
Biophysical Journal Volume: 00 Month Year 1–0 1

Nonlinear compliance modulates dynamic bronchoconstriction in

a multiscale airway model: Supporting material

J. E. Hiornsa, O. E. Jensenb, B.S. Brooka

aSchool of Mathematical Sciences, University of Nottingham,
University Park, Nottingham, NG7 2RD, UK

bSchool of Mathematics, University of Manchester, Oxford Road,
Manchester, M13 9PL, UK

Here we present the continuum mechanics used to model the asthmatic airway and the numerical
methods used to solve the problem.

S.1 Modelling an airway

The airway is modelled as a cylindrical tube consisting of two layers, representing the airway wall and the
parenchyma (see Fig. 1(a)). The undeformed airway wall is assumed to occupy R
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where ‰ is the thickness of the undeformed airway wall. The parenchyma occupies R
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Æ R Æ R
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. The
subscripts a, b and p refer to the airway inner wall, the boundary between the airway wall and the
parenchyma and the pleura, respectively. Superscripts (a) and (p) are used to denote the airway wall and
the parenchyma respectively; asterisks denote dimensional quantities. It is assumed that R

p

≠ R
b

∫ ‰

and the airway is under plane strain, does not undergo torsion and that deformations are axisymmetric,
so that

r = r(R), ◊ = �, z = Z. (S.1)

Here R, �, Z are Lagrangian cylindrical coordinates and r, ◊, z are coordinates in the deformed
configuration.

The deformation gradient tensor, F © Grad x, and the left and right Cauchy Green stress tensors,
B © FFT and C © FT F, are given by
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where rÕ = dr/dR.
Displacement and radial stress are continuous at R = R

b

. The radial stress is prescribed at R = R
a

and at R = R
p

, so that
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We also use the notation
r

a

© r(R
a

), and r
p

© r(R
p

). (S.4)

S.1.1 Modelling the airway wall

The airway wall is assumed to be incompressible, so taking the limit det(F) æ 1,

r2 = r(R
a

)2 + R2 ≠ R2
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(r(R
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) < r < r(R
b

)). (S.5)

In order to model the airway wall, an incompressible Neo-Hookean material with embedded fibres is
assumed. It is assumed that there are two sets of helical fibres, symmetrically disposed about the
circumferential direction, with undeformed directions,

M1 = cos Ïe

◊

+ sin Ïe

z

, M2 = ≠ cos Ïe

◊

+ sin Ïe

z

. (S.6)

m1 = FM1 and m2 = FM2 are the directions of the fibres in the deformed configuration. These fibres
have two functions; they produce a contractile force from activated airway smooth muscle (ASM) and
during inflation they sti�en the airway to mimic collagen.

The strain-energy function of a Neo-Hookean material is

W = µ(a)

2 (I1 ≠ 3), (S.7)

where µ(a) is the shear modulus and I1 © tr(C) is the first strain invariant of C. Two other terms
are included in the strain-energy function to take into account the strain-sti�ening and active force
generation. The anisotropic model of (1) is used to take into account the fibre-sti�ening, so that
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C1 > 0 is a stress-like parameter taking into account the density of the fibres in the matrix, while C2 > 0
is a dimensionless parameter that controls the nonlinear increase in the sti�ness of the fibres as they
stretch. The Heaviside function H(I

f

≠ 1) is included so that the collagen fibres are recruited only when
stretched. The additional strain invariants are defined as I4 © M1 · (CM1) and I6 © M2 · (CM2), so that
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R2 cos2 Ï + sin2 Ï =
3

r2 ≠ R2
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4
cos2 Ï + 1. (S.9)

I4 and I6 are the square of the stretches of the fibres, which due to the symmetry are stretched equally.
Using (S.5), (S.9) can be rewritten as
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so that I
f

> 1 for f = 4, 6 is equivalent to r
a

> R
a

, i.e. when the airway is inflated. Therefore the
Heaviside function in (S.8) can be rewritten as H(r

a

≠ R
a

).
It is assumed that the active force, A, produced by the fibres is independent of I4 and I6. To ensure

that the active component of the Cauchy stress tensor matches the general form described by (2), namely

·
act

= A (m1 ¢ m1 + m2 ¢ m2) , (S.11)

the following active component to the strain-energy function is included:

W
act

= A

2 (I4 + I6). (S.12)



The strain-energy function for the airway wall is thus the sum of (S.7), (S.8) and (S.12), namely
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Now the Cauchy stress tensor satisfies (3)

· = ≠pI + 2W1B + 2W4m1 ¢ m1 + 2W6m2 ¢ m2, (S.14)

where W
i

= ˆW/ˆI
i

for i = 1, 4, 6. A pressure p has been introduced to enforce incompressibility. Since
I4 = I6, the last two terms of (S.14) can be combined, noting that
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The non-zero components of the Cauchy stress tensor are
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Assuming that there are no body forces, conservation of momentum requires that Ò · · = 0, which
reduces to
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Integrating and applying (S.3a) yields

