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Abstract: 

Background - Triglycerides and their lipoprotein transport molecules are risk factors for heart 

disease. Observational studies have associated elevated levels of serum urate (SU) with 

triglycerides (Tg) and risk of heart disease. However, owing to unmeasured confounding, 

observational studies do not provide insight into the causal relationship between SU and Tg. The 

aim of this study was to test for a causal role of SU in increasing Tg using Mendelian 

randomisation that accounts for unmeasured confounding. 

Methods and Results - Subjects were of European ancestry from the Atherosclerosis Risk in 

Communities (ARIC; n=5237) and Framingham Heart (FHS; n=2971) studies. Mendelian 

randomisation by the two-stage least squares regression method was done with SU as the 

exposure, a uric acid transporter genetic risk score as instrumental variable and Tg as the 

outcome. 

mmol/L change in Tg per mmol/L increase in SU). However, Mendelian randomisation-based 

estimation showed no evidence for a direct causal association of SU with Tg concentration  - 

there was a non-significant 1.01 mmol/L decrease in Tg per mmol/L increase in SU attributable 

to the genetic risk score (P=0.21). The reverse analysis using a Tg genetic risk score provided 

evidence of a causal role for Tg in raising urate in men (PCorrected=0.018).

Conclusions - These data provide no evidence for a causal role for SU in raising Tg levels, 

consistent with a previous Mendelian randomisation report of no association between SU and 

ischaemic heart disease.
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Introduction

Elevated serum urate (SU) levels are a key risk factor for gout and nephrolithiasis. 

Hyperuricemia and gout are independently associated with all cause and cardiovascular disease 

(CVD) mortality and myocardial infarction in multivariate analyses (1-3). Clinical trials 

demonstrate cardiovascular benefits by lowering of elevated SU levels (reviewed in (4)). 

However an older meta-analysis did not fully support association of SU with coronary heart 

disease, with associative evidence decreased in studies that included adjustment for a wider 

range of possible confounders (5). More recently, application of Mendelian randomisation has 

provided no evidence for a causal role of urate in ischaemic heart disease (6). Therefore the 

potential causal role of hyperuricemia in the various categories of heart disease remains 

unresolved (7). 

One risk factor for CVD is triglyceride (Tg) that, while not directly atherogenic, is an 

important biomarker of CVD risk owing to inclusion in atherogenic lipoproteins (8). Urate levels 

are positively associated with Tg levels independently of metabolic syndrome components (9),

consistent with the possibility that urate could influence CVD risk through Tg levels. One 

approach to evaluate a possible cause-effect role for urate in a complex condition such as CVD is 

to evaluate relationships with sub-phenotypic, and presumably less complex, risk factors such as 

Tg levels.

 A genome-wide association study has identified 28 loci that explain a small proportion 

(~6%) of SU levels in European Caucasians (10). Half of this explained variance (~3%) is 

attributed to renal and gut molecules (SLC2A9, SLC17A1, SLC22A11, SLC22A12, ABCG2) 

that regulate serum urate levels via regulation of excretion (10, 11). Mendelian randomisation, 

that exploits random assignment of alleles at conception, is a statistical genetics approach that 
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can allow disentangling of cause and effect in the presence of potential confounding (12, 13). 

Given the relatively strong effect on urate levels, a genetic risk score comprised of the serum 

urate-associated variants at each locus or individual genetic variants, is useful as an ‘instrumental 

variable’ to test for a possible causal role for urate in related phenotypes. The Mendelian 

randomisation technique has been used to provide evidence against a causal role for urate in 

ischaemic heart disease, metabolic syndrome and reduced renal function (6, 14, 15). Conversely, 

use of a weight genetic instrumental variable demonstrates a causal role for increased body mass 

index (BMI) in raising urate levels (demonstrating BMI as an important confounding factor in 

observational studies of urate and metabolic conditions) (6, 16). Our aim, therefore, was to use 

Mendelian randomisation to test for a causal role for urate (the exposure) in raising Tg levels (the 

outcome), with the results expected to provide additional information to address the broader 

question of whether or not urate is causal in CVD. 

