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Supplementary Figure 1: Determination of three-dimensional localization
accuracy.

A549 cells were infected with HINI-WT (MOI = 50) and prepared for
immunofluorescence analysis. (a) Spinning disk laser scanning confocal microscopy
revealed cytosolic VRNPs (green: NP-AF568) in the mitochondrial network (TOM20-
AF647) previous to import into the nucleus (Hoechst) at 3 hpi. Nuclear import was
completed at 5 hpi. Scale bars represent 5 um. Shown are representative images from
three independent experiments. (b) Three-dimensional stochastic optical
reconstruction microscopy (STORM) revealed vRNPs (green: NP-AF568) as helical-
like structure next to the outer mitochondrial membrane (red: TOM20-AF647) 3 hpi.
(c, d and f) Three-dimensional localization accuracy of astigmatic STORM imaging
was determined using fluorescent microbeads. (c) Width of the localized molecules
(Wx or Wy) and (d) the axial ratio of the molecules are plotted against the z stepping
range. (¢) The number of molecules fitted to the three-dimensional calibration curves
are shown for 20 randomly selected VRNPs. (f) The spatial distributions of the
localizations within the bead molecules are presented for the x, y and z dimensions,

with respective FWHM values as noted.



Supplementary Figure 2
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Supplementary Figure 2: The type I IFN signaling pathway is not activated at 3

hours post infection.

A549 cells were infected with HIN1-WT (MOI = 5) and prepared for qRT-PCR-

analysis. MessengerRNA levels of IFNf, RIG-I, MxA and OAS were unchanged at 3

hpi. Elevated mRNA levels were measured at 8 hpi; bars show mean + SD of three

independent experiments. For statistically analysis Students t-test was performed;

*P<0.05.
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Supplementary Figure 3: Quantification of Western Blots, expression analysis of
IFN-related genes and pathogenicity in DBA/J2 mice.

Western Blots were quantified using IMAGEJ 1.48v. Representative WB are
presented in (a, b) Figure 2a and (f, g) Figure 2k. pSTAT1 bands were normalized to
STAT1 bands. NS1 and M1 bands were normalized to ERK2 bands. Depicted are fold
changes of mutant viruses compared to wild type viruses; quantified were WB of
three independent experiments, bars show mean + SD. (c) U937 cells were infected
with HIN1-WT and HIN1-hIFN (MOI = 5) and prepared for qRT-PCR-analysis.
Enhanced (>1.5-fold) expression of type I [FN-related genes following disruption of
the ESIE-motif was analyzed in an 88-gene-transcriptome analysis 8 hpi. (d, e)
DBA/J2 mice (n = 5 per group) were infected i.n. with 10 PFU of the indicated

viruses. (d) Mice were examined daily for survival for 15 days p.i. (¢) Virus titers of



infected mouse lungs were determined 3 days p.i. Each dot represents an individual
mouse; bars show mean. For statistically analysis (a, b, e-g) Students t-test and (d)
log-rank (chi-square) test for statistical analysis of Kaplan-Meier survival data were

performed; *P<0.05, ns = not statistically significant.
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Supplementary Figure 4: Original Western Blots.

Shown are the original Western Blots from (a-f) Figure 2 and (g) Figure 3.



Supplementary Figure 5
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Supplementary Figure 5: IFN antagonism of PB1/PA impacts virulence
regulation similar to RIG-I-mediated IFN antagonism of NS1.

(a, b) BALB/c mice (n = 5 per group) were infected i.n. with 10* PFU of the indicated
viruses. (a) Mice were examined daily for survival for 15 days p.i. (b) Virus titers of
infected mouse lungs were determined 3 days p.i. Each dot represents an individual
mouse; bars show mean. For statistically analysis (a) log-rank (chi-square) test for
statistical analysis of Kaplan-Meier survival data and (f) ANOVA with Tukey test for

multiple comparisons were performed *P<0.05, **P<0.01, ***P<0.001.
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Supplementary Figure 6: Evolutionary dynamics of the ESIE-motif in swine and
avian IAV,
PB1 protein sequences of (a) swine and (b) avian AV were used to construct

phylogenetic tree with BEAST. Red color marks IAV with PB1 398D; blue color

marks IAV with PB1 398E.
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Supplementary Figure 7: Completion of the ESIE-motif in the North American

swine lineage and evolution of swine IAV, 1918-2009.