·
rr

=·
a

+ 2 cos2 Ï

⁄
R

1

A

S
dS + µ(a) log

3
r

a

R

rR
a

4
+ µ(a)(r2

a

≠ R2
a

) (R2 ≠ R2
a

)
2r2r2

a

+ H(r
a

≠ R
a

)

C1

Ú
fi

C2
cos2 Ï

3
erfi

Ó
C2

!
r2

a

≠ R2
a

"
cos2 Ï

Ô
≠ erfi

;
C2

3
r2

a

≠ R2
a

R2

4
cos2 Ï

<4
, (S.17)

where erfi(x) © 2
s

x

0 exp(t2)dt/
Ô

fi is the imaginary error function and from (S.5), r =
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S.1.2 Modelling the parenchyma

Using nonlinear elasticity, the parenchyma can be modelled as a Neo-Hookean compressible material. As
suggested in (4), we model the compressibility with the model of (5), as it is an admissible strain energy
function and adds only one extra parameter. The strain-energy function is thus

W = µ(p)

2 (I1 ≠ 3) + ⁄(p)

2 (J ≠ 1)2 ≠ µ(p) log J, (S.19)

where µ(p) and ⁄(p) are the shear modulus and Lamé’s first parameter of the parenchyma and

J © det(F) = rÕr

R
(S.20)

is the volume ratio. There are the following nonzero components of the Cauchy stress (6):
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A simplification of the model of the parenchyma, which simplifies the coupling to the airway, is to use
linear elasticity. Linearising (S.21) and enforcing conservation of momentum and the boundary conditions
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then for R
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, the nonzero components of the Cauchy stress tensor satisfy
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The displacement satisfies
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Using (S.24) with R = R
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Parameter k1 k2 f
p1 g

p1 g
p2 g

p3 g1 g2 g3

Value 0.06 0.1 0.88 0.22 4.4 0.66 0.01 0.2 0.03

Table S.1: HHM rate parameter values as given in (7).

S.2 Incorporating Huxley-Hai-Murphy theory

An active force is generated by the sub-cellular crossbridge dynamics within the ASM fibres, for which
the Huxley-Hai-Murphy theory developed by (7) is used to calculate the contractile force A. The theory
combines the sliding filament theory of muscle contraction developed by (8) and the four-state model for
crossbridge kinetics introduced by (9). In the four state model it is assumed that a crossbridge must first
be phosphorylated before it can attach and the four states are unattached and unphosphorylated (M),
unattached but phosphorylated (M

p

), attached and phosphorylated (AM
p

), or attached and dephospho-
rylated (AM). Denoting the fraction of the total number of crossbridges in the four states as n

A

, n
B

, n
C

and n
D

, respectively, the total must be one. The phosphorylated crossbridges are called cycling cross-
bridges due to the fact that they are rapidly attaching and detaching. The attached-dephosphorylated
crossbridges are known as latch bridges, because of their slower kinetics.

The rates between the di�erent states are shown in Fig. 1(c). The rate at which crossbridges (attached
or detached) can be phosphorylated and dephosphorylated are k1 and k2, respectively. The rates at which
the crossbridges attach and detach depends on the distance x between the unstressed position of the
crossbridge and the binding site on the actin filament. Phosphorylated myosin attaches at a rate f

p

(x),
while the phosphorylated and dephosphorylated crossbridges can detach at the rates g

p

(x) and g(x)
respectively. Using the power-stroke length h, they are defined as follows:
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(g1 + g3)x/h, x > h.

(S.30)

The values of the rates as given by (7) are given in Table S.1. These values are used in the paper except
k1, which we vary to take into account di�erent levels of agonist concentration, and g1, where we make
comparisons to the case that g1 = 0.1 as used by (10)

The fraction of crossbridges in each of the four states, n © (n
A

, n
B

, n
C

, n
D

), is governed by the
following system of di�erential equations:
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where v is the velocity of the actin relative to the myosin and is taken to be positive during contraction.
Q is the transition matrix given by
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The active force per unit area in the two sets of fibres is calculated using

A(t; R) = —

⁄ Œ

≠Œ
x(n

C

(x, t; R) + n
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(x, t; R))dx. (S.33)

Here the integral gives the number of attached crossbridges onto one actin filament. The notation
n

C

(x, t; R) is used to show that x and t are independent variables and R is a parameter. The parameter
— is the product of the following factors:

• the sti�ness of a crossbridge,

• the number of actin filaments per myosin filament,

• N
f

(see Fig. 1(d)), the number of myosin filaments in parallel in a contractile unit,

• the number of parallel cells in a muscle fibre,

• the fraction of muscle layer made up of ASM fibres.

