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ABSTRACT When transfer of electronic excitation
energy occurs between a donor-acceptor pair by the Forster
mechanism, the decay of fluorescence of the donor follows
first-order kinetics, with a rate constant that depends on
the distance from donor to acceptor. In a system that con-
tains donor-acceptor pairs of different separations, the
fluorescence decay of the donors will not be exponential,
but will depend on the distribution function of donor-
acceptor distances, f(r). Various approaches are outlined
for the extraction of information aboutf(r) from the decay
curve of donor fluoreqcence. Specifically, if a plausible ex-
pression with adjustable parameters is assumed for f(r),
numerical methods can be used to evaluate the parameters
that yield the closest fit between the observed decay curve
and that calculated from the assumedf(r). The technique
offluorescence decay may prove to be useful for determina-
tion of distribution functions of end-to-end distances of
polymers to the edges of which suitable donor-acceptor
chromophore paira have been attached.

Transfer of electronic excitation energy by the mechanism
of dipole-dipole interaction may occur over appreciable dis-
tances-of the order of 50 A-between an electronically-ex-
cited energy donor, A, and an acceptor, B. The various factors
that contribute to the probability of energy transfer by this
mechanism have been evaluated by Fbrster (1). The efficiency
of energy transfer, E, is given by

E Re-[1]
Rod + r

where r is the distance between the donor and the acceptor
chromophores, and Ro is a quantity of dimension length given
by

9000 (in1O)XdsodvRoP = 12r~ N fA(P)EB(P) - [2]

In Eq. (2) -o is the fluorescence quantum yield of A in the
absence of acceptor molecules, n is the index of refraction of
the medium, N is Avogadro's number, fA(P) is the normalized
fluorescence intensity of A at the wavenumber v, EB(M) is the
extinction coefficient of B at v, and x2 is a dimensionless geo-
metric factor determined by the orientation in space of the
transition dipole moments of A and B. For donors and accep-
tors that rotate fast enough to randomize their orientations
during the donor lifetime, x2 assumes the value 2/3. Arguments
have been presented for the use of this value for x2 in a few
cases in which energy transfer between chromophores at-
tached to polymer chains has been considered (2-4).

For the present discussion, the strong dependence of the
probability of energy transfer on the separation r between
donor and acceptor is noteworthy. This characteristic of long-
range energy transfer has led Stryer and Haugland to propose
the use of nonradiative energy transfer as a spectroscopic
ruler for the determination of the distance between pairs of
chromophores properly chosen and separated (2). The study
and application of long-range energy transfer of the above
type has been quite extensive, especially in the field of poly-
peptides and proteins (5).
Many cases of interest arise in which the donor-acceptor

pairs are not uniformly separated; that is, their relative dis-
tance follows a certain distribution function. As an example
one may quote energy transfer between donor and acceptor
choromophores that are situated on polymer chains that do
not assume a unique conformation. A few interesting cases of
this type have been documented (5). Under such circum-
stances, the efficiency of energy transfer is given by (4)

E = 1 f(r) dr
JoRe + r

[3]

where f(r) represents the normalized distribution of distances
between donor-acceptor pairs. The relative donor-acceptor
distance is assumed not to vary during the donor lifetime.
Obviously, under such circumstances the efficiency of energy
transfer does not correspond to any trivial average of the dis-
tribution of distances between donor-acceptor pairs. Cantor
and Pechukas have recently proposed that the entire distribu-
tion function, f(r), be obtained by performance of a series of
energy transfer experiments in which the R0 value is varied.
An iterative procedure was developed for the evaluation of
f(r) from such measurements (4).
We will show that it is not actually necessary to use various

Ro values for the evaluation of f(r) from energy transfer stud-
ies, provided one studies the decay of fluorescence with time
of the donor or acceptor instead of measuring transfer effi-
ciency. Difficulties are thus obviated in obtaining systems that
have different Ro values, but are otherwise identical. It will be
demonstrated that the decay curve is rather sensitive to the
distribution function f(r). Procedures will be presented to ex-
tract information from the fluorescence decay about the dis-
tribution of distances between donor-acceptor pairs. This ap-
proach is believed to be promising in the study of conforma-
tion of short polymer chains to the ends of which suitable
chromophores have been attached, and the average end-to-end
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FIG. 1. Computer-simulated donor fluorescence decay curves,
I(t), for ensembles of donor-acceptor pairs the distance between
which is described by parabolic distribution functions. I(t) was
obtained by use of Eq. 5, and the distribution functions shown
in Fig. 2.

distance of which is of the order of Ro of the attached pair of
chromophores 130 d1 20 A for typical cases (5) 1.

r(A)

FIG. 2. Hypothetical distributions of distances between don-
ors and acceptors in an ensemble of donor-acceptor pairs. The
distribution functions, f(r), are normalized parabolas of the form
a - 18/9 a' (r -,)2, where a and A are the height and the mean

of the parabola, respectively, and r is the donor-acceptor distance
in a pair. Ro = 30 X.