Subjects and Methods 

Subjects

Subjects of European ancestry were included from the Atherosclerosis Risk in Communities 

(ARIC; n=5237) and the Framingham Heart Study (FHS; n=2971). Demographic and clinical 

details of these study sets are described in Table S1. People taking antihypertensive medication 

and who self-reported physician-diagnosed kidney disease or gout were excluded from the 

analysis. The research procedures were in accordance with the ethical standards of the 

institutional review boards relevant to the ARIC and FHS data sets. Written informed consent 

was given by all participants.

Instrumental variable and statistical analysis 

The Mendelian randomisation approach, two-stage least squares regression, was performed using 
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a genetic risk score as an instrumental variable. The uric acid transporter instrumental variable 

was comprised of SNPs rs11942223 (SLC2A9), rs2231142 (ABCG2), rs1183201 (SLC17A1), 

rs2078267 (SLC22A11), and rs3825018 (SLC22A12) for both ARIC and FHS. A Tg 

instrumental variable was also used (17), comprised of rs10889353 (ANGPTL3), rs7557067 

(APOB), rs2954029 (TRIB1), rs7819412 (XKR6-AMAC1L2), rs328 (LPL), rs3135506 

(APOA5), rs662799 (APOA5), rs17216525 (NCAN-CLIP2-PBX4) and rs7679 (PLTP). An 

allele-counting genetic risk score consisted of each SNP coded 0–2 based on the number of 

alleles that associated with increased SU or Tg and scores were combined. Because the uric acid 

transporter genetic risk score was an adequate instrumental variable (Table 1) we did not use 

other SNPs with weaker effects on urate (10). We excluded from the Tg instrumental variable 

SNPs from the glycolytic locus GCKR and the MLXIPL locus (which includes the BAZ1B gene) 

because they are both also associated with SU (10) and there is evidence for pleoitropic effects of 

these loci on other SU- and Tg-related phenotypes (18,19).  The individual genetic variants of 

the SU genetic risk score were also used as instrumental variables, as previously described (14). 

 To test for a causal effect of SU on Tg levels, the change in SU resulting from the SU 

genetic risk score instrumental variable in the ordinary least squares regression (step 1) was 

regressed against Tg levels (outcome) (step 2). The estimates derived from the ordinary least 

squares regression between the explained variables (SU and Tg) and the two-stage least squares 

regression were then compared using the Durbin–Hausman test (20). The reverse Mendelian 

randomisation analysis with Tg as exposure and SU as outcome was done using the Tg genetic 

risk score described above.  
 All analyses were done using STATA version 8.0 (StataCorp, College Station, TX). The 

two-stage least squares analyses were conducted using the ivreg function on STATA 8.0, where 
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the exposure represented the endogenous variable, outcome the dependent variable, and the 

appropriate genetic risk score the instrumental variable. Normal linear regression analyses were 

carried out using the regress function on STATA 8.0. A P<0.05 was regarded as significant. A

correction factor of nine was applied for multiple testing (combined and separate data sets 

multiplied by sex analysis). All associations were adjusted for possible confounders (age, sex, 

BMI), the first two Eigen values of genome-wide single nucleotide polymorphism (SNP) 

principal component analysis (PCA) and by dataset when ARIC and FHS were combined, as 

previously described (14). 

Power calculations

Power using the SU instrumental variable was calculated as described (21); implemented at 

http://glimmer.rstudio.com/kn3in/mRnd/), for uncorrected =0.05 and using parameters from 

Tables 1,2 and S1, in the combined ARIC/FHS sample sets and in males and females separately

( OLS was the crude and XY (an estimate of the unknown true causal relationship) the 

confounder adjusted regression estimate of urate on Tg). Power in the combined samples was 

0.94, males only was 0.46 and females only (with a stronger instrumental variable and less

variance in Tg levels) was 0.86. 

Results

Mean SU and serum Tg levels according to uric acid transporter genetic risk score are shown in 

Table S2. There was, as expected, a clear relationship between increased genetic risk score and 

SU, with the genetic risk score explaining 2.15%, 2.26% and 2.23% of variance in serum urate in 

the ARIC, FHS and combined cohorts, respectively (Table 1). However, as the genetic risk score 

increases, no clear change was observed in serum triglycerides in any of the study groups (Table 

S2).  
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 Mendelian randomisation was performed using the two-stage least squares approach.  

