
Supplementary Text to section: Mathematical analysis

shows that dynamic ParA concentrations can generate

equal plasmid spacing.

1 Expression for A(x)

In the main text we described how ParA symmetry results in equal plasmid

spacing. In there we assumed that the ParA concentration at each plasmid is

zero in order to gain understanding of the mechanism and keep the analysis

concise. Here we show that equal plasmid spacing can also be achieved in case

the ParA concentration at each plasmid is not zero, a more realistic scenario. In

fact all that is required is the less stringent condition that ParB-parC complexes

mediate ParA turnover at the plasmid.

We model the nucleoid as a 1d system of length L (along the cell long axis)

on which ParA-ATP and plasmids can interact. A(x, t) denotes the nucleoid-

associated ParA-ATP concentration at position x relative to one nucleoid edge

at time t and the cytoplasmic ParA copy number. Let x1(t)..xnp(t) be the po-

sitions of the np plasmids. At each plasmid, ParA-ATP can be hydrolyzed with

rate kB , turning Par-ATP into a cytoplasmic ParA form, with copy number

Ac(t). After sufficiently long timescales, the cytoplasmic ParA becomes compe-

tent to bind the nucleoid again, with rate J(Ac(t)). Once bound to the nucleoid,

ParA-ATP can diffuse along the nucleoid with diffusion constant D. This system

can be described by the deterministic reaction-diffusion equations:

∂A(x, t)
∂t

= D
∂2A(x, t)
∂x2 − kB

np∑
i=1

A(xi(t))δ (x− xi(t)) + J(Ac(t))
L

dAc(t)
dt = kB

np∑
i=1

A(xi(t))− J(Ac(t))

Boundary Conditions : ∂A(x, t)
∂x

∣∣∣
x=0

= 0 = ∂A(x, t)
∂x

∣∣∣
x=L

for all t.

(1)

Here δ(x) indicates the Dirac delta function. In line with the experimental evi-

dence we assume that cytoplasmic ParA binds to the nucleoid with a slow rate

kW after becoming cytoplasmic: J(Ac(t)) = kW Ac(t). Assuming a given (time-

independent) total ParA copy number AT in the system, we will find that J is
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determined implicitly: AT = Ac(t) +
∫ L

0 A(J(Ac(t)), x, t)dx. We will use this

relation to calculate the steady state
(

∂A(x,t)
∂t = 0 = dAc(t)

dt

)
solution A(x) for

any given plasmid configuration x1...xnp
with plasmid copy number np = 1, 2

in terms of AT and the other parameters L,D, kB and kW . Note that the di-

mensions of kB are length/time due to the dimensionality of the Dirac delta

function δ(x). The procedure described here generalizes to any np.

Recall from the main text that by invoking a separation of timescales between

ParA diffusion and plasmid motion, Eq. 1 reduces in steady state to:

D
d2A(x)

dx2 = kB

np∑
i=1

A(xi)δ (x− xi)−
J
L

Boundary Conditions : dA(x)
dx

∣∣∣
x=0

= 0 = dA(x)
dx

∣∣∣
x=L

kW Ac = J = kB

np∑
i=1

A(xi) (flux balance.)

(2)

Eq. 2 can be solved for A(x) in terms of J and A(x1)...A(xnp
) by using the

Neumann boundary conditions:

A(x) =


J

2LD

(
x2

1 − x2)+ A(x1) if 0 ≤ x ≤ x1,

kB

D

∑j
i=1 A(xi) (x− xj) + J

2LD

(
x2

j − x2)+ A(xj) if xj ≤ x ≤ xj+1, 1 ≤ j < np,

J
2LD

(
(L− xnp)2 − (L− x)2)+ A(xnp) if xnp ≤ x ≤ L.

(3)

Note that in order to be physically relevant we assume our solution A(x) to

be a continuous function of x. This generates the following recursive relations

between the concentrations at the plasmids:

A(xj) = kB

D

j−1∑
i=1

A(xi) (xj − xj−1)+ J
2LD

(
x2

j−1 − x2
j

)
+A(xj−1) for 1 < j ≤ np.

(4)

Now we focus on obtaining A(x1) in the case np = 1 for any plasmid po-

sition x1. Integration over the nucleoid results in
∫ L

0 A(x)dx = A(x1)L +
J
D

[
L2

3 − x1L+ x2
1

]
. From conservation of total ParA in the system, J is deter-

mined implicitly in terms ofA(x1): J = kW Ac = kW

(
AT −

[
A(x1)L+ J

D

[
L2

3 − x1L+ x2
1

]])
.