FIG. 3. Computer-simulated curves of I'(t) for various distri-
bution functions f(r). I'(t) was calculated according to Eq. 6 for
the distribution functions f(r) shown in Fig. 2. I(t) is the hypo-
thetical decay curve the donor would have shown if it had lost its
energy exclusively by energy transfer.

Fluorescence decay curve of donors in a collection of
donor-acceptor pairs the distance between which
is not unique

Suppose we irradiate an ensemble of donor-acceptor pairs,
A-B, the distance between which is not unique, but is de-
scribed by a normalized distribution function f(r). The dis-
tance between one A-B pair to another A-B pair is assumed
to be large, so that energy migration takes place within each
pair only. Suppose also that the irradiation excites m donor
chromophores and is of very short duration compared to the
donor lifetime. Since the donor chromophores are excited
randomly, the number of excited A's that have a partner B
chromophore in the range r to r + dr is equal to mf(r)dr at
the moment of excitation (t = 0). This number will decay with
time, with a first-order rate constant of 1hr + (1/7) (RO/r)6,
1h being the intrinsic rate constant of decay and (1/ r) (Ro/r)6
being the rate constant of energy loss to the neighboring ac-
ceptor. Let us define mf(r,t)dr as the number of excited A's
that have a partner B chromophore in the range r to r + dr,
and that have survived decay in the time range zero to t.
mf(r,t)dr is thus expressed by,

mf(r,t)dr = mf(r) exp {- - }I dr [4]

The light intensity I(t) of the fluorescence of the excited
molecules A detected at time t is proportional to fPmf(rt)dr.
Thus,

1(t) = kf f(r,t)dr = k f(r)

X exp{-
tQRo9) dr [5]
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where k = m/To, ro being the radiative lifetime of A*.
Fig. 1 illustrates the dependence of I(t) on various hypo-

thetical distributions of distances, f(r), shown in Fig. 2. For
the sake of simplicity, k was set equal to unity and the various
distance distributions were chosen as parabolas of different
mean distances and different scatter of distances. Each func-
tion f(r) was normalized to unily, and thus assumed the form
a 16/9 a3(r ,)2 in the range (u + 3/4a) > r > (u - 3/4a), a
being the height and u being the mean of the parabola. Ob-
viously, the fluorescence decay curves of the donors are quite
sensitive to variations inf(r).

Interpretation of decay curves by procedures involving
inverse Laplace transforms

Eq. 5 can be transformed into a mathematically simplified
form. Let us define I'(t) = I(t) exp (t/r) and y = (Ro/r)6/T.
Additionally, define a new distribution function g(y), so that
g(y)dy = f(r)dr. Thus, g(y)dy is the fractional number of
donor-acceptor pairs the distance between which falls in the
corresponding range r to r + dr. Introducing the new symbols
into Eq. 5 one obtains:

IP(t) = I(t) exp (t/T) = k f(r)exp { ( dr

ro rX~~~~~~~~~

= k g(y)exp(-yt)dy = -k g(y)exp(-yt)dy [6]

Thus, ignoring the scaling factor -k, I'(t) is the Laplace
transform of g(y). In principle, g(y) should therefore be ob-
tainable from I'(t) by procedures of inverse Laplace trans-

forms.
Fig. 3 describes the functions I'(t) corresponding to the

various distribution functions f(r) shown in Fig. 2. It is note-

worthy that I'(t), similarly to I(t), is markedly affected by
the shape of f(r).

Since it isf(r) rather than g(y) that is of interest, the former
may be obtained from the latter by the relations y = (Ro/r)6/r
and g(y)dy =f(r)dr. Thus,

dy = dr andf(r) = - 7 9(y) [7]

While the above approach is rigorous, it should be noted
that in trying to derive g(y), and thus f(r), from I'(t) through
Eq. 6 one actually aims at resolving I'(t) into a very large

number of exponential decays. It has, however, been demon-

strated that such a resolution demands an extremely high
accuracy and precision for I'(t) (6). Various numerical meth-
ods have been proposed to perform inverse Laplace transforms

(6). The applicability of these methods to the interpretation
of actual experimental data has yet to be tested.