The ordinary least squares regression analysis showed that an increase of 1 mmol/L in SU was 

P=1.80x10-70; Figure 1, 

Table 2). However, use of the two-stage least squares approach as a quantitative measure for the 

exposure (SU) on outcome (serum Tg) showed no evidence for a causal role of SU in raising 

serum Tg levels in any sample set, as no significant change was observed in Tg values from each 

unit increase in SU attributable to the genetic risk score using two-stage least squares (P > 0.05; 

Figure 1, Table 2). Notably, each genetically attributed unit increase in SU was consistently 

associated with a decrease in serum Tg, with significant Durbin-Hausman P-values (all <0.002) 

(Table 2) indicating possible reverse causality. 

The use of an instrumental variable in Mendelian randomisation requires that it fulfill 

three assumptions (13). The instrument used should be (i) adequately correlated with the 

exposure (SU), (ii) independent from confounders (eg age, sex, BMI), and (iii) would influence 

the outcome via the exposure and not via any pleiotropic effects. The urate instrument satisfies 

assumption one in Europeans (Table 1) where the F-statistic is ~30 or greater in all analyses. 

Regarding assumption two, we tested by linear regression for association between the uric acid 

transporter instrumental variable and major confounders age, sex and BMI, in addition to eGFR, 

SBP, high and low density cholesterol and ancestry using Eigen values from principal 

component analysis (PCA) – there was no evidence for association with any of these variables

excepting PCA1 (Table S4). This association was observed in the FHS dataset, presumably 

caused by the familial correlation within the FHS. However, there was no evidence for 

association of Tg with PCA1 in the FHS sample set (age, sex, BMI adjusted P=0.30), arguing 

against violation of assumption 2 caused by the familial structure. For assumption three, the 
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possibility of pleiotropic effects (ie, effects on Tg levels aside from or in addition to a direct 

effect of the urate exposure) of the uric acid transporter instrumental variable on Tg levels is very 

difficult to eliminate (14). To mitigate possible violations of assumption three, the two-stage 

least squares Mendelian randomisation was adjusted by age, sex, BMI, and Eigen vectors. 

Previously, using the same genetic risk score as an instrumental variable in two-stage least 

squares Mendelian randomisation we provided evidence for a protective role of urate on renal 

function (14). However, the effect size of the individual component SNPs of the genetic risk 

score on urate did not correlate with the two-stage least squares effect estimate on renal function 

(14).  Therefore, here, the individual variants were also tested (Table 3). At rs11942223

(SLC2A9) and rs2078267 (SLC22A11) negative ß-values and significant Durbin-Hausman P

values were observed, suggesting that these variants may causally influence Tg levels, with

lifetime exposure to the urate-increasing allele correlating with reduced serum Tg (Table 3; ß= -

0.408 mmol/L, PDurbin_Hausman <0.00001 and ß= -5.262 mmol/L, PDurbin_Hausman =0.002, 

respectively). 

 Finally, we performed the reverse Mendelian randomisation, testing for a causal role for 

Tg in altering SU levels (Table 4; Figure 2; Table S3), using a genetic risk score of adequate 

strength (Table 1; R2=0.0165; F-statistic is ~35 or greater in all analyses). This revealed evidence 

for a causal role of increased Tg in raising SU levels in men ( =0.021; P=0.002;

PCorrected=0.018), with consistent evidence in each of the ARIC and FHS cohorts ( =0.020; 

P=0.037 and =0.022; P=0.016, respectively). There was no evidence for a causal role for Tg in 

raising SU in women, with a Durbin-Hausman P of 0.002 providing evidence for possible 

reverse causality. The genetic risk score instrumental variable was not associated with 

confounders age, sex and BMI (Table S5), although there was evidence for association with 
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PCA1 in the FHS data set. Weak association between PCA1 and SU in the FHS sample set (age, 

sex, BMI adjusted P=0.023) does not suggest serious violation of assumption 2 caused by the 

familial structure.

