate or bromocyclohexane, and dibutyl phthalate + vinyl ac-
etate or 1,2-dichlorobenzene at 298.15–308.15 K. Chemical Papers,
67(11):1433–1441

[16] Tikhonov, A. N. (1963). Solution of incorrectly formulated problems
and the regularization method. Doklady Akademii Nauk SSSR 151:
501–504.. Translated in Soviet Mathematics 4: 1035–1038.

[17] Kohonen, T. (1982) Self-Organized Formation of Topologically Correct
Feature Maps Biological Cybernetics 43 (1): 59–69.

[18] Haykin, S. (1999). 9. Self-organizing maps. Neural networks - A com-
prehensive foundation (2nd ed.). Prentice-Hall.

[19] Jain, K. and Krug, J. (2007) Deterministic and Stochastic Regimes
of Asexual Evolution on Rugged Fitness Landscapes. Genetics 175:
1275–1288

[20] Holm, S. (1979). A simple sequentially rejective multiple test procedure.
Scandinavian Journal of Statistics 6 (2): 65–70.

[21] Kendall, M. (1938). A New Measure of Rank Correlation. Biometrika
30 (1–2): 81–89.