Reconstruction of distribution functions from decay

curves by the method of least squares

An approach that has proved feasible for the evaluation of

f(r) from 1(t) is to assume a plausible form for f(r), insert the

assumed function into Eq. 5, and compare the calculated

decay curve, I,(t), with the experimental curve I(t). If the

* The light intensity is customarily obtained in arbitary units.

The experimental results may, however, be readily assigned the

correct scale, since I(t) should fulfill some simple relations, i.e.,

I(O) = k and 1//mn fI(t)dt =77, where 77 is the quantum yield of

the fluorescence of the donor.
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FIG. 4. Computer-simulated fluorescence response, D(t), to

an exciting flash, P(t), of nonnegligible width. The noisy curve

was calculated by Eq. 10, assuming the distribution function f(r)
to be normalized with the parameters ,u = 30 A and a = 0.05.

Random noise was added, equivalent to the Poisson-distributed
counting error obtained when 104 photons were counted at the

peak of D(t). 400 Channels were used for the total time range.

The full width at half-height of P(t) was 3 nsec, while T was chosen

to be 4 nsec. The smooth D(t) curve was obtained by fitting the

noisy curve by the least-squares technique to a fluorescence re-

sponse calculated by Eq. 10. The values recovered for ,u and a were

29.8 A and 0.049, respectively.

assumed function f(r) contains enough adjustable parameters,
it can be flexible enough to represent various possible distribu-

tions of distances between A and B. The parameters in the

assumed f(r) are then adjusted to yield the best fit between

the calculated curve I,(t) and experimental curve I(t). The

quality of the experimental data put, of course, a limit on the

finer details in the functionf(r) that can be evaluated [7 ].
As a criterion for the quality of fit between the calculated

and experimental decay functions, I,(t) and I(t>, respectively,
we used the root mean weighted square deviation, S,

[8]
1 N 1/2

S = _N W,(I (t,) _IC(ti)) 2

To evaluate S numerically, the time scale is divided into N
equal intervals, tj denoting the time of the ith interval. W,
is the statistical weight given to the ith experimental pointt.
A search for the parameters in the assumed distribution func-
tion that minimize S was performed by the REEPt or NLINt
computer programs for least-squares estimation of nonlinear
parameters.
To illustrate this approach, let us imagine that the curves

presented in Fig. 1 are experimental decay curves of fluores-
cence obtained from dilute solutions of donor-acceptor pairs
separated according to distribution functions f(r). To obtain
f(r) from the decay curves, f(r) was assumed to be of the gene-
ral shape of an inverted parabola, but nothing was presumed
about the parameters of this parabola. Thus, the distribution
functions were assumed to be of the form a - 16/9 a3(r- A)2
between the limits (A + 3/4a), > r> (u- 3/4a), in which the
mean, ,A, and height at the maximum, a, were left as free pa-

t Wi = (1/oi2)/(E1/Nai2) where ai2 is the variance of the ith ob-
servation. If the noise in the decay curve is due to counting error

when the photon counting technique is used, then o- 2 ni, where

ni is the number of photons counted at the ith time interval.

$ Shanno, D. F. (1967) Share Program Library, SDA, 3492;
Marquardt, D. W. (1966) Share Program Library, SDA, 3094.
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rameters. I,(t) thus assumed the form,

rg+3/4a 6
Ic(t) = a - a' (r -

Ju3/4a -
9_

X exp { - r(-) } dr [9]

in which r and t are independent variables, I,(t) is the depen-
dent variable, and a and MA are the parameters to be estimated.
The values thus obtained for a and ,u by minimization of S in
Eq. 8 exactly equal to those used originally to construct the
decay curves in Fig. 1.

It is of interest to note that the above method can be readily
adapted to cases in which the duration of the exciting light
pulse is not very short in comparison to the fluorescence decay
time of the donor. In such a case, the experimentally obtained
fluorescence response of the donor, D (t), is a convolution of
the exciting pulse, P(t), and the true fluorescence decay of the
donor, I (t),

D(t) = f P(t - s)I(s)ds [10]

The shape of I(s) obviously depends on the parameters in-
cluded in f(r) (see Eq. 5); here again, one is looking for the
parameters included in f(r) that yield the best fit between the
experimentally obtained D(t) and that calculated by Eq. 10.
Fig. 4 illustrates the above method for the evaluation of the
parameters involved in f(r) from the fluorescence response
curve D(t), when the curve involves a convolution with an
excitation pulse P(t) and, furthermore, contains some random
noise. D(t) was fitted to a function of the form shown in Eq.
10 with f(r) assumed to be a parabola with adjustable param-
eters. The parameters obtained by the procedure of curve-
fitting were in very good agreement with the correct param-
eters.