Discussion

Use of the uric acid transporter genetic risk score in the two-stage least squares Mendelian 

randomisation procedure showed that each standard unit increase in SU due to the genetic risk

score was not directly associated with increased serum Tg levels. However the significant 

Durbin-Hausman P values did provide some evidence for reverse causality, with an increased 

uric acid transporter genetic risk score associated with reduced Tg levels, in a direction opposite 

to the relationship between SU and serum Tg. The analysis of the individual genetic variants, 

rs11942223 (SLC2A9) and rs2078267 (SLC22A11) in particular, also provided evidence by the 

Durbin-Hausman test for a causal effect of the urate-increasing alleles of the variants in lowering 

Tg levels. It is not feasible to eliminate the possibility of residual confounding contributing to 

this observation. Given a possibly weak causal relationship which would reduce power it will be 

important to provide more evidence for the potential reverse causation by testing for association 

of increased uric acid transporter genetic risk score with reduced Tg levels by two stage least 

squares analysis in larger cohorts than those studied here. However, we were adequately 

powered to detect a causal relationship equivalent to the confounder adjusted population ordinary 

least squares regression of urate on Tg (Table 2).  

 Whether or not the effect of rs11942223 and rs2078267 owes to urate per se or to other 

pleiotropic effects that can be ascribed to the physiological (functional) effect tagged by these 

SNPs (which would violate the third requirement of a Mendelian randomisation instrumental 

variable) is unclear. Similar two-stage least squares analysis that provided evidence for a 
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protective role in renal function of the same urate-increasing genetic variants used here 

concluded that this effect was consistent with the possibility that the physiological action of the 

genetic variants (rs2078267 in SLC22A11 encoding OAT4, in particular) in raising SU is 

responsible for the improved renal function (14). The strongest evidence here by the Durbin-

Hausman test of a causal role for increased urate to reduce triglyceride levels came from 

rs11942223 (SLC2A9) (P<0.0001), with support also from rs2078267 in SLC22A11 (Table 3). 

Arguing against a role for SU per se causing the Tg-lowering effect are the data from ABCG2 

rs2231142 – this instrumental variable was strong (F=61.14, r2=0.0074) yet the ß in the two-

stage least squares analysis was +1.211 mmol/L (indicating the SU-raising genetic effect of 

rs2231142 could also raise Tg levels) with a non-significant Durbin-Hausman P of 0.29. The 

possibility of the activity of ABCG2 concomitantly raising SU and serum Tg requires testing in a 

larger sample set. With respect to the SLC2A9 effect, one environmental exposure relevant to 

both urate and Tg levels is sugar-sweetened beverage consumption. The SLC2A9 transporter 

exchanges sugars (glucose and fructose) for uric acid, with uric acid transport modified by 

fructose and glucose (22, 23). Controlled feeding studies show that consumption of sugar-

sweetened beverage increases both SU and serum Tg (24,25), and consumption of sugar-

sweetened beverage is associated with increased SU and serum Tg (26-28). Collectively these 

observations make it conceivable that the activity of SLC2A9 in raising urate lowers Tg levels, 

for example by influencing the availability of sugar for Tg synthesis via glycolysis. Together 

with our previous Mendelian randomisation study testing for a causal role for urate in renal 

function (14), these results emphasise the difficulty of identifying a urate instrumental variable 

for studying the causal relationship of urate with various metabolic phenotypes that has no 

pleiotropic effects. Whilst this could be regarded as a deficiency, studies such as this do, 
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however, allow new biological insights into physiological aspects of urate metabolism and 

generation of testable experimental hypotheses. For example, what are the urate and Tg-related 

phenotypes of rodent models humanized for the individual instrumental variables that indicate 

pleiotropic effects. 

The reverse Mendelian randomisation analysis by two-stage least squares provided direct 

evidence for a role of Tg in increasing urate levels in males only (Figure 2; Table 4) with 

consistent and significant effect sizes attributable to the Tg genetic risk score observed in each of 

the ARIC and FHS cohorts. The effect is in a direction consistent with the observational data, as 

evidenced by positive two stage least squares beta values and non-significant Durbin-Hausman P

values. A very similar Tg instrumental variable to that used by us (ours excluded MLXIPL) was 

previously used as an instrumental variable in a Mendelian randomisation study that reported 

evidence of a protective role for raised serum Tg in type 2 diabetes but no evidence for a causal 

role in glucose levels or insulin resistance (17). These findings are ostensibly incongruous. 