S.2.1 Including HHM in the airway model

To solve (S.31), v must first be found in terms of the local tissue velocity V . This is achieved by consid-
ering the relative length scales. First the tissue velocity is considered. We take a length of fibre R

a

(say)
in the reference configuration. Since I4 = I6 (see (S.9)), both sets of fibres have the deformed length
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The rate of change of a contractile unit of length c is now considered. Within each smooth muscle cell
it is assumed there are N contractile units in series (Fig. 1(d)). If a smooth muscle cell has a reference
length of L

smc

, then the number of smooth muscle cells N
c

, in series in a portion of fibre with reference
length R

a

, is N
c
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/L
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. Therefore in the deformed state
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Taking v = ≠ˆc/ˆt, di�erentiating (S.35) yields v = ≠L
smc

V/NR
a

.

Rewriting (S.31) in terms of V yields
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Experimentally, L
smc

/N ranges from 0.7 to 2.2µm (11, 12). (13) used L
smc

/N = 1µm.
Initial conditions are required for solution of these time-dependent PDEs. Assuming that at t = 0

the system is stress-free with all the crossbridges unattached and not phosphorylated, then r = R and
n(0) = (1, 0, 0, 0).

S.2.2 Finding the velocity

In order to find V , it is necessary to first find ˆr
b

/ˆt. An expression for the rate of change of the active
force ˆA/ˆt is found first. Letting a(x) = (0, 0, x, x) and multiplying (S.36) through by —a, integrating
with respect to x yields
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Integrating the second term on the left hand side by parts gives
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Di�erentiating (S.27) and using (S.39) and (S.34), yields
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following rearanging, where
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S.3 Numerical methods

We now give an outline of the problem and its numerical solution. R appears parametrically in
n = n(x, t; R), A = A(t; R), H1 = H1(t; R), H2 = H2(t; R) and V = V (t; R), while t appears para-
metrically in r = r(R; t), r

b

= r
b

(t) and dr
b

/dt = dr
b

(t)/dt. Details of how they feed into one another
are shown in Fig. S.1.

The airway wall is discretised into points spaced by a distance �R. Given a crossbridge distribution
for each of these, A, H1 and H2 can be found. The values at each of the points in R are required to
find the new value of r

b

. Modelling the parenchyma with linear elasticity when including HHM, enables
ˆr

b

/ˆt to be found from information at the current time, which is not possible with the nonlinear model.
The new velocity at each of the points in R can then be found, which is used to update n with a Godunov
algorithm. The integrals are evaluated and roots of equations are found by using the MATLAB functions
trapz and fzero.

S.3.1 Godunov scheme used to update the crossbridge distribution

In order to update n, a Godunov scheme is used. For the airway, the airway wall is discretised into points
spaced by a distance �R, for each of which the distribution of crossbridges can be found. Without loss
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Figure S.1: Outline of the numerical algorithm used to solve the equations (indicated by the equation
numbers in brackets) governing the fully coupled problem.

of generality, one of these points is considered. Splitting time up into steps, it is assumed that V and n

are known at tj and want to find n at tj+1.
Equation (S.36) can be written in the following conservative form:

ˆn

ˆt
+ ˆX

ˆx
≠ S = 0, (S.43)

where X = “V n is a vector of fluxes, and S = Qn represents the source terms. This can be solved using
a Godunov scheme. For reasons of stability, a second order Godunov scheme is used (14, 15). Using the
methods described in (14) and (16), the descretisation and methods for solving the scheme are presented.
Time is split up into steps, where V and n at tj are known and assumed to be constant over the timestep.
n at tj+1 must be found. Initially a first-order step is carried out to find n at tj+1/2, which is used to
update X and S. A second order step is then carried out to find n at tj+1.

The x-domain is discretised into cells of width �x, where the domain of the ith cell is [x
i≠1/2, x
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Also integrating over the time step between tj and tj+1, where tj+1 = tj + �t, yields
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Letting n

j

i

represent the mean value of n over the ith cell at time tj , X

i±1/2, the mean value of
X(n(x

i±1/2, t)) over the timestep and S

i

, the mean value of S over the ith cell and the time step,



so that
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(S.45) can be rewritten as follows:
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Initially, a first-order step is applied. The equation for n

j+1/2
i

is similar to (S.47), but it has �t/2
instead of �t. S can be calculated using n

j

i

, but when calculating the fluxes the discontinuities at each
of the cell boundaries must be dealt with. This is an example of a Riemann problem. However, due to
the linearity of the problem, the first-order upwind method introduced by (17) can be used, resulting
in (S.47) becoming
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(S.48)