Solving for J results in: J = AT−A(x1)L
1

kW
+ 1

D

[
L2
3 −x1L+x2

1

] . Now we use the flux balance
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constraint in Eq. 2 to obtain the desired A(x1):

for np = 1: A(x1) = AT

L+ kB

kW
+ kB

D

[
L2

3 − x1L+ x2
1
] .

Now that J and A(x1) are obtained, the ParA distribution on the nucleoid as de-

scribed by Eq. 3 is fully determined. For np > 1 this procedure can be repeated

to find A(x1). Due to the continuity constraint, Eq. 4, all the other A(xj) are

then also determined. We illustrate this for np = 2: piecewise integration over

the nucleoid results in:
∫ L

0 A(x)dx = A(x1)L+ J
D

( 2
3L

2 + 3
2x

2
2 − 2Lx2 − 1

3Lx
3
2 + 1

2x
2
1
)
+

kB

2D A(x1) (x2 − x1) (2L− x1 − x2). Now we use the conservation of total ParA

again to obtain J in terms of A(x1): J = AT−A(x1)L− kB
2D A(x1)(x2−x1)(2L−x1−x2)

1
kW

+ 1
D [ 2

3 L2+ 3
2 x2

2−2Lx2− 1
3L x3

2+ 1
2 x2

1] .

Again turning to the flux balance condition, whilst realizing that by Eq. 4 A(x2)

is known in terms of A(x1) and J we find: J = kB

[
A(x1) + kB

D A(x1) (x2 − x1) + J
2LD

(
x2

1 − x2
2
)

+ A(x1)
]
.

Now we solve for A(x1):

A(x1) = AT

L+ kB

2D (x2 − x1) (2L− x1 − x2) +
[
2kB + k2

B

D (x2 − x1)
]

B
,

with B =
1

kW
+ 1

D [ 2
3 L2+ 3

2 x2
2−2Lx2− 1

3L x3
2+ 1

2 x2
1]

1+ kB
2LD (x2

2−x2
1) .

This determines A(x) for np = 2 completely.

2 Derivation that ParA symmetry implies equal

plasmid spacing

In this section we derive that for any np ≥ 1 for our steady state solution A(x),

the following statement holds:

for all j and x such that xj−1 ≤ xj − x ≤ xj and xj ≤ xj + x ≤ xj+1 :

A(xj − x) = A(xj + x) =⇒ for all j : xj = L

2np
+ L

np
(j − 1)

Here it is understood that 1 ≤ j ≤ np, indicating the label of the jth plasmid

that are assumed to be ordered (without loss of generality): x1 ≤ .. ≤ xnp
.

Furthermore we define x0 = 0 and xnp+1 = L. To show this we use the

expressions for A(x) described in Eq. 3. First we focus on j = np. Let
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xnp−1 ≤ xnp
− x ≤ xnp

and xnp
≤ xnp

+ x ≤ L and A(xnp
− x) = A(xnp

+ x):

kB

D

np−1∑
i=1

A(xi)
(
(xnp

− x)− xnp−1
)

+ J
2LD

(
x2

np−1 − (xnp
− x)2

)
+ A(xnp−1) =

J
2LD

(
(L− xnp)2 − (L− (xnp + x))2)+ A(xnp)⇒(

kB

D

np−1∑
i=1

A(xi) + J
D

)
x = 2J

LD
xnpx for all x⇒

xnp = L

2

(
1 + kB

J

np−1∑
i=1

A(xi)
)
.

(5)

Note that we used the continuity requirement (4) here for A(xnp
) on the right

hand side. In the special case of np = 1, the left hand side of the equation can

be replaced by J
2LD

(
x2

1 − (x1 − x)2) + A(x1), which using the same procedure

leads straightforwardly to the desired result x1 = L
2 . Now in the case of np > 1,

we proceed with j = 1. Let 0 ≤ x1 − x ≤ x1 and x1 ≤ x1 + x ≤ x2 and

A(x1 − x) = A(x1 + x):

J
2LD

(
x2

1 − (x1 − x)2)+ A(x1) =

kB

D
A(x1) ((x1 + x)− x1) + J

2LD
(
x2

1 − (x1 + x)2)+ A(x1)⇒

2 J
L
x1x = kBA(x1)x for all x⇒

x1 = LkB

2J A(x1).