Furthermore, given the established observational positive relationship between urate and these 

traits, our evidence supporting a causal role for Tg in raising urate is not obviously consistent 

with no causal role for Tg in glucose levels or insulin resistance. The findings using this Tg 

genetic instrumental variable, and the individual components, need to be extended in a larger 

Mendelian randomisation study that provides adequate power for evaluating the individual 

components, in order to disentangle the complex cause-effect relationship between Tg and other 

metabolic phenotypes.  

One possible deficiency in our study design requires noting. The inherent property of 

Mendelian randomisation should ensure that confounding owing to sugar-sweetened beverage 

exposure, for example, is ruled out by equivalent lifetime exposure between the randomised 
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genotype groups. However this is based on the assumption of no effect modification by such 

confounders on the instrumental variable. In the case of SLC2A9 rs11942223 and sugar-

sweetened beverage exposure there is evidence for non-additive interaction on the control of SU 

– with sugar-sweetened beverage exposure the main urate-lowering effect of the C-allele is 

reversed (26). This possibility was not included in our two-stage least squares procedure. 

 Our results provided no evidence for a causal role for urate per se in raising Tg levels, a 

risk factor for CVD (8). These results are in agreement with those of Palmer et al. (6) who, using 

SLC2A9 rs7442295 (in complete linkage disequilibrium with rs11942223) as an instrumental 

variable for urate exposure, provided no evidence in a study of 7,172 cases and 61,502 controls 

for a causal association between urate and ischaemic heart disease and between urate and blood 

pressure. The observational studies that show independent association of SU with CVD and risk 

factors may be confounded by exposure to environmental factors that both raise urate levels and 

increase risk of CVD, with sugar exposure being a good example (26, 29). These exposures are 

very difficult to measure and account for in observational studies, and highlight the power of 

Mendelian randomisation, with different genotype groups having equivalent lifetime exposures 

to such confounders, in studying causal relationships. Our data illuminate a small aspect of the 

overall urate-CVD relationship, using an instrumental variable that explains a fraction of urate 

(2.2%) controlled by genetic variation in uric acid transporters. Further research should use 

Mendelian randomisation in larger well phenotyped cohorts to replicate and extend our findings 

and to examine the consequence of urate exposure on specific CVD-related phenotypes such as 

endothelial dysfunction and inflammation.
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Table 1: Association between uric acid transporter genetic risk score (instrumental variable) and serum urate, and between 
triglyceride genetic risk score and serum triglyceride

Uric acid transporter Triglyceride

F-statistic R P F-statistic R P 

ARIC Europeans All 114.81 0.0215 1.72E-26 76.82 0.0145 2.60E-18
Males 63.05 0.0256 3.08E-15 39.71 0.0163 3.53E-10

Females 99.25 0.0338 5.42E-23 36.56 0.0128 1.64E-09

FHS Europeans All 68.75 0.0226 1.69E-16 69.71 0.0228 1.32E-16
Males 29.68 0.0213 5.97E-08 36.28 0.0259 2.24E-09

Females 90.91 0.0536 5.58E-21 45.43 0.0275 2.20E-11

Combined All 187.37 0.0223 3.38E-42 137.29 0.0165 1.79E-31
Males 93.33 0.0242 7.97E-22 74.77 0.0195 7.51E-18

Females 183.43 0.0397 5.84E-41 65.5 0.0145 7.63E-16

The F-statistic represents the strength and R2 the percent variance in SU explained by the instrumental variable
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Table 2: Mendelian randomisation analysis of SU against serum Tg using the uric acid transporter genetic risk score instrumental 
variable

Ordinary Least Square Regression Two-stage Least Square

Beta‡ SE§ P Beta‡ SE§ P DH P||

ARIC Europeans All Crude* 3.160 0.145 1.44E-100 -1.235 1.075 0.250 <0.0001
Adjusted† 2.474 0.181 6.13E-42 -1.101 1.006 0.274 0.0002

Males Crude 3.214 0.284 5.61E-29 -1.191 1.864 0.523 0.012
Adjusted 2.419 0.293 1.72E-16 -1.340 1.826 0.463 0.031