Here, using (S.37), it is noted that “ > 0 as Ï œ [0, fi/2].
A second-order step is now carried out. Using the solution to n at tj+1/2, a gradient G

j+1/2
i

is
constructed in each cell. This is given by

G
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2
, (S.49)

where Av(a, b) is an averaging function. The averaging function of (16), namely

Av(a, b) =

Y
]
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a

2
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2
a
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2 if ab > 0,

0 if ab < 0,
(S.50)

is assumed. The gradient function is used to update the fluxes so that
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Using n

j+1/2
i

, S may also be updated, in which case (S.47) becomes
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At the start of each time step a choice of step size is required to ensure the scheme is stable. By
considering (S.34) it is noted that R only appears in the denominator, therefore V will take a maximum
when R = 1, so �t must satisfy (16)

�t Æ �x

| ≠ “V (1)| . (S.54)

When V (1) is small, �t can become large, which could lead to instabilities. We let �t equal the right-hand
side multiplied by 0.8, but limit its size to a maximum value of 0.001.
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Figure S.2: Quasi-static relationships between the luminal radius (solid curve) and wall thickness (dashed
curve) and the transmural pressure in the absence of agonist. The crosses and plusses are points taken
from the experimental curves in Fig. 8 of (18) for the radius and thickness.

S.4 Determining material properties for the airway wall

The material properties of the intact airway wall are established by calculating quasi-static relation-
ships between the luminal radius, wall thickness and the transmural pressure, P

T M

using the model
described above, for the inactivated airway, and choosing values of C1 and C2 (for use in S.18) by fitting
to the experimentally obtained radius-pressure relationship of LaPrad et al (18). For direct comparisons
with the experimental measurements on the isolated airway, we will neglect the parenchymal layer. The
lumen radius and thickness of the airway wall under zero transmural pressure, are taken to be 1.8mm
and 0.54mm respectively (based on the isolated intact airways used in (18) and the shear modulus of
the airway wall was taken to be 20cmH20 (19). Results of the fitting are shown in Fig. S.2; for these we
found C1 =1cmH2O and C2 = 1.8 but, in general, will be airway- and generation-dependent.

Quasi-static relationships for the activated airway measured experimentally (18, 20) indicate both
a rightward and downward shift of the pressure-radius curve of an isolated bovine airway subjected to
10≠5M ACh (large dots in Fig. S.3(a,b)). The quasi-static pressure-radius relationship determined using
the model does not reproduce this behaviour accurately (Fig. (3) in main text) showing only a rightward
shift of the unactivated airway curve. We expect that allowing the sti�ness parameter, C2, to vary with
agonist level, k1, will likely improve model behaviour in comparison with the data, but adds another
level of complexity to the solution procedure (Fig. S.1). As an alternative, we fitted the following logistic
curve to the data points extracted from the experimental studies of LaPrad et al (18) (Fig. S.3(a)) and
Harvey et al (20) (Fig. S.3(b)):

r
a

= –

1 + ÷e≠flPT M
+ Ÿ, (S.55)

where –, ÷, fl and Ÿ are constants to be determined and (P
T M

, r
a

) are experimental measurements of
applied transmural pressure and equilibrium luminal radius (as a percentage of the luminal radius of
the unactivated airway at 30cmH2O) respectively. For each of the relaxed and constricted data points,
we determined best fit parameters using the “nlinfit” function in Matlab; the results are shown as solid



Parameter – ÷ fl Ÿ

Relaxed (18) 60.6208 1.5401 0.2960 38.5304
Activated (18) 50.9738 1.5226 0.2118 26.0568
Relaxed (20) 74.5432 0.4508 0.2673 24.6249
Activated (20) 55.6746 0.6815 0.1721 14.2845

Table S.2: Table of the parameters –, ÷, fl and Ÿ determined by fitting the logistic equation (S.55) to the
data extracted from (18) and (20) shown in Fig. S.3(a,b)).
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Figure S.3: Quasi-static luminal radius as a function of transmural pressure (dots) extracted from exper-
imental data of Lutchen and colleagues ((18, 20) for the relaxed (blue) and activated (red) isolated intact
bovine airway. The activated airway was subjected to 10≠5M ACh. Also shown in (a,b) are the curves
fitted to the data points using the logistic equation (S.55) and fitted parameters given in Table (S.2).
(c,d) E�ective airway sti�ness calculated as the reciprocal of the slope of the solid curves in (a) and (b)
plotted as a function of P

T M

.

curves in Fig. S.3(a,b) and parameters given in Table (S.2). These smoother curves allow us to compute
the e�ective sti�ness of activated airway by calculating the reciprocal of the slope of the fitted curves.
The sti�ness as a function of P

T M

are shown in Fig. S.3(c,d). These clearly indicate that even though
the downward shift seen in the experimental data is not reproduced by the airway model, the rightward
shift of the pressure-radius curve generates a rightward shift in the minimum of the sti�ness-radius curve
as predicted by the airway model so that the main conclusions are still valid.
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