Proceeding with 1 < j < np, we let xj−1 ≤ xj − x ≤ xj and xj ≤ xj + x ≤ xj+1

and use again Eq. 4 to replace A(xj):

kB

D

j−1∑
i=1

A(xi) ((xj − x)− xj−1) + J
2LD

(
x2

j−1 − (xj − x)2)+ A(xj−1) =

kB

D

j∑
i=1

A(xi) ((xj + x)− xj) + J
2LD

(
x2

j − (xj + x)2)+ A(xj)⇒

J
2L (4xjx) = kB

[
2

j−1∑
i=1

A(xi) + A(xj)
]
x for all x⇒

xj = LkB

J

j−1∑
i=1

A(xi) + LkB

2J A(xj).

Now we have direct relations between the concentrations at each plasmid and

the position of the plasmids for symmetric concentrations. Note that by math-
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ematical induction, it is straightforward to show that for 1 ≤ j < np:

A(xj) = 2J
LkB

(
xj + 2

j−1∑
i=1

(−1)j−ixi

)
. (6)

Now we define the plasmid spacings zj := xj − xj−1. Note that by Eq. 6 for

1 < j < np: zj = LkB

2J (A(xj) + A(xj−1)). We can then replace all A(xi) in Eq.

4 in terms of the xj and zj and subsequently solve for the spacing and positions.

First we rewrite Eq. 4 as:

A(xj) + A(xj−1) = kB

D

j−1∑
i=1

A(xi)zj −
J

2LDzj (zj + 2xj−1) + 2A(xj−1)⇒

2
kB

zj =


2
D (
∑ j

2 −1
m=1 z2m+1 + x1)zj − 1

2D zj (zj + 2xj−1) + 4
kB

(
xj−1 + 2

∑j−2
i=1 (−1)j−1−ixi

)
if j even

2
D

∑ j−1
2

m=1 z2mzj − 1
2D zj (zj + 2xj−1) + 4

kB

(
xj−1 + 2

∑j−2
i=1 (−1)j−1−ixi

)
if j odd

These equations are essentially quadratic equations in zj . Using mathematical

induction we will now show that zj = 2x1 for all 2 ≤ j < np. We start with

the base case j = 2: z2

[
2

kB
− 2

Dx1 + 1
2D (z2 + 2x1)

]
= 4

kB
x1. The only physical

solution is indeed z2 = 2x1. Now assume that the induction hypothesis holds

true for all i such that 2 ≤ i < j. Then for j odd:

zj

 2
kB
− 2
D

j−1
2∑

m=1
z2m + 1

2D (zj + 2xj−1)

 = 4
kB

(
xj−1 + 2

j−2∑
i=1

(−1)j−1−ixi

)
⇒

zj

[
2
kB
− 2
D

j − 1
2 2x1 + 1

2D (zj + 2(2(j − 1)− 1)x1)
]

=

4
kB

(
(2(j − 1)− 1)x1 + 2

j−2∑
i=1

(−1)j−1−i(2i− 1)x1

)
⇒

zj = 2x1

For j even, the same procedure also results in zj = 2x1. This concludes the

induction argument. Now we have for 1 ≤ j < np : xj = (2j − 1)x1. Lastly

we focus on j = np: first note that we can now simplify Eq. 5 to: xnp =
L
2 + (np − 1)x1. This means that znp

= xnp
− xnp−1 = L

2 + (2− np)x1. Finally,

by flux balance (Eq. 2): kBA(xnp
) = J− kB

∑np−1
i=1 A(xi). Invoking continuity

(Eq. 4) for A(xnp) and replacing
∑np−1

i=1 A(xi) for plasmid spacings, we obtain:

L

kB
=


[

2
kB

+ 2
D znp

] [∑np
2 −1

m=1 z2m+1 + x1

]
− 1

2D znp

(
znp

+ 2xnp−1
)

+ 2
kB
x1 if np even[

2
kB

+ 2
D znp

]∑np−1
2

m=1 z2m − 1
2D znp

(
znp

+ 2xnp−1
)

+ 2
kB
x1 if np odd

⇒ L

kB
=
[

2
kB

+ 2
D
znp

]
(np − 1)x1 −

1
2Dznp

(
znp

+ 2(2(np − 1)− 1)x1
)

+ 2
kB

x1
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Now we insert our expression znp
= L

2 + (2− np)x1 to find that x1 = L
2np

. We

conclude that a symmetric ParA concentration leads to equal plasmid spacing:

1 ≤ j ≤ np : xj = L
2np

+ (j − 1) L
np

.
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