Females Crude 3.276 0.203 3.42E-56 -1.332 1.198 0.266 <0.0001
Adjusted 2.369 0.218 5.44E-27 -0.828 1.065 0.437 0.001

FHS Europeans All Crude 3.813 0.192 1.15E-82 -1.272 1.418 0.370 <0.0001
Adjusted 3.057 0.271 7.08E-29 -0.924 1.311 0.481 <0.0001

Males Crude 4.525 0.452 8.26E-23 -3.833 3.463 0.269 <0.0001
Adjusted 3.828 0.468 6.98E-16 -1.980 2.816 0.482 <0.0001

Females Crude 3.261 0.241 1.80E-39 -0.224 1.108 0.840 <0.0001
Adjusted 2.033 0.256 3.78E-15 0.032 0.999 0.974 <0.0001

Combined All Crude 3.475 0.115 1.32E-191 -1.093 0.838 0.192 <0.0001
Adjusted 2.688 0.150 1.80E-70 -1.007 0.797 0.206 <0.0001

Males Crude 3.701 0.244 1.27E-50 -2.041 1.680 0.224 0.0002
Adjusted 2.920 0.252 1.52E-30 -1.520 1.547 0.326 0.0024

Females Crude 3.483 0.151 6.13E-112 -0.631 0.816 0.439 <0.0001
Adjusted 2.322 0.167 6.55E-43 -0.564 0.767 0.463 0.0001

The left-side is the standard linear (ordinary least square) regression between the explained variables (SU and serum Tg) and the right-side is the two-stage least 
squares analysis.
* Unadjusted
† Adjusted by study data set (in combined), sex (in ‘All’), age, BMI and the first two Eigen values of genome-wide principal component analysis (in ARIC, FHS 
and combined). 
‡ Beta represents the change in serum Tg (mmol/L) attributed to a unit change in SU in the linear regression (on the left) and the change in serum Tg (mmol/L) 
caused by a unit change in SU attributed to the instrumental variable in the two-stage least squares analysis (on the right).
§ Standard error
|| Durbin-Hausman P value
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Table 3: Mendelian randomisation analysis of SU versus Tg using uric acid transporter single genetic variants as instrumental 
variables in the combined ARIC and FHS sample set 

F-statistics R2 Beta* SE† P DHP‡

All
rs11942223 (SLC2A9) 228.71 0.0271 -0.408 0.704 0.562 <0.00001
rs2231142 (ABCG2) 61.14 0.0074 1.211 1.401 0.387 0.286

rs2078267(SLC22A11) 19.13 0.0023 -5.262 3.037 0.083 0.002
rs1183201(SLC17A1) 15.11 0.0018 0.103 2.347 0.965 0.261
rs3825018(SLC22A12) 11.93 0.0015 -3.156 3.535 0.372 0.072

Males
rs11942223 (SLC2A9) 75.64 0.0197 -0.924 1.775 0.599 0.022
rs2231142 (ABCG2) 53.48 0.014 0.027 2.098 0.990 0.157

rs2078267(SLC22A11) 8.24 0.0022 -7.633 5.832 0.191 0.028
rs1183201(SLC17A1) 11.64 0.0031 1.115 4.122 0.787 0.659
rs3825018(SLC22A12) 5.63 0.0015 -2.426 5.446 0.656 0.299

Females
rs11942223 (SLC2A9) 316.16 0.0665 -0.200 0.591 0.735 <0.00001
rs2231142 (ABCG2) 37.24 0.0083 2.657 1.841 0.149 0.855

rs2078267(SLC22A11) 15.64 0.0035 -3.320 2.936 0.258 0.031
rs1183201(SLC17A1) 17.25 0.0039 -0.428 2.412 0.859 0.239
rs3825018(SLC22A12) 4.75 0.0011 -2.940 3.804 0.440 0.125

Adjusted by study data set, sex (in ‘All’), age, BMI and the first two Eigen values of genome-wide principal component analysis 
* Beta represents the change in serum Tg (mmol/L) attributed to a unit change in SU attributed to the instrumental variable in the two-stage least squares 
analysis.
† Standard error
‡ Durbin-Hausman P value
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Table 4: Mendelian randomisation analysis of serum Tg against serum urate using the triglyceride genetic risk score instrumental 
variable

