Supplemental Information for

A Synchrotron-based Hydroxyl Radical Footprinting Analysis of Amyloid Fibrils and

Pre-fibrillar Intermediates with Residue-specific Resolution

Alexandra L. Klinger, Janna Kiselar, Sergei Ilchenko, Hiroaki Komatsu, Mark R. Chance and Paul H. Axelsen

Table S1. Modification rates for A β 40 fragments (units of s⁻¹).

Modified		Residue segment in which the modified residue was identified											
residue	4-10	10-17	11-19	20-33	21-31	21-33	21-34	24-34	34-40	35-40	36-40		
F4	5.5												
Y10	5.5	9.4											
H13		4.6	4.7										
H14		5.7	5										
L17			4.5										
F19			6.2										
F20				4.5									
V24				5.1	4.8		4.9	5					
K28				11.3	11.5	10	8.2	10					
131				7.5	7.9	7.7	7.2	7.1					
132				8	7.6	7.5	7.6	7.1					
L34							6.9	5.4	3.4				
M35									10	19			
V36,V39,V40*									14.8		17.5		

* Fragments containing three C-terminal valine residues were not chromatographically resolved.

Modified	Residue segment in which the modified residue was identified										
residue	4-19	4-17	10-19	11-19	1-17	20-33	20-34	21-34	34-40	35-40	
F4	2				4.2						
Y10	3.1	3.1	2.3		3.7						
H13	2.1	3.2	2.3	2.3							
H14	2.1	3.4	3	3							
L17			2.7								
F19	2.4		3	2.3							
F20							4.1				
V24							4.7				
K28						1.5	1.2	1.7			
I31						6	5	6.5			
132						1.41	0.45	0.47			
L34							1.2	0.55			
M35									12		
V36,V39,V40*									1.9	1.6	

Table S2. Modification rates for LWM A β 40 (units of s⁻¹).

* Fragments containing three C-terminal value residues were not chromatographically resolved.

Modified	Re	Residue segment in which the modified residue was identified										
Residue	4-19	4-17	10-19	11-19	1-17	20-33	20-34	21-34	34-40	35-40		
F4	1.06				1.6							
Y10	2	1.8	1.3		1.7							
H13	0.14	0.1	0.07	0.11								
H14	0.19	0.4	0.29	0.6								
L17			0.15									
F19	0.07		0.08	0.12								
F20							0.94					
V24							0.31					
K28						0.15	0.14	0.3				
131						0.37	0.73	0.42				
132						0.12	0.1	0.18				
L34							0.09	0.04				
M35									2.4	2.1		
V36/39/40*									0.04	0.03		

Table S3. Modification rates for fibrillar A β 40 (units of s⁻¹).

* Fragments containing three C-terminal value residues were not chromatographically resolved.

Posiduo		LM	W		Fibril				
Residue	PF [*]	range**	μ_{PF}^{\dagger}	σ^{\ddagger}	PF [*]	range**	μ_{PF}^{\dagger}	σ^{\ddagger}	
F4	2	(1-4)	2	1.7	4	(3-6)	4	2	
Y10	2	(1-4)	2	0.8	4	(2-7)	4	2	
H13	2	(1-3)	2	0.5	40	(30-70)	50	24	
H14	2	(1-3)	2	0.6	20	(10-30)	20	9	
L17	2		2	0.5	30		30	9	
F19	2	(2-3)	2	0.6	80	(70-90)	80	19	
F20	2	(1-2)	2	0.9	7	(4-10)	8	4	
V24	1		1	0.2	20		20	4	
K28	7	(5-11)	8	2.2	60	(30-100)	70	52	
I31	1	(1-2)	1	0.4	20	(10-30)	20	10	
132	10	(6-26)	13	12	60	(40-90)	60	26	
L34	6	(3-15)	7	6.0	90	(40-200)	100	82	
M35	1	(1-2)	1	0.6	6	(4-10)	7	3	
V36/39/40	9	(7-12)	9	2.0	400	(400-800)	600	140	

Table S4. Propagation of error analysis for table 1

^{*}Protection factor (PF) is defined as $k_{\text{frag}}/k_{\text{struct}}$ where k_{frag} is the average rate of modification of the given residue in the predigested A β 40 and k_{struct} is the average rate of modification of the residue in LMW A β 40 or fibril A β 40 listed in Table 1.

^{**}The ranges expected for PF's are estimated using the average (k) and standard deviation (σ) of the rates of modification for each amino acid side chain (Table 1). The low end of each range is given by (k_{frag} - σ_{frag})/($k_{\text{struct}}+\sigma_{\text{struct}}$) and the high end of the range by ($k_{\text{frag}}+\sigma_{\text{frag}}$)/($k_{\text{struct}}-\sigma_{\text{struct}}$)

[†]The expected value for the protection factor (μ_{PF}) was calculated using the expression derived for the expected value μ_R of a ratio R=X/Y,

$$\mu_R \cong \frac{\mu_X}{\mu_Y} \left(1 + C V_Y^2 \right),$$

 μ_X and μ_Y are the average modification rates, k_{frag} and k_{struct} , respectively and CV_Y is the coefficient of variability $(CV_Y = \sigma_Y/\mu_Y)$.

^{††}The standard deviation of the ratio R=X/Y is

$$\sigma_R \cong \left(\frac{\mu_X}{\mu_Y}\right) \sqrt{CV_X^2 + CV_Y^2 + 3CV_Y^2 CV_X^2 + 8CV_Y^2}$$

as derived in (Holmes DT, Buhr KA. Error propagation in calculated ratios. *Clinical Biochemistry* **2007**;40:728-734.

Figure S1. (a) Electron micrograph of LMW A β 40 spotted on a glow-discharged carbon-coated grid and negative stained with methylamine tungstate, showing the characteristic globular oligomeric forms. (b) Silver stained SDS-PAGE analysis of the same LMW preparation of A β 40 after PICUP. The band at the bottom is monomeric A β 40 (mwt = 4330), and the bands above it represent dimers and higher-order oligomers that are not observed in sham cross-linking experiments.

Figure S2. (a-c) Superimposed conformational isomers of full length A β 40 NMR models and d) A β (1-28) as deposited in the PDB files indicated. Side chains are shown for residues with experimentally determined protection factors.