Discussion

The quantum yield of the light emitted by fluorescent mole-
cules is proportional to the integral of the fluorescence decay
curve with respect to time. Obviously, the study of the time
course of fluorescence decay yields more information by far
about the emitting system than the measurement of quantum
yield. We have demonstrated above that the decay curve of
the light emitted from the donor in a collection of macromole-
cules between the ends of which nonradiative energy transfer
takes place yields useful information about the distribution of
distances between the chain ends. Such information cannot be
obtained from a single measurement of the total efficiency of
energy transfer between the donor-acceptor pairs of chromo-
phores attached to the ends of polymer chains.

Cantor and Pechukas (4) have recently proposed that the
distribution of end-to-end distances of a polymer chain be
evaluated from efficiency of energy transfer in a series of ex-
periments in which the Ro values for the donor-acceptor pairs
are varied. It was suggested that different values of Ro be ob-
tained by use of different sets of chromophores, by partial
quenching of the donor, or by change of solvent. It should be
noted, however, that change of solvent may markedly affect
the function f(r) for the polymer; measurement of efficiency of
energy transfer in one solvent may, therefore, be useless for
the evaluation of f(r) in another solvent. The suggested use of
different sets of chromophores to obtain different Ro values is

experimentally a very lengthy and tedious procedure, even
with modern techniques of synthesis. In practice, the number
of determinations of efficiency of energy transfer is, therefore,
expected to be limited, and the information obtained about
f(r) will be far more limited than that obtained from a single
decay curve of donor fluorescence as suggested herewith. The
accuracy now obtainable in the determination of fluorescence
decay curves is remarkable indeed (8).
The dependence of the transfer of electronic excitation

energy by the dipole-dipole mechanism on r-6 has been veri-
fied experimentally (2). However, the agreement between the
experimentally found values of Ro and the corresponding val-
ues calculated theoretically, according to Eq. 2, is poor in
various cases (5). An unequivocal explanation of the discrep-
ancy between the measured and calculated values of Ro has
apparently not been presented. Therefore, it seems necessary
to use experimentally determined values for Ro for the pair of
chromophores used. This value can be obtained, for example,
by the concentration dependence of energy transfer between
the chromophores when free in solution (9). One should be
careful to avoid complications due to translatory diffusion of
the chromophores in solution (13). It should be noted that if
Ro is in error, the shape of f(r) will not be affected, but the units
of r will not be correct.
The function I'(t) defined as I(t)et/'T has a simple intuitive

meaning, namely it is the hypothetical decay of the donor
molecules due to energy transfer alone if no other decay pro-
cesses took place. It can be readily shown that certain kinds
of moments of f(r) with respect to r can be obtained from I'(t)
by simple manipulation of this function. From Eq. 6 one ob-
tains,

It(t) = k co f(r) exp {-- (-°) dr
kyr)~~~~~

[11]

Integration of I'(t) with respect to time yields,

I'(t)dt = k f J f(r)exp [-A (-°)] drdt
rX

= kT/Ro6 f r6f(r)dr [12]

The area under the I'(t) curve yields the 6th moment of
f(r) with respect to the distance r. In contrast to the above
integration of I'(t) with respect to time, similar integration
of I(t) yields more complicated expressions involving f(r).
For example, the area under I (t), which is equal to the quan-
tum yield of the donor, is equal to fJ [(Ro6)/(RO6+r6) ]f(r)dr.
In principle, one can continue to obtain higher moments of

f(r). For example, the 12th moment is obtained by double
integration of I'(t) with respect to time:

f I'(t)dtdT = k f f { f(r)exp

.~~~RO 6 k cocoT
X[1\y() drj dtdT = R 6 r6f(r)exp

X 0--( °) ] drdT = k (R) fi r'2f(r)dr [13]

Corresponding integrations of experimentally obtained data
may require lengthy, possibly unreliable, extrapolations to

infinite time. This is especially true for the r12 or higher mo-

ments. Notwithstanding this limitation, approximate values
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for the various moments of f(r) derived from I'(t) may prove
useful in some cases to obtain qualitative information about
the distribution of end-to-end distances of polymers.

By expanding the exponent in the integral of Eq. 11 into a
power series, one can readily show that the slope of I'(t) with
respect to t at t = 0 yields another moment of f(r), namely
(Ro6)/rfr (1/r6)f(r)dr. This kind of moment is probably of
little value in practice, since it will reach infinity unless f(r)
approaches zero faster than r6 as r approaches zero.

We are grateful to Prof. Ephraim Katchalski for helpful dis-
cussions related to this work.
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