Amino acid sequences of the PB1 genes of representative IAV of the North American

"classical" swine lineage and the Eurasian swine lineage were aligned by MUSCLE;

the phylogenetic tree was constructed by using MEGAS. Red background marks IAV

with PB1 398D, blue background marks IAV with PB1 398E.
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Supplementary Figure 8: Evolution of swine IAV, 1918-2009.

Yellow arrows indicate derivation of gene segments from the avian IAV gene pool;

evolutionary paths of swine IAV are shown with blue arrows, of human IAV with

green arrows. The red arrow marks the D to E change at position 398 in the PB1

protein within the North American swine lineage. Today PB1 398E is present in an

avian IAV population and persists in the North American swine lineage (shadowed

virus particles with red gene segment). Figure is modified from."?
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Supplementary Figure 9
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Supplementary Figure 9: Original Western Blots.

Shown are the original Western Blots from Figure 4.

11



SUPPLEMENTARY TABLE

Supplementary Table 1: Mutagenesis primer sequences

HIN1-hIFN PB1 E398G for
HINI1-hIFN PB1 E398G rev
HINI1-hIFN PB1 S524G for
HINI1-hIFN PB1 S524G rev
HINI1-hIFN PB1 I563R for
HINI1-hIFN PB1 I563R rev
HINI1-hIFN PA E351K for
HINI1-hIFN PA E351K rev

H5N1-hIFN PB1 D398G for
H5N1-hIFN PB1 D398G rev
H5N1-hIFN PB1 S524G for
H5N1-hIFN PB1 S524G rev
H5N1-hIFN PA E351K for
H5N1-hIFN PA E351K rev

H7N7-hIFN PB1 D398G for
H7N7-hIFN PB1 D398G rev
H7N7-hIFN PB1 S524G for
H7N7-hIFN PB1 S524G rev
H7N7-hIFN PA E351K for
H7N7-hIFN PA E351K for

pdmHIN1-lowIFN PB1 D398E for
pdmHIN1-lowIFN PB1 D398E rev
pdmHIN1-lowIFN PB1 R5631 for A
pdmHIN1-lowIFN PB1 R5631 rev A
pdmHIN1-lowIFN PB1 R5631 for B
pdmHIN1-lowIFN PB1 R5631 rev B

HINI NS1 E96A for
HINI NS1 E96A rev
HINI NS1 E97A for
HINI NS1 E97A rev

CCGCTCTTAATAGGGGGGACTGCATC
GATGCAGTCCCCCCTATTAAGAGCGG
GAGTCAGCGGACATGGGTATTGGAGTTACTG
CAGTAACTCCAATACCCATGTCCGCTGACTC
CGTACCGATGCCATAGAGGTGACACACAAATAC
GTATTTGTGTGTCACCTCTATGGCATCGGTACG
GGACATTGAGAATAAGGAGAAAATTCCAAAG
CTTTGGAATTTTCTCCTTATTCTCAATGTCC

TCTATTAATAGGTGGTACAGCC
GGCTGTACCACCTATTAATAGA
GCCGACATGGGCATTGGTGTT
AACACCAATGCCCATGTCGGC
ATTGAAAATAAGGAGAAAATC
GATTTTCTCCTTATTTTCAAT

CTTCTAATAGGTGGTACAGCC
GGCTGTACCACCTATTAGAAG
GCTGACATGGGCATTGGAGTA
TACTCCAATGCCCATGTCAGC
ATTGAAAATAAAGAGAAGATT
AATCTTCTCTTTATTTTCAAT

CTTCTAATAGAGGGCACAGCA
TGCTGTGCCCTCTATTAGAAG
AGGTGCCATAGAGGAGACACA
TGTGTCTCCTCTATGGCACCT
AGGTGCCATATAGGAGACACA
TGTGTCTCCTATATGGCACCT

CATGACTCTTGCGGAAATGTCAAGG
CCTTGACATTTCCGCAAGAGTCATG
CATGACTCTTGCGGCAATGTCAAGG
CCTTGACATTGCCGCAAGAGTCATG
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