Ordinary Least Square Regression Two-stage Least Square

Beta‡ SE§ P Beta‡ SE§ P DH P||

ARIC Europeans All Crude* 0.026 0.001 1.44E-100 0.010 0.010 0.304 0.113
Adjusted† 0.014 0.001 6.13E-42 0.008 0.008 0.336 0.436

Males Crude 0.016 0.001 5.61E-29 0.015 0.011 0.165 0.955

Adjusted 0.012 0.001 1.72E-16 0.020 0.010 0.037 0.356

Females Crude 0.026 0.002 3.42E-56 -0.010 0.015 0.520 0.011

Adjusted 0.017 0.002 5.44E-27 -0.012 0.014 0.387 0.029

FHS Europeans All Crude 0.031 0.0016 1.15E-82 0.007 0.011 0.505 0.020

Adjusted 0.014 0.0012 7.08E-29 0.012 0.007 0.104 0.802

Males Crude 0.015 0.0015 8.26E-23 0.020 0.009 0.035 0.607

Adjusted 0.012 0.0015 6.98E-16 0.022 0.009 0.016 0.279

Females Crude 0.032 0.0023 1.80E-39 -0.016 0.016 0.286 0.0005

Adjusted 0.019 0.0023 3.78E-15 -0.005 0.013 0.709 0.050

Combined All Crude 0.029 0.001 1.32E-191 0.005 0.008 0.491 0.001

Adjusted 0.014 0.001 1.80E-70 0.009 0.006 0.095 0.306

Males Crude 0.016 0.001 1.27E-50 0.017 0.007 0.025 0.860

Adjusted 0.012 0.001 1.52E-30 0.021 0.007 0.002 0.166

Females Crude 0.031 0.001 6.13E-112 -0.023 0.013 0.076 <0.00001

Adjusted 0.018 0.001 6.55E-43 -0.008 0.010 0.403 0.002

The left-side is the standard linear (ordinary least square) regression between the explained variables (SU and serum Tg) and the right-side is the two-stage least 
squares analysis.
* Unadjusted
† Adjusted by study data set (in combined), sex (in ‘All’), age, BMI, first two Eigen values of genome-wide SNP (in ARIC, FHS and combined). 
‡ Beta represents the change in SU (mmol/L) attributed to a unit change in Tg in the linear regression (on the left) and the change in SU (mmol/L) caused by a 
unit change in serum Tg attributed to the instrumental variable in the two-stage least squares analysis (on the right).
§ Standard error
|| Durbin-Hausman P value

EEEE----56565656 ----0.000 010101010000

E-27 -0.0.00 010010 2222

C d 0 031 0 0016 1 15E 82 0 007CrCrCrCrududududeeee 0.031 0.0.0.0 0000000016 1.15555EEEE-82 0.007

AdAAdA justedddd 0....010101014444 0.0000012 7.7.7 08080808EEEE-29999 0.0.0.0 010101012222

CrCCC ude 0.0..015 0.0000015 8.266EE-22232 00.0220

Addddjujujujustststs eded 0.0101010 2222 000.00000000151511 666.6 98989898EEEE-16 000.0202022222

Crude 0.00 030303032222 0.000 0000000232322 1.1.80808080EEEE--39393939 -0.016

Adjustedededed 0.000 010101019999 0.0.00.0000000023222 3.3.3.3.78787878EEEE--1515155 -0.005
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Figure Legends:

Figure 1: Forest plot showing observational and instrumental variable estimates of the effect of 

Tg (mmol/L) on SU (mmol/L) in ARIC (A), FHS (B) and combined ARIC/FHS (C). The 

instrumental variable estimate represents the increase in Tg per mmol/L increase in SU 

attributable to the genetic risk score.

Figure 2: Forest plot showing observational and instrumental variable estimates of the effect of 

Tg (mmol/L) on SU (mmol/L) in ARIC (A), FHS (B) and combined ARIC/FHS (C). The 

instrumental variable estimate represents the increase in SU per mmol/L increase in Tg 

attributable to the genetic risk score.
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